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Abstract
In this paper, we consider the historical problem of finding integers n satisfying the so-called N-Square Law, viz:

nk,2n 2(
Lri L~il

i =1 i= 1
where the Zj are bilinear functions of x's and y's. this law has been established for integers n = 1,2,4, and 8 only.
However, from our study of Bol quaternion algebras we have a strong conjecture that it holds true for higher
orders. Considering that this result holds for alternative algebras, we investigate the case for non-alternative
algebras and obtained suitable conditions for possible extension of the result. Our result shows that the N-square
law may exist for n ~16.

Introduction
This paper considers loop algebras whose underlying loops are non-associative Bol loops of order 2k where k 2:3
is an integer.

These are Bol algebras, which in the language of Glauberman and Wright (1968) might be called Bol-2
algebras (respectively Bol-2 loops).

We shall however call them Bol-quaternion algebras since they exhibit quaternion like behaviour. Bol
quaternion algebras are of wide applications in many scientific research e.g. computer science, geometry,
mathematical physics, mechanics, etc.

Definition 1

Let A be a loop algebra over a real field F whose basis elements generate a non-abelian Bol loop L of order fI,

where:

Then A is said to be a Bol algebra of quaternion type and L is called a Bol loop of quaternion type (or simply
Bol quaternion loop). .

An element x of a Bol loop L such that i = -1, x4 = I and xy = ± yx for all y in L is called a Bol quaternion
element.

Definition 2

A loop (L,.) satisfying the property that (xy. z) y = x (yz . y) for all x, y. z, in L is called a Right Bol loop. A loop
(L,) is called a Left Bolloop if for all x, y, z, in L. y (z. yx) = (y. zy) x.

These identities are duals of each other, and a loop satisfying both identities is called a Moufang loop. A loop
satisfying either of the identities is called a Bol loop. Bol and Moufang loops are well known in the literature, see
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Burn (1978), Chein (1999), Kiechle H and Kinyon M. K. (2004), Solarin and Sharma (1987), etc. Burn (1978)
showed that there are exactly 6 non-associative Bolloops of order 8.

Only one of these (named II I in the paper) is of quaternion type. We shall name it BQR in accordance with the
numenclature of its associative counterpart (the quaternion group QR) so that

BQs = { < i, j, k >: ij = ji, jk = kj, ik = - ki and iZ = / = kZ= -I }

The construction and classification of Bol loops of order 16 were undertaken by Solarin and Sharma (J 1.)87),
and Moor house (2001) among others. Moor house showed that there are only 2, 038 non-associative Bolloops of
order 16, and 37 of these have 1 involution and non-trivial centers. He listed these 37 loops in isotopy classes () to
35 with only one of them, the loop MI6 Qs (which he coded 16;1.2.31), being Moufang.

Since these loops are of the type defined by (I) above, we shall name them BQI6 (I), BQI6 (2), BQI6 (37).
Interested readers may obtain the respective Cayley tables from the site http://Math.Uwyo.Edu!MoorhousIPubl
boll6.htmL

For loops of higher orders, there are no known examples of Bol loops of type (I) of order 32 or higher (and
there may not be).

Efforts in this regard only yield some quaternion like loops which are not Bol; see QJZ (I) (Table I) for
instance, or the sedenions tagged "interesting loops" by Cawagas (see Naggy and Vojtechovisky, 2005).

Materials and method
A popular problem in Mathematics which has engaged the attention of many researchers is the problem of finding
integers 11 satisfying the norm identity.

n n n
(Ix2j) (I yZj) = I ZZk

i=1 j=1 k=1

where Zk are bilinear functions of Xi and Yj.
This problem called the N-square problem was solved by Adolf Hurwitz who showed that if F is of char :f- 2

then (2) has solution if and only if n =1, 2, 4,8. The Hurwtz theorem which arose principally from the fact that it
is only in these dimensions that we have finite dimensiOnsal real division algebras (Bott and Milnor, 11.)58) did
not deter researchers from considering possible extensions to n since the algebras considered are alternative
algebras.

Dickson E. (1906), for instance, devised the "doubling process" which takes us from 11 = I (Real) to n = 2
(Complex) to 11 = 4 (Quaternions) and to n = 8 (Cayley algebras) and then to ... because the next algebra is not a
division algebra. Slinko (2002) considered the extension of n to higher orders by investigating some Lie algebras.
etc. Yet no new result extending n has been obtained. Considering that the algebras R, C. Q and 0 in the Hurwitz
theorem are alternative Bol quaternion algebras, we take a look at the structure of Bol quaternion algebras, in
particular the non-alternative ones for the extension of n, if at all.

Definition 3
An algebra A over F is said to be alternative if for all x, y, in A the identities

i y = x (xy) and yx2 = (yx) x

known respectively as the Left and Right Alternative laws, hold in A. An algebra A is called Left (respectively
Right) alternative algebra if only the Left (or, the Right) alternative law holds in A.

Definition 4
An involution of an algebra A is a linear map q ---. q of A satisfying.
q; ,qz = qz . <iland q = q for all ql, qz, q3 in A.
For any q in A, q f:. 0, the products q ,q= N(q) and (N(q»-1. q are called the norm of q and the inverse of q
respectively, If I is the identity of A then q , q-I = q-I. q = I

An algebra A satisfying the equation (2) above is called a composition algebra or normed algebra. This is
because such algebras are equipped with a non degenerate quadratic form N such that for every q I, q2, in A



which is an equivalent expression for (2) in terms of the norm N.
It is not difficult to see that the quaternion algebra Q (defined over Qs) provides this solution for n = 4 since for

any q in Q.

3 3 3
N(q) = (ao + I ai ei) (ao - I ai ej) = I ai2

i=1 i=1 i=O

Thus, for all ql = ao + .I ai ej and q2 = bo + L b j ej in Q, we have, Goodaire et al. (1999), N(ql). N(q2) =
1=1 j;1

(aobo - I3 aj bi + (aobj + albo + a2b3 - a3b2)2+ (aob2 + a2bO a,b3 + a3blh + (aOb3 + a3bO+ a,b2 - a2b()2 =
N(ql q2)

Similarly, the Octonium algebra (defined over the Bol Loop MI6QS) provides the solution for n = 8. Since
II-I

these are alternative divisions algebras, the norm of anyelement q is a scalar L a ~ . Hence (3) holds true over
;;1

F of characteristic p (p prime) but for the non-alternative cases the norm is not a scalar. The following theorem
states the argument for the Bol quaternion algebra defined over the Bol loop BQs since in this case the norm of
any q in A is not a scalar.

Main results
Theorem 1
Let A be the algebra generated by the Bolloop BQs then A is a composition algebra if and only if char(F) is 2.

Proof
To prove that A is a composition algebra, we must show thatfor all ql, q2 E A the norm equation N(ql) N(q2) =
N(qlq2) holds true.

From the definition of the norm, we have for any qJ, q2 in A

Hence, N(ql) N(q2) = (I3i;O ai2) (I3j=o b/) + 2(I3i=Oaj2) b2b3el - 2(I3i=O aj2) b1b2e3+ 2(I3j;o b/) a2a3el - 4a2a.1b2b.1
+ 4a2a3blb2el - 2ala2 (I3j=o b/)e3 - 4ala2b2b3e2 - 4ala2blb2 = I\j=o (ai bi - 4a2b2 [a3b3+ a1bd + 2[(I'\=() ai2)b2b.l+
a2a3(I3j;o b/)el +
4a2b2[a3bl - a\b3]e2 - 2[(I3i;O a?)b1b2 + ala2(I3j=o b/)e3 = I\;o (ai bj)2

a2b2 = 0, a3b3 = -a,bl, a2a3 = 0, a1b3 = a3bJ,
3

ala2 = 0, blb2 = 0, = I a? = 0, and
i=O

or if char(F) = 2 Now, for any qJ, q2 in A we have:

3

I b/ =0
j=O

3

qlq2 = aobo- I aj bi + (aobl + albo - a2b3- a3b2)el
i=1

+ (aob2 + a2bO+ a1b3- a3b,)e2 + (aob3 + a3bO+ a1b2 + a2bl)e3

Hence, by definition of the norm

N(qlq2) = (aobo - a1bl - a2b2 - a3b3)2 + (aob1 + a'lbo - a2b3 - a3b2)2 + (aob2 + a2bo + aJb3 - a3bl)2 + (aob3 + a3bO+
a1b2 + a2bd2 + 2(aob2 + a2bo+ a1b3 - a3bl)(aob3 + a3bO+ a1b2 + a2bl)el - 2(aobl + albo - a2b3 - a3b2) (aob2+ a2bO+
a, b3 - a3bde3

On expanding these brackets and simplifying we obtain



N(qlq2) = (:2:3i=0(aibi)2 2aobo(:2:3i=1aibi) + 2:2:1< ; <j < 3 aibiajbj + :2:3,;<j=O(aib/ + 2:2:0< , <j <3 aibjajbi - 2aob1a3b2 +
2aob2 (a1b3 - a3b,) + 2aob3alb2 + 2[aob2(aob3 + a3bo + a1b2 + a2bd + a2bO(aob3+ a3bO+ alb2 + a2bd + a,b.1(aOb.1+
a.1bO+ a1bo + alb2 + a2bl) - a3bl (aOb3+ a3bO+ alb2 + a2bl)]e, - 2[aobl(aob2 + a2bO+ a,b.1 + a3bl) + albo(aob2 + a2bO
+ alb3 - a3bl) + a2b3(aob2 + a2bo + alb3 - a3b,) - a3b2 (aOb2+ a2bO+ a1b.1 + a3b,)]e3

= :2:3i=j=O(aibi+ :2:3;of j=O(aib/ + 4a2b2 (albl - a3b3) + 4aob2(alb3 - a3bl) + 2[aob2(aob3 + a3bO+ a1b2 + a2b,) +
a2bo(aob3 + a3bo+ alb2 + a2bl) + alb3(aob3 + a3bO+ a1b2 + a2bd - a3bl (aOb3 + a3bo + a1b2 + a2b,)]e, - 2[aobl(aob2 +
a2bO+ alb3 + a3bl) + a,bo(aob2 + a2bO+ alb3 - a3bl) - a2b3(aob2 + a2bo + alb3 - a3bl) - a3b2 (aOb2+ a2bo + a1b3 +
a3bl)]e3
= :2:3i=j=0(Uibi+ :2:3ifj=O(aib/ only if

a\bl = - a3b3, a2b2 = 0, aob2 = 0, aOb2= - a2bO,alb3 = a3bl, aOb3 = - a3bo,
alb2 = - a2blo aobl = - a1bo and a2b3 = - a3b2

or if char (F) = 2 Since equations (4) and (5) can only be satisfied if A is the zero algebra, or the char(F) is 2, this
establishes the second part of theorem.

For the first part of the theorem, we must recognize that if char (F) = 2 then

N(ql) = :2:3i=0ai2 and N(q2) = :2:3j=ob/ so that N(ql) N(~2) = (:2: ai2) ( :2:b/)
i=O j=O

which on expansion yields:

N(ql) N(q2) = (aobO)2+ (albll + (a2b2)2 + (a3b3)2)2 + (aobd2 + (a,bo)2 + (a2b3)2 + (a3b2)2 + (aOb2)2+ (a2bO)2+
(al b3)2 +(a3bd2 + (aOb3+ a3bO+ al b2+ (a2b1)2

Similarly, if char(F) is 2, then from the definition of the norm of qlq2 we have

N(qlq2) = (aobo - albl - a2b2 - a3b3)2 + (aobl + a1bo - a2b3 - a3b2)2 + (aob2 + a2bO+ alb3 - a3bd2 + (aob.1+ a.1bO+
2alb2+a2bl) ..... (6)

which on expansion and simplification yields:

N(qlq2) = (aobo)2 + (a,bll + (a2b2)2 + (a3b.1l)2 + (aobl)2 + (a,bo)2 + (a2b.1)2+ (a.1bd + (aOb2)2+ (a2bO)2+ (adJ.1)2
+(a3bl)2 + (aob3+ a3bO+ alb2+ (a2bl)2 ,

Consequently, N(qlq2) = :2:3j=o(a;bi + :2:3;;<j=O(aib/ =:2:\j=o(aib/ = N(q I) N(q2)

Remarks: By the same argument, as above, we investigated the algebras defined over the non-Moufang Bol
Loops BQ (i) and obtained the following corollary. The next theorem summarizes it all.

Corollary: Let Ai be the loop algebras generated by the non-Moufang loops BQ16(i) over the real field F then Ai
is a composition algebra if and only if char(F) = 2.

Theorem 2
Let A be an algebra generated by a Bol quaternion loop L over the real field F, then A is a composition algebra if
and only if Char(F) is 2 or xy = y-1x for all x, y E L where x, yeo {I, -I }.

Proof
Let A be a composition algebra, then for all ql, q2 E A we must have:

/I-I /I-I /I-I
N(ql) = :2:ai2 - 2 :2:ajajeiej = :2:ai2

i=O 1<i<j i=O

which implies that 2 :2:11
-) I<kj aiajeiej = O. This holds only if char(F) = 2 or if ei ej = -eje; = ej-I ei for all ei, ej E L, i

:t.O,j:t. O. Similarly, N(q2) = :2:"'1 j=ob/ so that

/I-I /I-I /I-I
N(ql) N(q2) = (:2:a?) (:2:b/) =:2: (aibj)2

i=O j=O i.j=O



// -J. // -/ //-1

N(q,q2) = (aobo - L ai bi )2 (L L ajb·ek)2
i=1 k=1 i* j=o J

n -I n-'
(L L ajbjek)2 = [(aobl + a,bo + L aibj)et + (aob2 + a2bO+ L ai!Jj)e2+
k=' i*j=O O<i*j*J O<i*j*2

+, ... , + (aobn-, + an-I bo + L aibj)en_tl2
O<i:;t:j:;t:n-I

= - (aob, + a, bo + L aibl e, + (aob2 + a2bo+ L aibl +
e) • O<i*j*1 e2'(ki*j*2

- ... - (aobn-I + an-I bo + L aib/
e .O<I*j*n-1

n-I

+ 2 L (L aibj) ( L akbl)el'.es
1<1'<s<n-' e . i*j e . k*1

I' s

//-, //-)

N(q,q2) = (aobo - L ai bi )2 + (L (aobk + akbO+ L
i=I k=Ie. O<i*j*k

k

-2 L (L aibj) (L akb,)el'.es
1<1'<s<n-I e. i*j e . k*'

r s

//-, //-1

N(Q,Q2) = (aobo - L ai bi )2 + (L (aobk + akbO+ L aibj)2 ..... (9)
i=' k=Ie. O<i*j*k

k

which is the required sum of N-squared terms. But this implies that:
-2 L (L aibj) (L akb,)el' . e. = 0
1<I'<s<//-1 e. i*j e. k*1

r s

which is true only when char(F) = 2 or if eres = - ese, = e.-Ie, for all'non-central elements el" e•. To prove the
converse, let L be such that xy = i' x for all x, y E L where x, y Ii!: {I, -I } then (8) reduces to (9). And since

//-, //-1 //-1

(aobo - L aj bi )2 = (aobo)2 + (L aibi)2 - 2aobo L aibi
~I ~I ~I

11-' 11-' II-I

(aobo - L aj bi )2 = L (aibi - 2aobo L aibi + 2 L aibiajbj
i=1 i=' i=1 , '<i <j<n-' .

Therefore,
,,-, ,,-I

N(Q,q2) = L (ai bi )2 - 2aobo L aibi + 2 L aibi a·b·+ (aobk + akbO+ L aibi
j=1 i=1 '<i <j<n-' J J e . O<i*j*kJ

k

II-I

(aobk+ akbO+ L aibi = (L (ai bi )2 + 2aob,a,bo ± 2 L aibjajbi +
e •O<i*j*k i*j=O i"j>'O

k

11,-1

2 L aibjakb,)ei + (L (ai bi )2 + 2aob2a2bo± 2 L aibjajbi + 2 L aibjakb1)e2
i••j••k••1 i"j=O i"j>'O i"j ••k••,

II-I

+ ... + ( L (ai bi )2 + 2aobn-1an_lbO± 2 L albjajbi + 2 L aibjakbl)en-I
i"j=O i••j>'O i••j••k••1



II-I

= 2aobo (L ai b; + L L (ai b; )z + ± 2 L a;bjajb;+ 2L a;bjakbl);=I e ;;tj ;;tj;tO ;;tj;tk;tl
a

/I-I II-I

N(q,qz) = L (a; b; )z + 2 L a;b;ajbj+ L (L (ajbi)
;=0 1<;<j<n-I e ;;tj

a

= ± 2 L (L a;b;ajbj)± 2 L (L ajbjakbl)
e ;;tj;tO e i;tj;tk;tl
a a

/I-I

= L (a; b; h+ 2 L a;b;ajbj± 2 L (L ajb;ajbj) ± 2 L (L aibjakbl )
i.j=O 1<;<j</I-I e ;;tj;tO e ;;tj;tk;tl

a a

giving nZ + n! terms in the expansion. Since the n! terms automatically cancel out as a result of the Bol quaternion
structure of A, we are left with the nZ terms. That is:

N(qlqz) = L /I -I i.j=O(a; bi )z)

Similarly, let char(F) = 2, then (8) reduces easily to (9) which on expansion becomes N(qlqz) = L 11-1 ;.j=O(a; b;)2
Now, consider that if qI. qz are in A, we have:

/I-I II -1 II -I II-I

N(ql) = L a? - 2 L a;ajejejand N(q2) = L b/ 2 L bjbje;ej
;=0 1<i<j ;=0 1<i<j

where e;, ej are commuting pairs. Thus, if L is such that ei.ej = -eje; = ej-Iei for all ei, ej e {-I, I}, or char(F) = 2
then (Nq,) = L II -';=0 a? and (Nq2) = L II .lj=Obt Hence, (Nql) (Nq2) = (L 1/.1;=0a?) (L1/-lj=Ob/ ) = L /I-I i.j=O(ai bi )2=
N(qlqz) .

Therefore, (3) is established for all Bol quaternion algebras satisfying xy = y"IX where x. y e {I, -I}, or, for
which char(F) is 2.

This establishes the theorem.

Discussion
As shown in the proof of theorem (1), it is not possible obtaining a non-zero non-alternative Bol quaternion
algebra whose underlying field is not of characteristics 2 satisfying the set of equations as in (4) and (5). The next
theorem (Theorem 2) emphasizes the implications of this for non-alternative Bo] quaternion algebras of
dimensions higher than 8. The concluding theorem below shows that the condition xy = /x for x. ye {I, -I},
though necessary for A to be a composition algebra, is not sufficient unless A has the Bol quaternion structure. It
shows that if A is a quaternion algebra satisfying this condition with char(F) '# 2 but lacks the Bol identity then A
cannot be a composition algebra. Thus, for an algebra A(L) of order n > 8 with char(F) '# 2 to satisfy the N-square
law, A must have the Bol quaternion structure and satisfy xy = /x for x, ye {I, -I} where x. y E L.

It is of course interesting to note that the non-yxistence of a,Moufang loop of quaternion type for orders greater
than 16 is responsible for the non-existence of the N-Square law for orders greater than 8.

Theorem 3
Let A(L) be the loop algebra generated by the loop L = Q32(1) whose table is as given below over a field F of
characteristic different from 2 then:

(i) xy = y"IX for all x, y in L where x, ye {I, -I}.
(ii) A(L) is not a composition algebra.
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since ej.ej = -ejei = ej-Iej for all ej, ej E L. Similarly, (Nq2) = ~15j=obt Hence,
15 15 15

N(ql) (Nq2) = (~a? (~ b/) =.~ (ai bi
1=0 J=O I.J=O

Now, since ej.ej = -ejei for all non-central elements ej, ej we have by (2.29):
15 IS

N(q,q2) = (aobo ~ ~ ai bi )2 + (~ (aobk + akbo + ~ (ajbj)) 2
1=1 k=1 e .001"J"kk

IS 15
= ~ (ai bj )2 ± 4 ~ (ajbjakbl) :;:.N(q,) (Nq2)

i.j=O O<i"j"k

Hence, A(L) is not a composition algebra.

Table 1: Quaternion Loop of order 32 (Q32(1)).

* el e2 e3 e4 e5 e6 e7 eg e9 elO e,1 el2 el3 e'4 elS
el e2 e3 e4 es e6 e7 eg e9 elO ell el2 eu el4 el5

el el -I -e3 e2 -e5 e4 e7 -e6 -e9 eg -ell elO -e13 el2 elS el4
e2 e2 e3 -\ -el -e6 -e7 e4 es -elO ell eg -~ -e14 -eiS el2 eu
e3 e3 -e2 el -\ -e7 e6 -es e4 -ell -elO e9 eg -e15 el4 -eD el2
e4 e4 es e6 e7 -\ -el -e2 -e3 -el2 eu el4 el5 eg -e9 -elO -ell
es es -e4 e7 -e6 el -\ e3 -e2 -e13 -e12 el5 -e'4 e9 eg ell -elO
e6 e6 -e7 -e4 e5 e2 -e3 -\ el -e14 -e15 -e12 el3 elO -el I eg -e9
e7 e7 e6 -e5 -e4 e3 e2 -el '-\ -e15 el4 -eD -e12 ell elO -e9 -eg
eg eg e9 elO ell el2 el3 el4 el5 -1 el -e2 -e3 e4 e5 -e6 -e7
e9 e9 -eg -ell elO -eD el2 el5 -e14 -el -\ e3 -e2 -e5 e4 e7 -e6
elO elO ell -eg -e9 -e14 -eiS e\2 el3 e2 -e3 -\ -el e6 -e7 e4 -e5
ell ell -elO e9 -eg -e15 el4 -el3 el2 e3 e2 el -\ -e7 -e6 -e5 -e4
el2 el2 el3 el4 el5 -eg -e9 -elo -ell -e4 e5 -e6 e7 -\ -el e2 -e3
eu eu -e12 el5 -e14 e9 -eg ell -elO -e5 -e4 e7 e6 el -I -e3 -e2
el4 el4 -e15 -e12 eu elO -el I -eg e9 e6 -e7 -e4 e5 -e2 e3 -\ e,
elS el5 el4 -el3 -e12 ell elO -e9 -eg e7 e6 e5 e4 e3 e2 el -I

Cayley Table of one of the Quaternion Loops of order 32 obtained.
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