Proceedings of the International Conference on Science & National Development, 25th - 28th October 2004

ON n-WEAKLY AMENABLE BANACH ALGEBRA¹

Mewomo, O.T Department of Mathematical Sciences, University of Agriculture, Abeokuta, Nigeria. E-mail: tosinmewomo@yahoo.com

ABSTRACT

It is shown that if a Banach algebra A is a left ideal in its second dual algebra and has a left bounded approximate identity, then the 2-weak amenability of A implies the (2m+2)-weak amenability of A for all $m \ge 1$. In particular, A is 4-weakly amenable.

Key Words: Banach algebra, n-weakly amenable, derivation, left ideal, bounded approximate identity

1.0. INTRODUCTION

In [5], Dales, Ghahramani and Gronbaek introduced the concept of n-weak amenability for Banach algebras. They determine the relations between m- and n- weak amenability for general Banach algebra and for Banach algebras in various classes. They proved that for $n \ge 1$, (n+2)-weak amenability always implies n-weak amenability. As for the converse, they have raised an open question: Does n-weak amenability implies (n+2)-weak amenability? They also asked whether or not 2-weak amenability implies 4-weak amenability for an arbitrary Banach algebra.

In this note, sufficient conditions under which 2-weak amenability will implies 4-weak amenability, and n-weak amenability will implies (n+2)-weak amenability for even positive integer n is discussed.

2.0. PRELIMINARIES

First, we recall some standard notions, some of which are in the text of Bonsall and Duncan [3]. Let A be an algebra, and let X be an A-bimodule with respect to the operations (a,x)'!a.x and (a,x)'!x.a, AxX'!X. Then X is a commutative (symmetric) A-bimodule if ax = xa ($a^{\circ}A$, $x^{\circ}X$). A linear map D: A'!X is a derivation if

 $D(ab) = a.D(b) + D(a).b, (a,b \circ A).$

For any x °X, the mapping \ddot{a}_x : A'!X given by $\ddot{a}_x(a) = a.x - x.a$, (a °A) is a continuous derivation, called an inner derivation.

Let A be a Banach algebra, and let X be an A-bimodule. Then X is a Banach A-bimodule, if X is a Banach space and if there is a constant k such that $||a.x|| \le k||a||.||x||$ and ||x.a|| k||a||.||x||, $(x \in X, a \in A)$.

Let $B^{1}(A,X)$ be the space of all continuous derivations from A into X and let $Z^{1}(A,X)$ be the space of all inner derivations from A into X. Then the first cohomology group of A with coefficients in X is the quotient space $H^{1}(A,X) = B^{1}(A,X) / Z^{1}(A,X)$.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Then X^* , the dual space of X is a Banach Abimodule with respect to the operations

 $(a.f)(x) = f(x.a), (f.a)(x) = f(a.x), (a \in A, x \in X, f \in X^*),$

(Footnote)

¹2000 Mathematics Subject Classification: Primary: 46H20; Secondary: 46H10, 46H25.

X^{*} is the dual module of X, and in particular, A^{*} is the dual module of A. The Banach algebra A is amenable if $H^{1}(A,X) = \{0\}$ for each Banach A-bimodule X, i.e. if each bounded derivation from A into the dual Banach A-bimodule X^{*} is inner. A is weakly amenable if $H^{1}(A,A^{*}) = \{0\}$.

For each $n \ge 1$, $A^{(n)}$, the nth conjugate space of A, is a Banach A-bimodule, with module actions defined inductively by

 $\langle u,F.a \rangle = \langle a.u,F \rangle$, $\langle u,a.F \rangle = \langle u.a,F \rangle$, $(F \in A^{(n)}, u \in A^{(n-1)}, a \in A$. A Banach algebra A is called n-weakly amenable $H^1(A,A^{(n)}) = \{0\}$.

Richard Arens defined two products on any dual A^{**} of any Banach algebra A. Each product makes A^{**} into Banach algebra and the canonical injection of k: $A'!A^{**}$ is a homomorphism for both products. As in [8], for m ≥ 1 , we always equip $A^{(2m)}$ with the first Arens product. First Arens product on A^{**} is given by the following formula

 $\langle f,uv \rangle = \langle vf,u \rangle$, $(f \in A^*, u, v \in A^{**})$ where $vf \in A^*$ is defined by $\langle a,vf \rangle = \langle fa,v \rangle$, $(a \in A)$

3.0. MAIN RESULTS

For a Banach space X, we will denote by $X^{(\cdot)}$, the image of X in $X^{(2m)}$ under the canonical mapping. But if no confusion may occur, we keep using X to denote this image. For m > 0, the subspace of $X^{(2m+1)}$ annihilating $X^{(\cdot)}$ will be denoted by X

 $X = \{F \in A^{(2m+1)}: F/_{X}^{-} = 0\}.$ Also for a Banach algebra A, $A = \{F \in A^{(2m+1)}: F/_{A}^{-} = 0\}$ $(A^{*}) = \{F \in A^{(2m+2)}: F/_{(A)}^{*-} = 0\}$ and generally, $(A^{(n)}) = \{F \in A^{(2m+n+1)}: F/(A^{(n)})^{-} = 0\}.$

(A⁽ⁿ⁾) are weak* closed submodule of $A^{(2m+n+1)}$ for all n 1.

The following lemmas are useful in establishing our results

Lemma 3.1 [8] Suppose that A is a left, right or two sided ideal in $A^{(**)}$. Then it is also a left, right or two sided ideal in $A^{(2m)}$ for all m 1.

Remark 3.1 From the prove of the above lemma, Zhang show that if A is a left ideal in $A^{(2m)}$, then it is also a left ideal in $A^{(2m+2)}$. Thus If A is a left ideal in A^{**} , then it is also a left ideal of $A^{(2m+n)}$ for even positive integer n.

Lemma 3.2 [8] Suppose that A is a Banach algebra with a left (right) bounded approximate identity. Suppose that X is a Banach A-bimodule and Y is a weak* closed submodule of the dual module X^{*}. If the left (respectively right) A-module action on Y is trivial, then $H^{1}(A,Y) = \{0\}$.

The following theorems and corollaries are the main results **Theorem 3.1**

Let A be a 2-weakly amenable Banach algebra. If A has a left (right) bounded approximate identity, and is a left (right) ideal in A^{**} then \check{A} is (2m+2)-weakly amenable for m 1.

Proof We give the prove in the case A has a left b.a.i. and is a left ideal in A^{**} . From the A-bimodule direct sum decomposition $A^{(2m+2)} = \{A^*\} + (A^{**})^{-1}$ we have the cohomology group decomposition $H^{1}(A, A^{(2m+2)}) = H^{1}(A, A^{**}) + H^{1}(A, (A^{*})).$ Since A is 2-weakly amenable, then $H^{1}(A, A^{**}) = \{0\}$, and so $H^{1}(A, A^{(2m+2)}) = H^{1}(A, (A^{*})),$ so we need to show that $H^1(A,(A^*)) = \{0\}$. From Lemma 3.1 and the remark that follows, A is a left ideal in A^{**} implies A is also a left ideal in $A^{(2m+2)}$ and so af = 0 for a A, $f(A^*)$, thus the left A-module action on (A^*) is trivial, and so by Lemma 3.2, $H^{1}(A,(A^{*})) = \{0\}$. Thus, $H^{1}(A,A^{(2m+2)}) = \{0\}$. That is, A is (2m+2)-weakly amenable.

Corollary 3.1 Let A be a 2-weakly amenable Banach algebra. If A has a left (right) bounded approximate identity, and is a left (right) ideal in A**, then A is 4-weakly amenable.

Proof: This is a case of m=1 in the above Theorem 3.1

Remark 3.2 Corollary 3.1 gives sufficient conditions under which 2-weak amenability will imply 4-weak amenability for a general Banach algebra, and thus answer one of the questions raised by the authors in [5].

From the A-bimodule direct sum decompositions $A^{(2m+1)} = (A) + (A^*)^{-1}$ $A^{(2m+2)} = (A^*) + (A^{**})^{-1}$ $A^{(2m+3)} = (A^{**}) + (A^{***})^{-1}$ We have in general, $A^{(2m+n)} = (A^{(n-1)}) + (A^{(n)})^{-1}$

for all n 1.

We prove the next result.

Theorem 3.2 Let A be an n-weakly amenable Banach algebra for some even positive integer n. Suppose A has a left (right) bounded approximate identity, and is a left (right) ideal in A**, then A (2m+n)-weakly amenable for m1.

Proof We give the prove in the case A has a left b.a.i. and is a left ideal in A**. From the general A-bimodule direct sum decomposition, $A^{(2m+n)} = \{A^{(n-1)}\} + (A^{(n)})^{-1}$ We have the cohomology group decomposition, $H^{1}(A, A^{(2m+n)}) = H^{1}(A, A^{(n)}) + H^{1}(A, (A^{(n-1)}))$ since A is n-weakly amenable, then $H^{1}(A, A^{(n)}) = \{0\}$, and so $H^{1}(A, A^{(2m+n)}) = H^{1}(A, (A^{(n-1)})),$ so we need to show that $H^{1}(A,(A^{(n-1)})) = \{0\}$, where, $(A^{(n-1)}) = \{F \in A^{(2m+n)} : F/(A^{(n-1)})^{-} = 0\}.$ From Lemma 3.1 and the remark that follows, A is a left ideal in A** implies A is also a left ideal in A^(2m+n) for all even positive integer n and so af = 0 for a A, $f(A^{(n-1)})$, thus the left A-module action on $(A^{(n-1)})$ is trivial, and so by Lemma 3.2.

 $H^{1}(A,(A^{(n)})) = \{0\}$. Thus, $H^{1}(A,A^{(2m+n)}) = \{0\}$. That is, A is (2m+n)-weakly amenable.

Corollary 3.2 Let A be a n-weakly amenable Banach algebra for some even positive integer n. Suppose A has a left (right) bounded approximate identity, and is a left (right) ideal in A**, then A is (n+2)-weakly amenable for m 1.

Proof This is a case of m=1 in the above Theorem3.3.

Proceedings of the International Conference on Science & National Development, 25*-28* October

Remark 3.3

Corollary 3.2 is the prove of the partial converse to [5, Propostion 1.2] for case where n is even positive integer.

REFERENCES

- [1] R. Arens (1951), The adjoint of a bilinear operation, Proc. Amer. Math. Soc. (2), 839-848.
- [2] W.G. Bade, P.C. Curtis, JR and H.G. Dales (1987), Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 359-377.
- [3] F.F. Bonsal and J. Duncan (1973), Complete Normed Algebra, (Spinger-Verlag.)
- [4] P.C. Curtis, JR and R.J. Loy (1989), The Structure of amenable Banach algebras, J London Math. Soc. (2) 40, 89-104.
- [5] H.G. Dales, F. Ghahramani and N. Gronbaek (1998), Derivations into iterated duals of Banach algebras, Studia Math. 128, 19-54.
- [6] B.E. Johnson (1972), Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127.
- [7] Yong Zhang, Weak amenability of module extensions of Banach algebra, Preprint.
- [8]Yong Zhang (2001), Weak amenability of a class of Banach algebras, Canad. Math. Bull. Vol.44 (4), 504-508.