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Abstract
In this paper we presented an overview portion of distribution theory which is currently under intense
developments. The starting point of this topic is the introduction of the distribution which belongs to burr type xii
family of distributions called weibull-exponentiaJ distribution, the connected area is becoming increasingly broad,
and its extension to order statistics made the field so important. Some of the properties of its order statistics which
includes; recurrence relations for negative and fractional moments of single order statistics are obtained. The final
part of this paper discussed the product moments of two order statistics drawn from weibull-exponential
distribution and their applications.

Introduction
Weibull-Exponential was first studied by Shah and Dave (1963). The probability density function was given by

&Yx8-1

f(x)= '1 Y 8)2'~ +e x
where 8 and eY are shape and scale parameters respectively. The distribution is special case of Burr type XII
family of distributions (Tadikamalla, 1980), The distribution has played an important role in statistical modeling
for instance Dubey (1966) fitted them to business failure data. The density in 1.1 is unimodal; when 8 2: I, the
mode is at x = ° (giving a reverse i-shaped curve), and when 8 < I, the mode is at

x=e-y(l5-1)
(8 + 1)

The cumulative distribution function is

1
F(x) = y 8'1+ e- x-

and the rth raw moment of X is given by

E[Xf] -fyl8 r1l r1l=e -cosec-l5 l5 '
Johnson and Tadikamalla (1982) have discussed methods of fitting the four-parameter form of the Weibull-

Exponential distributions. Shoukri et al (1988) examined the probability-weighted moment estimators for the
three-parameter form of the distributions and compared them to the maximum likelihood estimators.

Distribution of an order statistic
Order statistics have played significant role especially in robust location estimations, detection of outliers,
censored sampling, quality control, characterizations and goodness of fit test, just to mention a few. In this paper
we derived order statistics from this distribution and establish some recurrence relations satisfied by the single
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and product moments of order statistics from Weibull-Exponential distributions and give an illustration of its area
of application.

Suppose that Xl Xn are n jointly distributed random variables. The corresponding order statistics are
Xi'S arranged in nondecreasing order. The smallest of the Xi'S is denoted by Xl:I" the second smallest is denoted
by X2:n, ••••••• , and, finally, the largest is denoted by Xn:n• Thus XI, X2, ••.•.. , Xn which in the context we assume is
a random sample from an absolutely continuous population with probability density function as in 1.1 above, and
cumulative distribution function as in 1.3; let X1:n < X2:n < <. Xn:n be the order statistics obtained by
arranging the preceding random sample in an increasing order of magnitude. Then, from I.l and 1.3 above the
probability density function and cumulative density function of order statistics of Weibull-Exponential
distribution is given by

n' . I .
/;:/1 (x) = . U /- (1- U)/I-I

(i - 1)! (n - i)!
F (xl

f n ! t i-I (1 - t) /I - i dt ,
o (i-1)!(n-i)!

by noting that

F(x)(l- F(x» = if(X)

and
Hi

1 X
(1- F(x)t =-f(x)

8eY

where the distribution function can easily be expressed as:
1

F(x) = 1- 8 ' O:s; x < 00

(l + eY x )
let XI:n $X2:n::s ::s Xn:n be the. order statistics obtained from Weibull-Exponential distribution. Let us denote

(III) III rl III
ai:1I = E(Ui:1I ) = Jo u f:/I (u)du, 1:S; i:S; n •.... (2.5)

and

a(lI~i.I/IJ) = E(Ul/liU'~/;) = rl r"; 1IIi 1II;.f ( )d d
I.pl 1:1/ .1"1 Jo Jo ui uj Ji,j:/I ui,uj ui uj

then ..... (2.6)

a(.1II,l = C" rullli [F(U)]H[1- F(U)]/I-i f(u)du
I.n 1.11 0

(2.5) and (2.6) are mth moments of single and joint two order statistics respectively and

aY:~) =C'" r r= x1yk[F(x)y-l[F(y)_F(x)]i-j-l[1...,.F(y)]n-j1,).n 1,).n 0 Jx

* f(x)f(y)dydx ..... (2.8)
Where:

C. = n!
"n (i-l)!(n-i)!

and

n!c.. = -------
1.J'n (i-l)!(j-i-l)!(n-j)!



Ragab and Green (1984) have obtained recurrence relations for ai~~) and an expression for ai,i:n and have

Xhzderived the distribution of -'- . In this paper, I have obtained recurrence relations for
Xj:ll

ai(~),ai~~-P),a;,I;~/, and ai,'j:-Pl utilizing the results developed by Khan et ai, (I983a and 1983b). It may be

noted that for 0> I, k-o may be negative. Thus adjusting k, we can tind inverse and fractional moment of order
statistics and moment of ratio of two order statistics. Also, a relation between negative and positive moment of
all order statistics is given. For applications, one may refer tb Ragab and Green (1984) and the papers referred
therein.

Recurrence relations between single mome~t of order statistics
In this section we establish some basic identities and a recurrence relation satisfies by the single moment and the
product moment of order statistics. These results, in addition to providing some checks to estimate accuracy of
the computation of moments of order statistics, can reduce the amount of direct computation of these moments of
order statistics especially when the numeIical approach is required,

Theorem 3.1
For 2 ~ i ~ n,

(k) _ k (k)

ai:ll } - [1+ (i _1)o]ai-1:1I--1

Proof
Khan et al (1983a) have shown that for;
For 2::; i::; n,

a(,kl _ a(~) _ =(n -I)k r= x k-I [F(X)]i-1 [1-F(X)]"-i+1dx
I." I I." I i-I Jo

Noting that

[F(X)]H [1- F(X)]"-i+1 = ~[F(x)r2 [1- F(X)],,-I f(x)
8

In view of (2.3) we have;

(k) _ k (k)

. ai:ll } - [l + (i _l)o]ai-I:II-1

thus concluding the proof.

Theorem 3.2
for n ~ 2,

alC,~l= [1- k ]alC,~~1
pen -1)

Proof
This follows from the result:

a<,k)=k(Xk-10-F(x»"dx
I." 0

given by Khan et aI. (1983.)

Theorem 3.3. For k <8



Proof

E(X
k
) = a::~) =e-

ky
/
s11- ~)11+*J

=

E(X k) = al~~i) = cIIL= uk[F(u)t-I[l- F(u)t-I f(u)du = CIIJukf(u)du
o

after the evaluation we have the result.
It may be mentioned here that results reported in Theorem 3.1 and 3.3 were also obtained by Ragab and Green
(1984).

Theorem 3.4

for 2 S i S n

(Hi) (n - i + l)eY
(kla. = -----a I'

1.11 (i-I) 1-.11

Proof
From (2.3),(2.4) and (3.1) we have;

a~k) _ a~k) = _k_a~k) -1
I:Jl 1-1:n-l (i -1)8 1-1:n

= k a~k-D) -1
(i -1)8e y l:n-1

Equating 3.3 and 3.4 and replacing 11-1 by 11, we obtained

(1-8) (n-i+l)eY
(k)a.. = -----a I'

III (i -1) 1- .11

Which is the required result.

Theorem 3.5
For n ~1

(k-8) nlJeY
(k-el)

al:1I = -k-al:II+1

Proof
The result follows from (2.4) and (3.2).

Theorem 3.6

Forl S i S n,and eY = 1
(-k) (k)ai:1I = all_i+I:1I •

Proof
Tadikamalla (1980) has shown that at eY =1, X and Y = l/X have the same Weibull-Exponential distribution. Thus.
Xi:n and Yn.i+l:n = l/Xi:n will have the same distribution and hence the result.

Recurrence relations between product moments of order statistics
Theorem 4.1
Forl S i < j s n -1

a(l:k) = a(U). + n a(l:k) (1- k J- n a~l:kl
I.J.II I.J-1.1I (n _ j + 1) I.J.II-\ 8(n _ j) (n _ j + 1) I.J-I.II-1



Proof
Khan et al (1983) have shown that for:
I:S i< j:S n,

aY:.k) - a(l:~). = Ci.j:n kr[ Xl yk-I [F(X)]H [F(y) - F(X)]J-i-' [1- F(y)]n-j+1 f (x)dydx.
1.J.n I.) I.n (n _ j + I) 0 x

writing {1-F(y)}n-j+1 as

[1- F(y)]n-j-, {[1- F(y)] - F(y)[1- F(y)]}

[1- F(y)]n-j - 1.[1- F(y)]n-j-I f (y)
B

In (4.1) and rearranging we g~t the result.

Theorem 4.2
ForI :Si :Sn - 2

a~l.k) = a(l.k). +~ n a~l.k) i «(I.k) (I.k) )
I.n:n I.n-I.n B (n _ i-I) I.n-I:n-I - (n _ i + 1) ai+l.n:n - ai+l.n-l:n-1 .

Proof

From4.1 j=n ,

a~I.~)-a~I.t:.>. =kC .. ([x1yk-l[F(x)]i-1[F(y)_F(x)]n-i-1I.n.n I.n I.n I.n.n0 x

*[1- F(y)]f(x)dydx
writing

[F(y) - F(x)]n-i-I [1- F(y)] as

[F(y) - F(x)]n-i-2[F(y)(1_ F(y» - F(x)(1- F(y»]

~[F(Y) - F(x)]n-i-2 f(y) - F(x)[F(y) - F(x)]n-i-2 (1- F(y»

in 4 .2 we get result

Theorem 4.3
For Weibull-Exponential distribution with:

1:S i< j:S n,

a(l:k-II) = BeY(n - j + 2)(n - j + 1) (a~l:k) _ a~l:k-lI) ).
I.f.n (n + l)k 1.):n+1 I.J-I:n+1

Proof
Expressin g [1- F(y)]n-j+1 as:

I-II
[1- F(y)]n-H [1- F(y)]2 =1.-[1-F(y)]n-H f(y)

BeY .

in (5.1) we get

a~l:k) _ a~l:k) = nk a~l:k-8) .
I.f.n I.J-I:n BeY(n _ j + 1)(n ••.j) I.,l:n-\·



Note
The results obtained for the recurrence relations of single and product moment follows directly from the general
results obtained by Balakrishnan et al (1983) and Balakrishnan et al (1987), interested reader may also see David.
H.A. (1981).

Evaluation of means, variances and covariances

Theorem 3.1, 3.2 and 3.3 are used to calculate ai~~)' 1 ~ i ~ n. Once ai~~)' 1 ~ i ~ 11 are known. theorems 3.4

and 3.5 may be used to obtained ai~~-O),.The beauty of the result is that from ai~~-S),. we can find negative and

fractional moments of order statistics with some constraints, viz at k=l, 0=1.5, k-o=-0.5 and at k=2, 0=3, k-o=-1.

Also for 0 positive integer greater than one, ai:~-8),. can be used to obtain negative moments.

For calculating products moments matrix «ai.'j~/ )). the diagonal elements ai.'i:~) = a:,;:p:n'
C b f"11d f' (I.k) b b' d I b d' . Ian e 1 e up Irst. al,I:2 ,.can e 0 tame easi y y Irect numenca integration. However. at I=k.

al(!t':;) = [al~~)]2 . The elements ai,'i:},:n' 2 ~ i ~ n - p -1, P = 1,2, ,n - ~ 1 are obtained from theorem

4.1. Finally, al(,{';~/are obtained from theorem 5.2. Onee ai,~;~) are known ai,~;~) = a:';:p:n' can be obtained by

theorem 4.3. From this, we can obtain:
Cov (Xi:n,Xj:n) = O'i.j:n= ai.j:n -ai:naj:n.

var( X i:n ) = a(2.2) _ (a(LI»)2
X. 1../:11 1,):11

pi

these moment can also be used to find best linear unbiased estimates of location and the scale parameters of
Weibull-Exponential distribution (David, 1981).

Applications
In the following examples tables of the estimate fl* and 0'* for a censored samples used are prepared by
Balakrishnan et al (1987) using the numerical approach.

Illustration 1
An experiment is carried out to measure the strontium-90 concentrations in samples of milk. The test substances
suppose to contain 9.22 Pico curies per liter. Ten measurements were taken, but because of relatively large
measurement error known to exist at the extremes, the two smallest and the three largest observations were
censored. The remaining five observations, were arranged in increasing order and are presented below.

8.2,8.4,9.1,9.8,9.9. (Shoukri et alI988);
in this case we have n= 10, i=2, j=3
let us assume that the above censored samples had come from a Weibull Exponential population with unknown
mean fland variance 0'2 Jor Weibull-Exponential distribution, the variances and covariances of fl* and 0'* have
been tabulated by Balakrishnan et al (1987). They prepared more exhaustive tables covering sample sizes
n = 2(1)25(5)40 and all possible choices of i andj. from this tables, we obtained the BLUEs offl and 0' to be:

j.i* = 0.15237(8.2)+0.13241(8.4)+0.15377(9.1)+0.16153(9.8)+0.39992(9.9)= 9.3032
and
0'* = -0.93064(8.2)-0.17440(8.4)-0.04984(9.1)+0.07908(9.8)+ 1.07581 (9.9) = 1.8758
and the standard errors of the above estimates are obtained to be:
S.E(j.i*) = 1.8758(0.09921)1/2 = 0.5908 and S.E( 0'*) = 1.8758(0.18338)112= 0.8033



Illustration 2
Let us consider the following data which represent the failure times in minutes, for a specific type of electrical
insulation in an experiment in which the insulation was subjected to continuous increasing voltage stress.
12.3 21.8 24.4 28.6 43.2 46.9 70.7 75.3 95.5 98.1 138.6
here the largest observation was censored because the experiment stopped as soon as the eleventh failure
occurred.
We assumed for the data above a two parameters Weibull~Exponential distribution.
By using the table prepared by Balakrishnan et at (1987). We compute the BLUEs of 11and 0 to be
~l* = 4.847511 and 0* = 47.432552.
using the above estimates, we obtain the BLUE of the expected failure times as

11*+ 0*ln4 = 4.847511 + 47.4325521n4 = 70.60299min.
and the standard error of this estimate is obtained to be
0*[0.02440 + 0.01282(1n4)2 - 2(0.0 I 547)ln4] 1/2 = 0.3485030* = 16.53039min.
these can be compared with
I. BLUEs of 70.01 Olin and S.E of 17.58 min based on one-parameter half logistic distribution.
2. BLUEs of 71.5533 min and S.E. of 19.4965 min. based on two-parameter exponential distribution.

Conclusion
We get smaller S.E. in estimating the expected failure times in case of Weibull-exponential distribution for the
failure time data compared to others above. The reason for the facts that a Weibull-exponential distribution fits
the data better than others mentioned above.
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