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Abstract
This study aims at minimizing the excess kurtosis observed in the financial data especially in stock price by
obtaining an optimum conditional distribution for estimating the linear GARCH (p, q) model. The study used the
daily stock prices of First Bank Nigeria Pic. traded in the Nigeria Stock Exchange from January 2001 to July 2008
and the results from the statistical properties of the daily returns and that of the Jarque-Bera test showed that the
returns series is leptokurtic. The selected GARCH model was compared for estimation based on the Normal,
Student-t distribution and Generalized Error distribution (GED). The optimum distribution was selected using the
Bayesian information criterion (BIC) and the Likelihood values and the results indicated that the kurtosis displayed
was reduced when GED is used in the estimation. For stationarity. the parameters sum is less than one and this
implies that the parameters satisfy the second order stationary (weakly stationary) conditions.

Introduction
Financial time series often exhibit some well-known characteristics. First, large changes tend to be followed by large
changes and small changes tend to be followed by small changes. Secondly financial time series often exhibit
leptokurtosis (Kurtosis > 3). which means that the distribution of their returns is fat-tailed (i.e. relative high
probability for extreme values).The GARCH model successfully captures the first property described above (Chen et
ai, 2006; Hansen and Lunde. 2005; Caiado, 2007; Hourvouliades 2007; Jafari et. al., 2(08), but sometimes fails to
capture the fat-tail property of financial data. This has led to the use of non-normal distributions to better model the
fat-tailed characteristic. Not only the unconditional distribution but also the conditional distribution of daily asset
returns is known to be leptokurtic. Thus. some authors have suggested using ARCH-type models with leptokurtic
distributions such as the t-distribution, normal-lognormal mixture distribution, normal-Poisson distribution, Power
exponential distribution for the conditional distribution and they conclude that student-t distribution is suited for
capturing the excess kurtosis of conditional distribution for daily stock returns (Baillie and DeGennaro, 1990; Hsieh,
1989;Bollerslev and Mikkelsen, 1996).

The purpose of this paper is to examine what distribution is best fit for the conditional distribution of daily Nigeria
stock returns by comparing two fat-tailed distributions viz: Student-t and Generalized error distributions in order to
minimize the excess kurtosis of conditional distribution for Nigeria stock returns using Bayesian Information
Criterion (BIC).

PRELIMINARIES
Financial time series analysis is directed to the understanding of the mechanism that drives a given time series of
data. or in other words: financial time series analysis focuses on "the truth behind the data" so that one can find
physical models that explain the empirically observed features of real life data. With such models one can make
.distributional forecasts for future values in time series.
Today there exist many different types of financial data but if one' focuses on share prices, stock indices and foreign

exchange rates (which we denote PI , t=I,2, ...• where t can be minutes. hours. days, etc.), they behave very similar
after the transformation: .
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The series Y I is referred to as the log return series. These series have the advantage that they are free of unit, and
can therefore be compared with each other.

2.1 Kurtosis

The observations of the. time series Y I have a distribution, which often is assumed to be normal (Gaussian).
However, empirical studies of practically any financial time series show that this is not quite correct (Mandelbrot,
1963 and Fama (1963,1965» are the first studies to report this feature). One way to quantify this property is to look
at the kurtosis of the distributions.
Kurtosis is a measure of the extent to which observed data fall near the centre of a distribution or in the tails i.e.is the
degree of peakedness or flatning of a distribution usually taken relative to a normal distribution and is calculated as:

_ E(y:)
K - 4 ••••••••• ( 2)

at
• For a normal distribution, the kurtosis is 3 and is referred to as mesokurtic
• A platykurtic distribution has a kurtosis value less than that of a standard, normal distribution. This type of

distribution has a fat mid-range on either side of the mean and a low peak.
• A leptokurtic distribution has a kurtosis value greater than that of a standard, normal distribution which

gives the distribution a high peak, a thin midrange, and fat (heavy) tails.

2.2 Diagnostic Checking of Normality
There are several statistical tests used for the diagnostic checking of normality. In this
study, Jarque Bera (JB) test was used for the diagnostic checking of residuals for normality and it is denoted by:

JB = ( ~}s2 + (K - 3)2 /4) ( 3)

Where S=Skewness, K=Kurtosis.

It follows a X 2 distribution with 2 d.f. If the JB Statistic is greater than critical value of the X 2 (JB) > Z; , we
reject the null hypothesis of normality.

2.3 Diagnostic Checking of Serial Correlation
Testing for serial correlation is a fundamental problem in time series analysis. To determine whether a time series is
independent, the autocorrelation function (ACF) of the series is examined. If the ACF is significantly different from
zero, this implies that there is dependence between observations. Therefore, ACF is a powerful complementary tool
for testing independence (Janacek and Swift, 1993; Fernando et aI, 2(00). The residual autocorrelation should be
obtained to determine whether the residuals are white noise. In this study, the Ljung-Box Q statistic is used as
alternative approaches for the diagnostic checking of residuals for serial correlation and is given as (Ljung and Box,
1978):

k r.
Qk = n(n + 2)2: ( ~ .)""....;.(4)
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where n is the number of samples, k is the number of lags and r i is the i Ih autocorrelation. If Q k is large then

the probability that the process has uncorrelated data decreases. Q k is asymptotically approximate as Z i .
2.4 Model Order Selection

Since GARCH model can be treated as Autoregressive Moving Average (ARMA) model for squared residuals,
traditional model selection criteria such as Akaike Information Criterion (AIC) and BIC can also be used for
selecting models. When a model involving q independently adjusted parameters is fitted to data, the Bayesian
information criterion (BIC) which is a modification of AlC is given as:



where n is the number of observation. The model order with the minimum BIC would provide a good fit for
analyzing the return series. This. technique is also employed for the selection of the conditional distribution for the
estimation of the parameters of the fitted model in order to minimize the ku~osis.

REVIEW OF RELEV ANT MODELS
Most models for financial returns are of the form:

Y, = (7, Z , ,......... .. ..... ( 6)

where Z ,is a sequence ofi.i.d. symmetric random variables, and { (7, } is a nonnegative stochastic process such

that Z'and (7, are independent for fixed t. There is strong empirical support for stochastic volatility in financial
time series and the presence of stochastic volatility implies that returns are not necessarily independent over time.

The standard assumption for the noise Z, is that {Z, } - N(O,I) with {Z, } independent of the standard

deviation process { (7, }.

3.1 Autoregressive Conditional Heteroscedsatic (ARCH) Model
Volatility is a central part of most asset pricing models. In these models, one often assumes that the volatility is
constant over time. However, it is well known that financial time series exhibit time-varying volatility. Engle (1982)

proposed a model for (7 , .

P

(j,2 = ao +L ai y,2_i ••••••• ( 7)
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This model is called the Autoregressive Conditional Heteroscedasticity (ARCH process) where the "autoregressive"
property in principle means that old events leave waves behind a certain time after the actual time of the action. The
process depends on its past. The terms "conditional heteroscedasticity" means that the variance (conditional on the
available information) varies and depends on old values of the process.

3.2 General Autoregressive Conditional Heteroscedastic (GARCH) Model
Empirical evidence shows that high ARCH order has to be selected in order to catch the dynamic of the conditional
variance. This leads to the Generalised ARCH model (GARCH) introduced by Bollerslev (1986).

Let Y, denote a real-valued discrete-time stochastic process as defined in eqn. (6). The GARCH (p,q) process
proposed by Bollerslev is then given by:

p q

(j,2 = ao+ LaiY;-i + Lbjo",2_r •••.(8)
i=1 j=1

P > 0, q ;:::0, ao > 0, a; ~ 0'i=I,2, ... ,p, bj ;::: 0, j=I,2, ... ,q.
We can write (5) in terms of lag-operators B, such that

(7/ = ao + a(B )y/ + b(B )u,2 ..... (9)

a (B) = a I B + a 2 B 2 + + a p B P •••••••••• ..( 10 )

b(B)= biB + b2B2 + + bqBq
According to Bollerslev (1986), the necessary and sufficient condition for weak stationarity of the GARCH model
is:

p qI a i + I b j < 1. ( 11)
;=1 j=1



CONDmONAL DISTRIBUTIONS

As discussed earlier, observations of the financial time series { Y, } tend to be leptokurtic (fat tailed). It may be
expected that excess kurtosis displayed by the residuals of conditional heteroscedasticity models will be reduced
when a more appropriate distribution is used for the estimation of the parameters of the fitted model. We shall
consider the normal and two non-guassian error distributions for the estimation in this study.
Here follows some further information about these distributions.

4.1 Normal Distribution
The normal (or Gaussian) distribution is a symmetric distribution with density function:

( 2)-* {(Y, -liY}fy (Y,) = 21la, - exp - 2 ••••• (12)
2a,

where Ii is the expectation value expected to be zero and a,2 is the variance of the stochastic variable Y , , thus

Y, - N (0, a,2). The so called standard normal distribution is given by taking Ii =0 and a,2 =1. For a normal
distribution, the Skewness=O and the Kurtosis=3.

4.2 Student-t Distribution

If a random variable Y, has a student-t distribution with h degrees of freedom, the probability density function

(pDF) of Y, is given by:

z
Y=-'

where r (.) is the gamma function, with ~ ,

Also, z is a standard normal and u is a % 2 distribution with h degree of freedom (h > 2). Like the normal
distribution, the t distribution is symmetric for large sample size. The mean, variance and kurtosis of the distribution
are:
1.Jl=Oforh~2

2 h
2. a = h _ 2 for h ~ 3

6
3 K = -- &or h ~ 5.

o h-4 (I

The Student-t distribution with unit variance has the following density function:

. _ r[(h+ 1)/2] .
fy(l; ,h) - h J. y/ )(h+l~ o~4)

~h1r(Ii:2)A1+ (h-2)

4.3 Generalized Error Distribution (GED)
Generalized error distribution (GED) proposed by Nelson (1991) is a symmetric distribution that can both be

leptokurtic and platykurtic depending on the degree of freedom v (V > L ). The GED has the following density
function:



[
2 -2/ v f (11 V)] 1/2

A = f(3Iv) ( 16)

[he GED with a unit variance has the following density function:

vexrt-(X)/jr J
f/Y, 9 V) = ~' for v> Z ~7)

(v+l) v
A.Z-vr(11v)

(v-Z)
md v is a positive parameter governing the thickness of the tail behaviour of the distribution. In equation (15) above,
""hen v=2, the PDF reduces to the standard normal PDF; when v<2, the density has thicker tails than the normal
lensity; when v>2, the density has thinner tails than the normal density.

t4 Parameter Estimation in the GARCH Model
[0 be able to minimize the kurtosis displayed by financial time series, one first has to fit the GARCH-model to the
:ime series in question. This is done via estimation of the parameters in the model. As stated by Peters (2001), the
nost common method of this estimation is the maximum-likelihood estimation (MLE).

t4.1 Gaussian Quasi Maximum-Likelihood Estimation

,uppose that Y I follows a normal distribution, then we substitute conditional variance for unconditional variance
n the normal likelihood and then maximize it with respect to the parameters. The approach is as follows:

[he joint probability density for n observations (YI, Y 2 , ••• , Y n )

n

f (y n' Y n-l''''' YI ) = f (YI )I1 f (y I / YI_I } ( 18)
1=2

Where f (y I / Y I-I) is conditional distribution (Gaussian) and f (y I ) is unconditional non-Gaussian distribution,
md no closed form description. So, we used conditional MLE (MLEc)' Then the Log -likelihood function is written
is:

LogL (Y;I//) = :t log f (y 1/ Y 1-1) ( 19)
1=2

n

:. MLE c(Y;I//) = L log
l=p+1

For GARCH (p,q) process, we drop the terms f (y I / Y I-I) for t ::;

f(y,! y 1-)

i: log 1 exp-+(;II: ) ( 20) _
l=p+1 ~21l(j12

2
Where (j I is given by (8).
Hence maximizing (20) gives the required parameters.



An alternative way of dealing with non-Gaussian errors is to assume a distribution that reflects the features of the
data better than the normal distribution, and estimate the parameters using this distribution in the likelihood function
instead of the .Gaussian. Thus, the problem with the calculation of choosing a distribution for the innovations, Ble
can be very helpful. In this paper two distributions, apart from the Gaussian, are considered; the Student-t
Distribution (t Distribution), the Generalised Error Distribution (GED).
The likelihood functions for the distributional assumptions are:

• the log-likelihood function for the Student-t distribution:

L. = In[~ h ~ I)]-In[ ~ ~)] - O.5ln[n-{h - 2)]- O.5t.[Inl7; + (I+ h)ln(1+ hY~2) }.(21l
• the log-likelihood function for the GED:

n. E 1
10=L!logl)-o.51-t IV-(1+v-l)log~)-logr<-)]-0.51ogQ?) }.... ~~

~ ~ ~~ V

[
2-2IVr(l/v)]1/2

Where r (.)is the gamma function, and A. = r(3/ v)

These log-likelihood functions are maximised with respect to the unknown parameters (the same procedure as in the
Gaussian quasi MLE case).

From Table 1, we see that the returns series is leptokurtic in the sense that the kurtosis exceeds positive three with
positive non-zero skewness. The positive skewness shows that the upper tail of the distribution is thicker than the
lower tail implying that the market increases occur more than the market declines. So the results showed that the
returns have significant skewness, excess kurtosis and hence the assumption of normal distribution is not satisfied.

Further on conducting the normality test using the Jarque-Bera test for normality; it indicated non-normality of the
distribution i.e. under the null hypothesis of normal distribution the p-value was essentially zero which is less than
the 5 percent level of significance. The tests results are presented in table 2.

Different p and q values for the standard GARCH model were tested using the AIC and BIC techniques. So from
Table 3, if the various BIC values are compared, we established that GARCH (1,2) is the one with the minimum
BIC which is also one with the minimum AlC and highest likelihood value. Therefore, GARCH (1,2) is chosen as
the optimum order of the linear GARCH model.

To evaluate which conditional distribution better describes the observed characteristics of daily stock price returns
of the First Bank Nigeria Pic., three different distributions were compared for the identified GARCH (1,2) model
using BIC and their likelihood values as shown in Table 4. According to the table, generalized exponential
distribution (GED) has the smallest AIC and BIC values with highest likelihood value. This implies that the excess
kurtosis and skewness displayed by the residuals of GARCH (1,2) is reduced with the use of GED. Therefore, the
parameters of the GARCH (1,2) model are going to be estimated using the identified distribution.

However, Table 5 shows the values of the parameters for the identified model. Consequently, the following GARCH
(1,2) process is fitted to the data in order to model the volatility:

When we check for persistency of our chosen model, we have that the sum
0.8291 + 0.0009142 + 0.1463 = 0.9763142 < 1
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0,/
0,2
/,0
/,1
/,2
2,0
2,1
2,2

-995.169
-663.8
-1319.41
-2189.236
-2216.163
8877
-2202.176
-2085.656

~
-978.557
-641.6
-1302.798
-2167.086
-2188.476
8900
-2174.489
-2052.432

Normal
Student-t
Generalized
Ex nential

Table 5: Estimation of GARCH (1,2) with Conditional GED Distribution with Estimated Parameter,
V=O.7434626,and Standard Error 0.006131138.

Constant
AHCH(I)
GAHCH(I)
GARCH(2)

Constant
AHCH(I)
GAHCH(I)
GARCH(2)

OO1744סס.0 14.6404817
0.08250219 10.0493057
0.00183175 0.4990830
0.02085932 7.0152251

Normally Distributed
No Autocorrelation
No Autocorrelation



This shows that the parameters satisfy the second order stationary (weakly stationary) conditions with high degree of
persistence in the conditional variance. Various test statistics carried out to assess the performance of the GARCH
(1,2) model are shown in Tables 6 and 7. From Table 6, all the parameters including the constant value except
GARCH (1) parameter, are significantly different from zero at 5 percent level of significance. Also, from Table 7,
the test for serial correlation structure showed that no autocorrelation left in the standardized residuals and the
squared standardized residuals since we fail to reject both the Null hypotheses in the Ljung-Box test.

Conclusion
This study is concerned with obtaining the optimum model order of the linear GARCH model in modeling the First
Bank returns series. The results from the descriptive statistics of the daily return series supported the claim that most
of the financial series are leptokurtic. By comparing the orders of the models using HIC technique as well as their
likelihood values, GARCH (1,2) model was identified to be the most appropriate for the time-varying volatility of
the data.

In order to account for the fat tails (minimize the excess kurtosis), the chosen model was compared for estimation
based on the Normal, Student-t and Generalized Exponential distributions and the parameters of GARCH (1,2)
model were obtained using GED. Serial correlation structure of the residuals and squared residuals of the identified
model was examined using the Ljung-Box statistic. The results from all these tests showed that the selected model
fulfilled all the diagnostic checks assumptions.
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