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Abstract
In this study, the Chapman-Kolmogorov Equation (CKE) was modified and applied to model the daily precipitation
data of Abeokuta, Ogun State. The modified equation incorporated the initial distribution of the system as a
feedback. The daily precipitation data converges at the 2nd iteration with the modified CKE. To ascertain the validity
of the result, a diagnostic test was conducted with the limiting characteristic equation. The test result showed that the
limiting distribution of the system approached the absolute probability distribution. In addition, the Bayesian
Information Criterion technique was used to determine the order of the Markov chain which was observed to be of
order one. This gave the best fit for precipitation pattern which is relevant in the development of new growth and
yield models of major crops such as corn, sorghum and soya bean; enabling farmers estimate the distribution of crop
yield as the growing season progressed.

Introduction
Precipitation means rainfalI or snow. In this part of the world, precipitation refers to rainfalI; therefore in this study
precipitation implies rainfalI usualIy measured by rain gauge in milIimeters (mm). It has a major influence on alI
human activity. In particular agricultural operations and major engineering activities are strongly influenced by
weather phenomena. New developments in modeling growth and yield of major crops such as corn, wheat, soya
beans and, cotton increased the need for precipitation models so as to enable farmers estimate the distribution of
crop yields as the growing season progresses (Woolhiser, 1992).

Attempts have been made by individuals from a wide range of disciplines with varying success to estimate the
precipitation process for a long time. Extensive climatic data including precipitation have been colIected for many
years alI over the world with the greatest density of stations in the developed nations. The information content of
these data sets were summarized by standard statistical analyses and results presented in tabular or graphical forms.

Since precipitation is the result of complicated physical processes, the non-linear or sensitive process that governs it
makes a purely deterministic physical description and forecast impossible. It is common to model precipitation as a
stochastic process both in space and time, due to its complex time varying phenomena which can be measured by a
finite number of observations.

The stochastic modeling of daily precipitation may be considered in two components namely; the occurrence of
rainfalI during a day and the depth of rainfalI on rainy days. The pattern of each of these is of significant importance
to agriculture and water resources in Nigeria.

Water Resources of Nigeria
Nigeria is endowed with abundant inland water resources. Ita et al (1985) reported that there were 149, 191Km2

(about 15.9% of the total area of Nigeria) of inland waters made up of major lakes, rivers, ponds flood plans,
running and stagnant pools. In the 1980s, there were 347 reservoirs and lakes, 389 tl90d plans and rivers, 5000 fish
ponds, 89 cattle drinking ports and many earth welIs and boreholes (Satia, 1990). A great proportion of the
Country's extension mangrove ecosystem lies within the Niger-Delta and is situated mostly in Akwa-Ibom, Cross
Rivers, Delta, Lagos, Ondo and Rivers states, covering a surface area of between 500,000 and 885,000 hectares
(Saline wetland).

The major rivers, estimated at about 10,8 I2,400 hectares make up about 11.5% of the total surface of Nigeria which
is estimated to be approximately 941gS000 hectares. Other water bodies include smalI reservoirs; fish ponds and
miscelIaneous wetland suitable for rice cultivation cover about 3221500 hectares.
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Ayoade (1981) reported that the sources of these waters are both surface and underground with rainfall as the
primary contribution. There are eight main Rivers and Delta, Imo-Anambra, Hadejia-Chad, Sokoto, Rima, Niger,
Owena and Ogun-Oshun basins, Much engineering development have been carried out in these basins especially in
the north for hydroelectric generation and irrigation, the first being Niger at Kainji in 1968.

Rainfall Patterns in Nigeria
The incidence of the rainfall as measured by its variability from year to year is as important as the seasonal
distribution of the rainfall as it is known to be much more variable than evaporation both spatially and temporarily.
Rainfall variability has been the subject of many comments, but in reality comparatively little quantitative analysis
has been undertaken in the tropical area (Jackson 1989).

The most significant climatic feature in Africa is undoubtedly rainfall. In Nigeria, there is no apparent continuity of
the rainfall patterns from day to day and even within the affected areas, the rainfall is seldom consistent. Nigeria
exhibit a variation in mean annual rainfall that is, it varies from about two to three months in the sahellian parts (in
the north) to ten months in the coastal areas. The rainfall ranges therefore from about 250mm at the farthest north to
about 3000mm on the coast (Ayoade 1981).

The effectiveness of rainfall for agriculture depends primary on whether the rainfall received is enough to off set
evaporation losses which are considerable in the tropics. The reliability of the annual rainfall as measured by its
variably from year to year is as important as the seasonal distribution.

Modelling Precipitation
Many researchers have found Markov chain model very useful especially in modelling precipitation occurrence.
Gabriel and Neuman (1962) used a first order stationary Markov chains to describe rainfall occurrence in Tel Aviv.
He reported that a first-order model is adequate for describing the situation in Tel Aviv (Israel). Non-stationary
Markov chains have also been used by several investigators (Caskey, 1963; Katz, 1981). The appropriate order for
Markov chain models have been investigated by Chin (1977),and Gates and Tong (1976). Gates and Tong (1976)
argued that a second-order model would have been selected if Akaike Information Criteria (AlC) were used to
identify the optimum order for the Tel Aviv data. Chin (1977) used AlC to determine the optimum model order at
over 100 stations in the USA. He concluded that the optimum model depends on the season and geographical
location, and reported that the optimum order for summer is one and the order for winter is higher than one.
Woolhiser (1992) and Woolhiser et al. (1993) presented a modified Markov model which accounts for inter-annual
variation in the sequence of wet and dry days.

Laux, et al (2007) described the link between the West African monsoon's onsets with atmospheric circulation
pattern. Neuman, et al (2007) studied the ultimate trends of temperature, precipitation and river discharge in the
Volta basin of West Africa.

Stochastic modelling of rainfall in Nigeria
Stochastic modelling of daily rainfall in Nigeria using Markov chains has been undertaken by Stern (1980, who
showed that first-order Markov chain models were adequate for describing daily rainfall for three (Sokoto, Kano,
Samaru) stations. Jackson (1981), however, argued that the optimum order of the model (at Kano and Benin) varies
with season and could be as high as three. Both Stern (1980) and Jackson (1981) assumed the model order and then
used Chi-squared technique to evaluate the performance of each order.

According to Jimoh and Webster (1995), a Markov chains model of order one may be used to describe the
occurrence of wet and dry in Nigeria. Such model feature two parameter set POIto characterize the probability of a
wet day following a dry day and Pll to characterize the probability of a wet day following a wet day. The model
parameter sets, when estimated from historical records, are characterized by a distinctive seasonal behaviour. The
Markov chain model was used by Bello (2001) to investigate the pattern of sequences of late, normal and early onset
and cessation of the rains at selected stations in the four major ecological zones of Nigeria. The transition
probabilities of these events showed that the probability of persistence of early onset was highest and this was
followed by late and normal respectively. He discovered a steady state transition probability which showed that
persistence of late onset of the rains was higer than nornlal and early.



Methodology
In this study, we introduced a structural model that incorporates feedback from history. The structural parameters of
interest are modelled as functions of the latent signals of the history. These models allow flexible and robust
feedback mechanisms, have clear interpretations and have a computation ally efficient estimation procedure.

The Data
The precipitation data used in the analysis of this study are random sequences generated from the record of
Meteorological Service Department, Federal Ministry of Aviation, Okemosan, Abeokuta. The record gives the daily
rainfall in Abeokuta. The total for each month can also be retrieved from the record. The variable, which is rainfall,
is considered, daily and monthly for these twenty years and the units of measurement are millimeters. The
Department started its operation in Abeokuta in March, 1981. Hence, the data collected are for the year 1982 to
2001. A wet day is marked by a day with rainfall in excess of O.lmm while a dry day is a day with rainfall amount
of less than O.lmm.

Markov Chains
Let E1, E2, •••• ,Ej (i=O,I,2 ... ) represent the exhaustive and mutual exclusive outcomes (states) of a system at any time.
Initially, at time to, the system may be in any of these states. Let at> G=l ,2, ... ) be the absolute probability that the
system is in state Ej at to. Assume further that the system is Markovian,

is defined as the one-step transition probability of going from state i at tn_1 to state j at tn and assume that these
probabilities are fixed over time. Thus the transition probabilities from state Ei to state Ej can be more conveniently
arranged in a matrix form as follows.

The matrix P is the homogeneous transition or stochastic matrix because all the transition probabilities Pij

are fixed and independent of time. The probabilities Pij must satisfy the conditions,

Pij ~ 0 for all i and j
A transition matrix P together with the initial probabilities associated with the states Ej completely defines a Markov
chain. A Markov chain is therefore defined as the transitional behaviour of a system over interval of time.

State Space
A structural model can be written as a state space model with the state of the system representing the various
unobserved components and the parameters (structural parameters) having clear interpretations.

It can be shown for example that it is possible to put many types of time series model into a state space form. They
include regression and auto-regression moving averages (ARMA) models for which exponential smoothing methods
are thought to be appropriate.



The Model
Many practical applications of random sequences involve the important case where the underlying statistical
properties are constant or invariate with respect to the parameter, which is namely time or space. This simplifies the
random models in two ways: first, the model can be specified with many fewer parameters than would be the case if
the statistics were varying with time, and secondly, these few parameters can then be more reliably estimated from
the data. It is often desired to partially characterise a random sequence based on knowledge of only its first two
moments, that is , its mean function and its covariance function.

To specify the distribution for the rainfall data, we considered a model such that the value of the process at time, t
thus determines the conditional probabilities for future values of the process. The values of the process are thus
called the state of the process and the conditional probabilities are thought of as a transition probability between the
states. If only a finite uncountable ·set of value Xi is allowed the process is called a Markov Chain or a Markov
random process.

A Markov random process satisfies the conditional probability mass function expression P (Xn = xnl Xn_1=
Xn-h···Xo = Xo)
= P (x" = X/Xn_I=Xn_I).

Where Xo, Xh .... x" €{O,l}. In other words, it was assumed that the probability of wetness of any day
depends only on whether the previous day was wet or dry. Given the event on previous day, the probability of
wetness is assumed independent of further preceding days. The Markov chain is referred to as a two-state chain, as
Xn is zero or one.
Precipitation occurrence model can be viewed as a sequence of random variables

Xl : t = th t2,.. ·.. ·... tn where
if the nth day is dry

X
m

= C'
1,

The collection quantities for the random process Xn are dependent on the past history of the process (Xn-h x,,-2" .Xo)
but not upon the future of the process (Xn+h x,,+2"')

If for all n,
P (Xn =j/ Xn_1= in-h.. ·Xo= io) ·(l)
= P (Xn = jlXn-1= i) = Pij (2)

(2) Describes the one-step transition probabilities from i to j.
Markov was led to develop Markov chains as a natural extension of sequences of independent random

variables. In 1906, he proved that for a Markov chain with positive transition probabilities and numerical states, the
average of the outcome converges to the expected value of the limiting distribution (the fixed vector).

In the short-run, we can specify the transition density from time n to time n+k where
k 2: O. However, we must make sure that this multi-step transition density is consistent. It must exceed a one-step
density that would sequentially yield the same result.
The Chapman- Kolmogorov equation
Pi{+m = LPikmP\ (3)
supplies both necessary and sufficient conditions for these more general transition densities.
Using a modified form of equation (3), we specified the n - step transition probabilities of lower order as
P (n) _ P{X -' / v. - '}ij - n-J L~-1

P (n-IJp= ik kj
Where Pij(l) is Pij



But p/n) = P[Xu =j ]
=I P(Xu = j / Xo = i)P(Xo = i)
_ ~ p(U)"p,(O)-£... I) I

Therefore, Pj(n) = I p(U';jPi(O)
=p(U)= p(O)p(U)

Theorem:
Let {Xn, n 2: O} be a Markov chain with an initial distribution Po, one-step transition probability, Pij and n-step
transition probabilities Pij(n)be the probability that a process in state i will be in state j after n additional transition.
Then

(i) Modified Chapman-Kolmogorov Equation
P[Xn = j] = Iies Po (i) Pir (4)

(ii) Chapman - Kolmogorov equation, earlier stated in equation (3)
Piju+m= Ipikm P\j

P[XU= j] = IifS P[xn = j, Xo= iJ
= Ip(Xo = i) p(xu = j / Xo= i)
= IPo(i) P\
pirm = P(Xn+m= j / Xo= i)
= I P[Xm= k, Xu_m= j / Xo= i)
= I P (Xm= k / Xo= i) P(Xu+m= j / Xo= i, Xm= k)
= I pm(l,k)P(Xu+m= j / Xm= k)
= I 1=0 PikuPkt

In terms of matrix multiplication, the Chapman - Kolmogorov equation becomes
p(n+m)= p(n).p(m) (5)
Hence,
P. p(n-I)= P.P .po-O = '" = PO (6)

and thus p(u)may be calculated by multiplying the matrix P by itself n times.
If Pjk(O)= P (Xo = k / Xo = j), then the Chapman-Kolmogorov equation

Pjk (D) = L: pjl(m)Plk (o-m) 1:5m:5 n-l
In matrix notation,

Po - (Pjk(D» =

Pi = P SO Po = pO. Let Po = (... P(Xn = 0), ... , P(Xn = k) ... )
Denote the probability distribution of Xo

Po = P!!-l P

Po = PoPO

Where Po is the absolute probability matrix
Many physical systems tend to settle down to an equilibrium state, where the state occupational

probabilities are independent of the initial probabilities. The long-run behaviour of the system implies when
the number of transitions tends to infinity. The classification of states in Markov chains is useful in studying
the long-run behaviour of a system.

2.3 Classification of States in Markov Chains
Let A (S. The hitting time TA of A is

[ MIN(N)O:Xn£A) ]
If Xn ever hits

otherwise



If A = {a}, then Ta denoting the distribution of the chain, starting from the state x (i.e Po (x) =1 and
Po(y) = 0 for any y ± x), by px, the distribution of the chain starting from the initial distribution Pois pPO and
then the formula

pPO (A) = I:po (i) pi (A)
This amount to first choosing the initial state i at random from po, and the chain starting from state i,
Then,

Pjk(n) = I: pi (Tk = m) Pkk(o-m)

The state is called to be absorbing if Pkk =1. If the chain ever reaches K it stays there forever.
an absorbing state K,

P (0) _-
jk

A Markov chain is said to be irreducible if every state Ej can be reached from every other state E;
after a finite number of transitions; that is, for i :f:. j

p..<o) > 0 for 1 < n < 00
IJ' -

In this case all the states of the chain communicate. In a Markov chain a set C of states is said to be closed if
the system, or if one of the states of C, will remain in C indefinitely. A special example of a closed set is a
single state Ejwith transition probability Pjj= 1. In this case, Ej is called an absorbing state. All the states of
an irreducible chain must form a closed set and no other subset can be closed

Ergodic Markov Chains
An irreducible Markov chain is ergodic if all its states are ergodic. In this case the absolute

probability distribution

always converges uniquely to a limiting distribution as n
independent of the initial probabilities

Limit Theorems
It is easy to show that if state j is transient, then

L~u~lPit < 00 , for all i.
It means that, starting in i, the expected number of transitions into state j is finite as a consequence it follows that for
j transient pUij~ 0 as n ~ 00

Let f-lijdenote the expected number of transitions needed to return to state j.
That is

[

00 if j is transient
~ij=

LI1~lnf'\if j is recurrent
By interpreting transitions into state j as being renewals, we obtain the following theorem

The Optimum Order
The Bayesian Information Criterion (BIC) can be used for the optimum order of Markov chain. The criterion
assumes the following conditions:
1. The total number of states, S of Xu is finite
2. The chain is stationary
3. The chain is ergodic (chin, 1977)
The optimum order, k, of the chain is the order that gives minimum BIC. That is the value at which the BIC attains
its minimum value



N = number of observation
K=theorder, 0, 1,2 ...

Result and Discussion
The Optimum Order
Using the Bayes Information Criterion (BIC), the optimum order of the system is given in the table below:

Order 0 1
d 1 2
BIC 887.729 882.762

2
3
883.397

Yesterday/today Dry Wet Total
Dry 1450 928 2378
Wet 930 972 1902
Total 2380 1900 4280

Long run Behaviour of the System
Consider the transition Matrix

[

POO

P= PIO

=Pj )

POI]
PH

Where pij = P(XI = j / Xo= i), i, j = 0,1 with Poo+ POI= 1 and PIO+ Pl1= 1.That is POI= P (wet today/dry yesterday)
and PIO= P(dry today/wet yesterday).

3.2.1 N - Step Transition Matrices
Let X = {Xn, n> O} be a (temporally homogeneous) Markov chain with state space S. The chain can be

determined by its one-step transition matrix and an initial distribution.

C
POO

PIO

F6098

t890

POI]
PII

0.3902 ]

0.5110

Limiting or Steady State Distribution
The Characteristic Equation is given by
7tP= 7t in matrix form

Where 7t= (7th 7t2)



The transition matrix
The chain is irreducible and recurrent.
Therefore,

1tP = 1t

.4890
(1t1

0.51lO
1t2)

1t1 = 0.5562
1t2 = 0.4438

The mean recurrence time for state 0 is 1.80 and the mean recurrence time for state 1 is 2.25

Short-Run Distribution
Table 3: Absolute Probabilities of Wet and Dry Days at

time, to using the Modified Chapman - Kolmogorov Equation.

n PI(II) p}")

1 0.5561 0.4439
2 0.5562 0.4438
3 0.5562 0.4438
4 0.5562 0.4438
5 0.5562 0.4438
6 0.5562 0.4438
7 0.5562 0.4438
8 0.5562 0.4438
9 0.5562 0.4438
lO 0.5562 0.4438

0.5562
0.5562
0.5562
0.5562
0.5562
0.5562

0.4438
0.4438
0.4438
0.4438
0.4438
0.4438



Discussion
The short run behaviour of the system, using the Chapman-Kolmogorov equation, the probability

distribution matrix of the system is given by

[ 0.5562

0.5562

Note that the two rows are
distribution of the system as

0.4438J

0.4438

identical an the system

(0.5562 0.4438)
Using the Modified Chapman··Kolmogorov equation, the system becomes stationary at
n =2 with the distribution given as

(0.5562 0.4438)

The long run behaviour of the system using the limiting characteristic equation also gives the probability distribution
of the system as

In this work, three major steps were addressed in the stochastic approach to precipitation data. First, we discovered
that the probability distribution of the precipitation data is Markovian, defined as

Secondly, we considered the appropriate model for describing the daily rainfall pattern in Abeokuta as a Markov
chain of order one. Thirdly, we considered the model by identifying the behaviour of the system over a period of
time; we developed a technique, modifying the existing Chapman-Kolmogorov equation to assess the stationary
analysis: a set of reachable states, the transition probabilities matrix of the Markov chain and the stationary
probabilities vector. With efficient representation of the reachable states, s, and the transition probabilities matrix, P,
the work described a two-state Markov chain approach to daily rainfall occurrence data.

Bayesian information Criteria (BIC) technique was used to estimate the optimum order of chain that fits the
sequence of wet and dry days. The technique showed that the optimum order of the model is the first-order model
that is Markov chain of order one best fit the model.

The conditional probabilities were computed to get the probability distribution and the one step transition probability
which is

P = F098 0.3902]

t890 0.5110

The limiting distribution as n approaches infinity was given.
Chapman-Kolmogorov equation was modified and compared

Pn=PjOpn

The chain converges as n increases to give the Stationary distribution. The Stationary distribution is given as
(0.5562 0.4438).The interesting result is that the modified Chapman-Kolmogorov equation approaches
stationary faster than the Chapman-Kolmogorov equation.

Conclusion
This work describes a two state Markov chain approach to rainfall occurrence data. In this approach, dynamics were
introduced into a state space by considering a modification of tbt~Chapman-Kolmogorov Equation.



The possible system state Xn, (n = 0, I) is the state of the process at time n. In the study, there are two states with no
restriction on possible transitions. The transition table showed the transition from wet to dry and vice versa, The
model looked at the behaviour of rainfall occurrence data in Abeokuta over a period of twenty years. In this case,
though the absolute probability tends to be independent of the initial distribution, the initial distribution can assist
easy computation.

The condition distribution of Xn given Xn_1 is the one step transition. By applying the Chapman-Kolmogorov
equation, the n-step transition probabilities raised to nth power using the Matrix multiplication.

Finally, the conclusions which are drawn from this model must be tampered by the fact that the transition
probabilities are obtained from relative frequency. The state distribution at 0,1 approach the vector.

E62 0.4438 ]

In fact, from time n = 2 to time n = 20, the modified Chapman-Kolmogorov gives the same vector implying that n
does not have to be large before the state distributions are nearly equal to the fixed vector. So at n = 2, the chain
becomes stationary. In other word, the rainfall pattern follows a first order Markov Chain model. At n = 2, the chain
is in a stationary state and the stationary probabilities distribution is given as

(0.5562 0.4438) in matrix form

This is to say that the probability of a dry day during a raining season is higher (56%) than the probability of a wet
day (44%). The implication is that there is likely to have drier day than wet days even in raining season (April to
October).
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