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Abstract 

Many attempts have been made to study and model the dynamics of the Nigeria crude oil production but 

not many recent works in the literature have employed stochastic differential equations in modelling crude 

oil prices like financial derivatives. Oil differs from financial assets in that futures prices are often below 

spot prices, and the degree of backwardness is highly variable over time. Oil prices are volatile and deviates 

from the assumptions made in many commodity pricing models which is the assumption of Gaussian 

dynamics for the spot price. From the foregoing, this study sought to further examine the stochastic 

volatility present in monthly Nigeria Bonny light crude oil prices and extend the Merton jump diffusion 

(MJD) model to capture the discontinuities in the trajectories of the prices as a jump process, while 

capturing statistical features present in the historical time series such as seasonality, mean reversion and 

dependencies among spot prices. Our approach involved modelling the Poisson intensity in the Levy 

process as exponentially decaying function. Our approach was compared with Gaussian diffusion processes 

of geometric Gaussian motion, Ornstein-Uhlenbeck stochastic process and its extension with mean 

reverting property as well as with MJD process. Simulations and application to Nigeria’s Bonny light crude 

oil prices were used to compare the performances of the models. The MJD and our approach were very 

close in their parameters estimates as against the Gaussian diffusion processes and were preferred to them 

as evidenced by the AIC, BIC and log-likelihood. For the crude oil price modelling, the comparisons also 

favoured our approach over MJD process. 

Keywords: jump process, crude oil prices, stochastic differential equation, nonconstant intensity, volatility 

1. Introduction  

In this study, the stochastic differential equations (SDEs) are applied to model the dynamics of the 

Nigeria crude oil production in Nigeria. Stochastic differential equations are mathematical 

equations that describe and model the random noise in a system.  Nigeria, a country in Africa is 

heavily dependent on the production of oil for the sustenance of her economy, there has been 

successive governments trying to diversify the economy of the country from a mono-economy to 

poly-economy. However, in the midst of all the efforts crude oil has still remain the number one 

foreign earner for the country, which means that any infinitely small movement in the world oil 

production or prices affect the economy of Nigeria to no small measure. Being a global 

commodity, the price of Nigeria’s Bonny light crude is affected by global happenings and news, 

for instance the tensions and conflicts in the recent times in Europe, Ukraine and Russia and that 

in the Middle East between Israel and Palestine have impacted the price of the Bonny light. In 

April of 2024, the price of Nigeria’s Bonny Light, yesterday, rose by 2.2 per cent to $88.97 per 

barrel in the global oil market following increased tension in the Middle East resulting from 

Israel’s airstrike on Iran’s embassy in Damascus, Syria. This increase amounted to excess revenue 

of $11 per barrel for Nigeria as excess as the nation’s 2024 budget was based on $77.96 per barrel 

and 1.78 million barrels per day (Vanguard Newspaper of 3rd April, 2024). In the same period 
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following Ukrainian attack on Russian refineries, the Bonny light traded as $91.37 a barrel with 

extra revenue of $13.71 per barrel (Nairametrics, 2024). Bonny Light price was reported at $85.57 

per barrel in 01 Aug 2024 and this recorded an increase from the previous number of $84.290 per 

barrel for 31 Jul 2024 (CEIC Data, 2024). 

Many attempts have been made to study and model the dynamics of the Nigeria crude oil 

production using many techniques such as autoregressive integrated moving average (ARIMA) 

(Eriga (2013), Omekara et al. (2015), Fatoki et al. (2017), Leneenadogo and Lebari (2019), Acha 

et al., (2023), Suleiman et al., (2023)), seasonal ARIMA (Etaga et al., (2020)), buys-ballot 

modelling (Okororie et al. (2013)), machine learning models of artificial neural network (ANN) 

and random forest (RF) (Obite et al., (2021)), and Bartholomew et al., (2021) extended Obite et 

al., (2021) by adding fuzzy time series (FTS) Model. Gaspera and Mbwambob (2023) used 

ARIMA to analyse Tanzania Crude Oil Prices. Loera et al., (2021) assessed the relationship 

between the crude oil and gasoline spread and crude oil price using first-order Markov chain 

simulations. Gunarto et al., (2020) and Hendrawaty et al., (2021) used GARCH(1,1) models to fit 

daily prices of crude oil, with Hendrawaty et al., (2021) adding AR(1) to the GARCH(1,1). Adavi 

et al., (2021) analysed the dynamics of crude oil price volatility in Nigeria using a symmetric and 

asymmetric GARCH models. Monday and Abdulkadir (2020) added a parameter to ARCH model 

for the volatility of crude oil price in Nigeria. Usoro and Ekong (2022) fitted bivariate ARCH and 

GARCH models to the Nigeria crude oil price and production volatilities. AlGounmeein and Ismail 

(2021) applied the GARCH and the Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) the Brent crude oil price. Lu et al. (2021) fitted a long short-term Memory Network 

(LSTM) for crude oil price. Obite et al., (2021) applied support vector regression (SVR), RF, ANN 

and Deep Neural Network (DNN) to Brent crude oil price. Rodhan and Jaaz (2021) analysed WTI 

crude oil price using ARIMA, Ng’ang’a and Oleche (2022) compared different GARCH models 

on Brent crude oil prices. Abdollahi and Ebrahimi (2020) used AFRIMA, adaptive neuro fuzzy 

inference system and the markov-switching models to model the Brent crude oil price. 

Bollapragada et al., (2021) forecasted the price of crude oil using a target capacity utilization rule 

recursive simulation model. Bildirici et al., (2021) used orthogonal matrix lie groups and algebras 

with LSTM to analyse WTI prices. 

Oil differs from financial assets for example, oil futures prices are often below spot prices, and the 

degree of backwardness is highly variable over time. Also, the mean-reversion for oil prices can 

be assumed. An abnormally high price should induce higher cost for more producers to enter the 

market, increasing supply and ultimately causing the price to decrease, and conversely, an 

abnormally low price will drive many producers to leave the market, decreasing supply. Also, 

higher prices may make consumers to become more energy efficient or seek alternative energy 

sources, and vice versa when prices are low. Assuming that the risk premium is not time-varying 

in a way that offsets the risk-neutral mean-reversion, this will result in the property that volatility 

of futures prices decreases with maturity (Hughen, 2010). Oil prices are volatile and deviates from 

the assumptions made in many of the earlier commodity pricing models in the literature, which is 

the assumption of Gaussian dynamics for the spot price. Hence, the need for more stochastic 

volatility modelling of such assets as oil. 

Hitherto, exploring the frontiers of research in this direction, not many recent works in the 

literature have employed stochastic differential equations in modelling crude oil prices especially 

in the current prevailing global climate, like there are vast literatures on financial derivatives. One 

recent work on SDEs for modelling financial derivatives is Gray et al., (2021), where they applied 
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exponential power jump diffusion to model credit risk. The credit risk was assumed to have 

dynamics that is a combination of a diffusion process and a jump process driven by an exponential 

power distribution, where the diffusion component was modelled by a geometric Brownian 

process. Other application of SDEs to oil prices includes Nwafor and Oyedele (2017) who used 

the geometric Brownian motion (GBM) to model the behaviour of crude oil price, Onyeka-Ubaka 

and Okafor (2018) compared a jump diffusion Merton model with GARCH and AR(2) on crude 

oil price concluding that the jump process out-performed the other two models for estimating the 

drift. Gong and Wang (2022) extended the constant elasticity of variance (CEV) model to constant 

volatility elasticity (CVE) model and variable volatility elasticity (VVE) model to capture 

stochastic volatility of financial assets. Merton’s model has been applied to analyse crude oil prices 

using the yuima R package (Ogbogbo, 2018, 2019). Heston stochastic volatility model has also 

been used to analyse West Texas Intermediate (WTI) crude oil price (Dondukova and Liu (2021), 

Mwanakatwe et al., (2023)). Goard and AbaOud (2023) applied a single one-factor nonlinear 

stochastic process to oil prices. Ajlouni and Alodat (2021) forecasted monthly gasoline prices in 

Jordan by applying Gaussian process regression with deterministic drift function using Bayesian 

approach.  

From the foregoing, this study sought to further examine the stochastic volatility present in 

monthly Nigeria Bonny light crude oil prices for the period of January 2006 to April 2024 and 

extend the Merton jump diffusion (MJD) model (Merton, 1976) to capture the discontinuities in 

the trajectories of the prices as a jump process, particularly an inhomogeneous compound Poisson 

process, while capturing statistical features present in the historical time series such as seasonality, 

mean reversion and dependencies among spot prices. Our approach, unlike Gary et al., (2021) 

where it was an extension of geometric Brownian process to exponential power jump diffusion, 

involved modelling the Poisson intensity as exponentially decaying. We compared our proposed 

model to some of those which assumed Gaussian dynamics in their approaches as well as with the 

MJD model using model comparison measures Akaike information criterion (AIC), Bayesian 

information criterion (BIC) and log-likelihood as well as accuracy measures.  

2. Methodology  

2.1 The Lévy Processes 

The GBM was based on the assumption that the assets are continuously modelled, with Brownian 

motion representing the noise. In real life, it has been observed in the literature that the dynamics 

of assets contains discontinuities, as especially for oil prices (Hughen, 2010). We aim to develop 

an extension to Merton (1976) model which includes the possibility of jumps with exponentially 

decaying intensity. 

Lévy processes constitutes an important family of stochastic processes, which includes Brownian 

motion as the only one that is continuous. 

Definition of Lévy Process: (Nunno et al., 2009) 

A Lévy process 𝐿𝑡 is a stochastic process on (Ω, ℱ, 𝑃) with the following properties: 

1. 𝐿0 = 0, P –a.s. 

2. 𝐿𝑡 has independent monotone increments, that is, for 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ we have that the 

random variables 𝐿𝑡0
, 𝐿𝑡1

− 𝐿𝑡0
, 𝐿𝑡2

− 𝐿𝑡1
, ⋯ are independent. 
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3. 𝐿𝑡 has stationary increments, i.e., for all 𝑠 < 𝑡 we have that 𝐿𝑡 − 𝐿𝑠 has the same 

distribution as 𝐿𝑡−𝑠. 
4. 𝐿𝑡 is stochastically continuous, i.e., for all 𝜖 < 0, lim

ℎ→0
𝑃(|𝐿𝑡+ℎ − 𝐿𝑡| ≥ 𝜖) = 0. 

5. 𝐿𝑡 has càdlàg paths, i.e., the trajectories are right-continuous with left limits.  

Unlike the Brownian motion definition, there is not property of normal increments with the Lévy 

process. Property 4 implies that at any time 𝑡, the probability of a jump equals zero, i.e. we can not 

have jumps at given times. The last property in the definition can be assumed without loss of 

generality because it can be shown that every Lévy processes has a càdlàg version a.s., which is 

also a Lévy process. Hence, we can see that Brownian motion satisfies the requirements of a Lévy 

process. Another example of Lévy process is the Poisson process 𝑁𝑡 given by 

𝑃(𝑁𝑡 = 𝑛) =
𝑒−𝜆𝑡(𝜆𝑡)𝑛 

𝑛!
,            𝑡 ≥ 0 

where 𝜆 > 0 is the intensity of the process. Moreover, a compound Poisson process 𝑋𝑡 is a process 

that sums a number of i.i.d. jumps sizes 𝑌𝑖 over a Poisson process 𝑁𝑡, 

𝑋𝑡 = ∑ 𝑌𝑖

𝑁𝑡

𝑖=1

 ,           𝑡 ≥ 0 

where 𝜆 > 0 is the intensity and 𝑁𝑡 is independent of 𝑌𝑖. The compound Poisson process is e.g. 

widely used in property insurance to model the total claim amount in a portfolio, with the 𝑌𝑖’s 

representing the individual claim amounts and 𝑁𝑡 the number of claims in the portfolio. 

Lévy measure (Cont and Tankov, 2004) 

Let (𝐿𝑡)𝑡≥0 be a Lévy process on ℝ. The measure v on ℝ defined by 

𝑣(𝐴) = 𝐸[#𝑡 ∈ [0,1]: ∆𝐿𝑡 ≠ 0,   ∆𝐿𝑡 ∈ 𝐴], 𝐴 ∈ 𝔅(ℝ) 

is called the Lévy measure of L. That is, the Lévy measure denotes the expected number of jumps, 

per unit time, that belongs to A. 

Next, we state the Itô-Lévy decomposition Theorem without proof for which the proof can be 

found in Cont and Tankov (2004). 

Itô-Lévy decomposition (Øksendal and Sulem, 2019) 

If (𝐿𝑡)𝑡≥0 is a Lévy process, then it has the decomposition 

𝐿𝑡 = 𝛼𝑡 + 𝜎𝐵𝑡 + ∫ 𝑧�̃�(𝑡, 𝑑𝑧)

⬚

|𝑧|<𝑅

+ ∫ 𝑧𝑁(𝑡, 𝑑𝑧)

⬚

|𝑧|<𝑅

                        (1) 

for some constants 𝛼, 𝜎 ∈ ℝ and 𝑅 ∈ [0, ∞]. Moreover, �̃�(𝑡, 𝑑𝑧) = 𝑁(𝑡, 𝑑𝑧) − 𝑣(𝑑𝑧)𝑑𝑡 is the 

compensated Poisson random measure of 𝐿𝑡 and 𝐵𝑡 is a Brownian motion which is independent of 

𝑁(𝑡, 𝑑𝑧) (Øksendal and Sulem, 2019). 
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The Itô-Lévy decomposition states that every Lévy process can be decomposed into a continuous 

Brownian motion with drift, a term incorporating the jumps that are smaller than some constant R 

and a term representing the jumps that are bigger or equal to R. The constant R can be chosen as 

small as we want, but since the case of infinitely many small jumps, i.e. ∫ |𝑧|𝑑𝑧
⬚

|𝑧|<𝑅
= ∞, could 

occur we need to compensate the Poisson random measure 𝑁(𝑑𝑡, 𝑑𝑧) around 0. Hence, the 

introduction of the compensated Poisson random measure �̃�(𝑡, 𝑑𝑧), which can be shown to be a 

martingale. Since every Lévy process can be expressed by means of (1), we have that for every 

Lévy process there exists constants 𝛼 and 𝜎2, together with a positive measure v, that uniquely 

determines its distribution. This triplet (𝛼, 𝜎2, 𝑣) is often called the characteristic triplet of the 

Lévy process (Cont and Tankov, 2004). 

The Itô formula for Itô-Lévy processes 

Given the stochastic process of the form 

𝑋(𝑡) = 𝑋(0) + ∫ 𝛼(𝑠, 𝜔)𝑑𝑠

𝑡

0

+ ∫ 𝜎(𝑠, 𝜔)𝑑𝐵(𝑠)

𝑡

0

+ ∫ ∫ 𝛾(𝑡, 𝑧, 𝜔)�̃�(𝑡, 𝑑𝑧)

⬚

ℝ

𝑡

0

      (2) 

where 

�̃�(𝑡, 𝑑𝑧) = {
𝑁(𝑑𝑡, 𝑑𝑧) − 𝑣(𝑑𝑧)𝑑𝑡            if |𝑧| < 𝑅
𝑁(𝑑𝑡, 𝑑𝑧)                                 if |𝑧| < 𝑅

 

for some 𝑅 ∈ [0, ∞]. This Itô-Lévy process can be rewritten in short form as 

𝑑𝑋(𝑡) = 𝛼(𝑠)𝑑𝑠 + 𝜎(𝑠)𝑑𝐵(𝑠) + ∫ 𝛾(𝑡, 𝑧)�̃�(𝑡, 𝑑𝑧)

⬚

ℝ

                        (3) 

Itô formula for Itô-Lévy processes 

Suppose we have an Itô-Lévy process 𝑋(𝑡) ∈ ℝ of the form (3) where 

�̃�(𝑡, 𝑑𝑧) = {
𝑁(𝑑𝑡, 𝑑𝑧) − 𝑣(𝑑𝑧)𝑑𝑡            if |𝑧| < 𝑅
𝑁(𝑑𝑡, 𝑑𝑧)                                 if |𝑧| < 𝑅

 

for some 𝑅 ∈ [0, ∞]. Further, let 𝑓 ∈ 𝐶2(ℝ2) and define 𝑌(𝑡) = 𝑓(𝑡, 𝑋(𝑡)). Then 𝑌(𝑡) is an Itô-

Lévy process and  

𝑑𝑌(𝑡) =
𝜕𝑓

𝜕𝑡
(𝑡, 𝑋(𝑡))𝑑𝑡 +

𝜕𝑓

𝜕𝑥
(𝑡, 𝑋(𝑡))[𝛼(𝑡, 𝜔)𝑑𝑡 + 𝜎(𝑡, 𝜔)𝑑𝐵(𝑡)] 

+
1

2
𝜎2(𝑡, 𝜔)

𝜕2𝑓

𝜕𝑥2
(𝑡, 𝑋(𝑡)) 

+ ∫ {𝑓(𝑡, 𝑋(𝑡−1) + 𝛾(𝑡, 𝑧)) − 𝑓(𝑡, 𝑋(𝑡−1)) −
𝜕𝑓

𝜕𝑥
(, 𝑋(𝑡−1))𝛾(𝑡, 𝑧)} 𝑣(𝑑𝑧)𝑑𝑡

⬚

|𝑧|<𝑅
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+ ∫ {𝑓(𝑡, 𝑋(𝑡−1) + 𝛾(𝑡, 𝑧)) − 𝑓(𝑡, 𝑋(𝑡−1))}�̃�(𝑑𝑡, 𝑑𝑧)

⬚

ℝ

 

2.2 Modelling Approach for Bonny light Crude Oil price 

Let 𝑄𝑡 be the crude oil price at time 𝑡, the log-return of 𝑄𝑡, ln (
𝑄𝑡

𝑄0
) is modelled with MJD as an 

exponential Lévy process 𝐿𝑡 such that (Merton, 1976) 

ln (
𝑄𝑡

𝑄0
) = 𝐿𝑡 = (𝛼 −

𝜎2

2
− 𝜆�̅�) 𝑡 + 𝜎𝐵𝑡 + ∑ 𝐾𝑖

𝑁𝑡

𝑖=1

 .                                      (4) 

where 𝐵𝑡 is a standard Brownian motion process, the term (𝛼 −
𝜎2

2
− 𝜆�̅�) 𝑡 + 𝜎𝐵𝑡 is a Brownian 

motion with drift process and ∑ 𝐾𝑖
𝐿𝑡
𝑖=1  is a compound Poisson jump process, the Poisson process 

𝑑𝑁𝑡 with intensity 𝜆 causes the price to jump randomly and the mean of the relative price jump is 

�̅� ≡ 𝐸(𝑘𝑖 − 1) = 𝑒𝛾+
𝛿2

2 − 1 with variance 𝐸([𝑘𝑖 − 1 − 𝐸(𝑘𝑖 − 1)2]) = 𝑒2𝛾+𝛿2
(𝑒𝛿2

− 1), 

(Matsuda, 2004). 

We extend (4) to a model we shall herein refer to as eMJD, by adding compound Poisson process 

with exponential decaying intensity, i.e., the random jumps follow a Poisson process characterized 

by its intensity function 𝜂(𝑡) = ∫ 𝜆(𝑠)𝑑𝑠
𝑡

0
 and has the distribution 

𝑃(𝑁𝑡 = 𝑟) = 𝑒−𝜂(𝑡) 𝜂(𝑡)𝑟

𝑟!
,             𝑟 = 0,1,2, … 

where the intensity is function of time 𝜆 = 𝜆(𝑡). Hence, we define the exponential decaying 

intensity as 𝜆𝑡 = 𝛽 exp(−𝜆𝑡). 

Suppose in the small time interval the asset price jumps from 𝑄𝑡 to 𝑘𝑄𝑡. So the percentage change 

in the asset price caused by the jump is 

𝑑𝑄𝑡

𝑄𝑡
=

𝑘𝑄𝑡 − 𝑄𝑡

𝑄𝑡
= 𝑘 − 1 

where ln(𝑘) ~𝑖. 𝑖. 𝑑. 𝑁(𝛾, 𝛿2) and means that  

𝐸(𝑘) = 𝑒𝛾+
𝛿2

2        and       𝐸([𝑘 − 𝐸(𝑘)2]) = 𝑒2𝛾+𝛿2
(𝑒𝛿2

− 1) 

Since if ln 𝑥 ~𝑁(𝑎, 𝑏), then 𝑥~ log normal (𝑒𝑎+
𝑏2

2 , 𝑒2𝑎+𝑏2
(𝑒𝑏2

− 1)). 

So the SDE take the form 

𝑑𝑄𝑡

𝑄𝑡
= (𝛼 − 𝛽 exp(−𝜆𝑡)  𝑘)𝑑𝑡 + 𝜎𝑑𝐵𝑡 + (𝑘 − 1)𝑑𝐿𝑡                              (5) 
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where 𝛼 is the instantaneous expected return on the asset, σ is the instantaneous volatility of the 

oil price return conditional on that jump does not occur. The expected relative rate change 𝐸 (
𝑑𝑄𝑡

𝑄𝑡
) 

from the jump part 𝑑𝐿𝑡 in the time interval 𝑑𝑡 is 𝛽 exp(−𝜆𝑡) �̅�𝑑𝑡. This is why the instantaneous 

expected return on the asset 𝛼𝑑𝑡 is adjusted by −𝛽 exp(−𝜆𝑡) �̅�𝑑𝑡 in the drift term of the jump-

diffusion process to make the jump part an unpredictable innovation 

𝐸 (
𝑑𝑄𝑡

𝑄𝑡
) = 𝐸[(𝛼 − 𝛽 exp(−𝜆𝑡) �̅�)𝑑𝑡] + 𝐸[𝜎𝑑𝐵𝑡] + 𝐸[(𝑘 − 1)𝑑𝐿𝑡] 

= (𝛼 − 𝛽 exp(−𝜆𝑡) �̅�)𝑑𝑡 + 0 + (𝑏 + 𝜆𝑡) �̅�𝑑𝑡 = 𝛼𝑑𝑡 

From equation (5),  

𝑑𝑄𝑡 = (𝛼 − 𝛽 exp(−𝜆𝑡)  𝑘)𝑄𝑡𝑑𝑡 + 𝜎𝑄𝑡𝑑𝐵𝑡 + (𝑘 − 1)𝑄𝑡𝑑𝐿𝑡                    (6) 

Cont and Tankov (2004) give the Itô formula for the jump-diffusion process as 

𝑑𝑓(𝑋𝑡, 𝑡) =
𝜕𝑓(𝑋𝑡, 𝑡)

𝜕𝑡
𝑑𝑡 + 𝑏𝑡

𝜕𝑓(𝑋𝑡, 𝑡)

𝜕𝑥
𝑑𝑡 +

𝜎𝑡
2

2

𝜕2𝑓(𝑋𝑡, 𝑡)

𝜕𝑥2
𝑑𝑡 + 𝜎𝑡

𝜕𝑓(𝑋𝑡, 𝑡)

𝜕𝑥
𝑑𝐵𝑡

+ [𝑓(𝑋𝑡− + ∆𝑋𝑡) − 𝑓(𝑋𝑡−)], 

where 𝑏𝑡 corresponds to the drift term and 𝜎𝑡 corresponds to the volatility term of a jump-diffusion 

process 

𝑋𝑡 = 𝑋0 + ∫ 𝑏𝑠𝑑𝑠 +

𝑡

0

∫ 𝜎𝑠𝑑𝐵𝑠 +

𝑡

0

∑ ∆𝑋𝑖

𝐿𝑡

𝑖=1

 

Following same we have 

𝑑 ln 𝑄𝑡 =   
𝜕 ln 𝑄𝑡

𝜕𝑡
𝑑𝑡 + (𝛼 − 𝛽 exp(−𝜆𝑡) �̅�)𝑄𝑡

𝜕 ln 𝑄𝑡

𝜕𝑄𝑡
+

𝜎2𝑄𝑡
2

2

𝜕2 ln 𝑄𝑡

𝜕𝑄𝑡
2 𝑑𝑡 + 𝜎𝑄𝑡

𝜕 ln 𝑄𝑡

𝜕𝑄𝑡
𝑑𝐵𝑡     

+  [ln 𝑘𝑄𝑡 − ln 𝑄𝑡]                                                                                                         (7) 

𝑑 ln 𝑄𝑡 = (𝛼 + 𝜆𝑡(ln 𝛽) �̅�)𝑄𝑡

1

𝑄𝑡
𝑑𝑡 +

𝜎2𝑄𝑡
2

2
(−

1

𝑄𝑡
2) 𝑑𝑡 + 𝜎𝑄𝑡

1

𝑄𝑡
𝑑𝐵𝑡 + [ln 𝑘 + ln 𝑄𝑡 − ln 𝑄𝑡] 

= (𝛼 + 𝜆𝑡(ln 𝛽) �̅�)𝑑𝑡 −
𝜎2

2
𝑑𝑡 + 𝜎𝑑𝐵𝑡 + ln 𝑘 

ln 𝑄𝑡 − ln 𝑄0 = (𝛼 −
𝜎2

2
+ 𝜆𝑡(ln 𝛽) �̅�) (𝑡 − 0) + 𝜎𝑡(𝐵𝑡 − 𝐵0) + ∑ ln 𝑘𝑖

𝐿𝑡

𝑖=1

 

ln 𝑄𝑡 = ln 𝑄0 + (𝛼 −
𝜎2

2
+ 𝜆𝑡(ln 𝛽) �̅�) (𝑡 − 0) + 𝜎𝑡(𝐵𝑡 − 𝐵0) + ∑ ln 𝑘𝑖

𝐿𝑡

𝑖=1
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ln 𝑄𝑡 = ln 𝑄0 + (𝛼 −
𝜎2

2
+ 𝜆𝑡(ln 𝛽) �̅�) (𝑡 − 0) + 𝜎𝑡𝐵𝑡 + ∑ ln 𝑘𝑖

𝐿𝑡

𝑖=1

 

exp(ln 𝑄𝑡) = exp {ln 𝑄0 + (𝛼 −
𝜎2

2
+ 𝜆𝑡(ln 𝛽) �̅�) (𝑡 − 0) + 𝜎𝑡𝐵𝑡 + ∑ ln 𝑘𝑖

𝐿𝑡

𝑖=1

} 

𝑄𝑡 = 𝑄0 exp {𝛽 (𝛼 −
𝜎2

2
𝜆𝑡 �̅�) 𝑡 + 𝜎𝑡𝐵𝑡} exp (∑ ln 𝑘𝑖

𝐿𝑡

𝑖=1

) 

𝑄𝑡 = 𝑄0 exp {𝛽 (𝛼 −
𝜎2

2
𝜆𝑡 �̅�) 𝑡 + 𝜎𝐵𝑡} ∏ 𝑘𝑖

𝐿𝑡

𝑖=1

 

𝑄𝑡 = 𝑄0 exp {𝛽 (𝛼 −
𝜎2

2
𝜆𝑡 �̅�) 𝑡 + 𝜎𝐵𝑡 + ∑ ln 𝑘𝑖

𝐿𝑡

𝑖=1

}                      (8) 

Using the previous definition of the log rate jump size ln 𝑘𝑖 = 𝐾𝑖 

𝑄𝑡 = 𝑄0 exp {𝛽 (𝛼 −
𝜎2

2
𝜆𝑡 �̅�) 𝑡 + 𝜎𝐵𝑡 + ∑ 𝐾𝑖

𝐿𝑡

𝑖=1

}                            (9) 

This implies that 𝑄𝑡 is an exponential Lévy model 𝑄𝑡 = 𝑄0𝑒𝐿𝑡 with a compound Poisson jump 

part given as 

𝐿𝑡 = 𝛽 (𝛼 −
𝜎2

2
𝜆𝑡 �̅�) 𝑡 + 𝜎𝐵𝑡 + ∑ 𝐾𝑖

𝐿𝑡

𝑖=1

 

We note that the compound Poisson jump process ∏ 𝑘𝑖
𝐿𝑡
𝑖=1 = 1 if 𝐿𝑡 = 0 or positive and negative 

jumps cancel each other out.  

In the Black-Scholes case, log return ln(𝑄𝑡 𝑄0⁄ ) is normally distributed (Black and Scholes, 1973)  

𝑄𝑡 = 𝑄0 exp {(𝛼 −
𝜎2

2
) 𝑡 + 𝜎𝐵𝑡} 

ln(𝑄𝑡 𝑄0⁄ ) ~𝑁 ((𝛼 −
𝜎2

2
) 𝑡, 𝜎2𝑡) 

Merton (1976) posited that the existence of compound Poisson jump process makes log return non-

normal, which enables the probability density of log return 𝑥𝑡 = ln(𝑄𝑡 𝑄0⁄ ) to be obtained as a 

quickly converging series of the following form 
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𝑃(𝑥𝑡 ∈ 𝐴) = ∑ 𝑃(𝐿𝑡 = 𝑖)𝑃(𝑥𝑡 ∈ 𝐴|𝐿𝑡 = 𝑖)

∞

𝑖=0

 

𝑃(𝑥𝑡) = ∑
𝑒−𝜆𝑡(𝜆𝑡)𝑖

𝑖!

∞

𝑖=0

𝑁 (𝑥𝑡; 𝛽 (𝛼 −
𝜎2

2
𝜆𝑡 �̅�) 𝑡 + 𝑖𝛾, 𝜎2𝑡 + 𝑖𝛿2)             (10) 

where  

𝑁 (𝑥𝑡; 𝛽 (𝛼 −
𝜎2

2
𝜆𝑡 �̅�) 𝑡 + 𝑖𝛾, 𝜎2𝑡 + 𝑖𝛿2) 

=
1

√2𝜋𝜎2𝑡 + 𝑖𝛿2
exp [−

𝑥𝑡 − {𝛽 (𝛼 −
𝜎2

2 𝜆𝑡 �̅�) 𝑡 + 𝑖𝛾}

2(𝜎2𝑡 + 𝑖𝛿2)
] 

The term 𝑃(𝐿𝑡 = 𝑖) =
𝑒−𝜆𝑡(𝜆𝑡)𝑖

𝑖!
 is the probability that the asset price jumps 𝑖 times during the time 

interval of length 𝑡 and  

𝑃(𝑥𝑡 ∈ 𝐴|𝐿𝑡 = 𝑖) = 𝑁 (𝑥𝑡; 𝛽 (𝛼 −
𝜎2

2
𝜆𝑡 �̅�) 𝑡 + 𝑖𝛾, 𝜎2𝑡 + 𝑖𝛿2) 

is the Black-Scholes normal density of log-return assuming that the asset price jumps 𝑖 times in 

the time interval of 𝑡. Therefore, the log-return density as in the MJD model can be interpreted as 

the weighted average of the Black-Scholes normal density by the probability that the asset price 

jumps 𝑖 times. 

The characteristic function of the model can be calculated by Fourier transform of the log-return 

density function with parameters (𝑎, 𝑏) = (1,1) 

𝜙(𝜔) = ∫ exp(𝑖𝜔𝑥𝑡) 𝑃(𝑥𝑡)𝑑𝑥𝑡

∞

−∞

                                                    (11) 

= exp [𝛽 exp(−𝜆𝑡) exp {
1

2
𝜔(2𝑖𝛾 − 𝛿2𝜔)} − (𝑏 + 𝜆𝑡)(1 + 𝑖𝜔�̅�) −

1

2
𝑡𝜔{−2𝑖𝛼 + 𝜎2(𝑖 + 𝜔)}] 

= exp [𝛽 exp(−𝜆𝑡) exp{𝜔𝑖𝛾 − 𝛿2𝜔2} − (𝑏 + 𝑏𝑖𝜔�̅� + 𝜆𝑡 + 𝑖𝜔�̅�𝜆𝑡) + 𝑖𝛼𝑡𝜔 −
1

2
𝑡𝜔𝜎2𝑖

−
1

2
𝑡𝑖𝜔2] 

= exp [𝛽 exp(−𝜆𝑡) exp{𝜔𝑖𝛾 − 𝛿2𝜔2} − 𝑏 − 𝑏𝑖𝜔�̅� − 𝜆𝑡 − 𝑖𝜔�̅�𝜆𝑡 + 𝑖𝛼𝑡𝜔 −
1

2
𝑡𝜔𝜎2𝑖 −

1

2
𝑡𝑖𝜔2] 

= exp [𝛽 exp(−𝜆𝑡) exp{𝜔𝑖𝛾 − 𝛿2𝜔2} −
𝑖𝜔

2
(2𝑏�̅� + 2�̅�𝜆𝑡 − 2𝛼𝑡 − 𝑡𝜎2) −

1

2
𝑡𝑖𝜔2 − (𝑏 + 𝜆𝑡)] 
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= exp [𝛽 exp(−𝜆𝑡) exp{𝜔𝑖𝛾 − 𝛿2𝜔2} − (𝑏 + 𝜆𝑡) −
𝑖𝜔

2
(2𝑏�̅� + 2�̅�𝜆𝑡 − 2𝛼𝑡 − 𝑡𝜎2) −

1

2
𝑡𝑖𝜔2] 

= exp [𝛽 exp(−𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) −
𝑖𝜔

2
(2𝑏�̅� + 2�̅�𝜆𝑡 − 2𝛼𝑡 − 𝑡𝜎2) −

1

2
𝑡𝑖𝜔2] 

= exp [𝛽 exp(−𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) − 𝑖𝜔 (𝑏�̅� + �̅�𝜆𝑡 − 𝛼𝑡 −
𝑡𝜎2

2
) −

1

2
𝑡𝑖𝜔2] 

= exp [𝛽 exp(−𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) − 𝑖𝜔 (−𝛼𝑡 −
𝑡𝜎2

2
+ 𝛽 exp(−𝜆𝑡) �̅�) −

1

2
𝑡𝑖𝜔2] 

= exp [𝛽 exp(−𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) + 𝑖𝜔 (𝛼𝑡 −
𝑡𝜎2

2
𝛽 exp(−𝜆𝑡) �̅�) −

1

2
𝑡𝑖𝜔2] 

Let  

𝜓(𝜔) = 𝛽 exp(−𝜆𝑡) exp({𝜔𝑖𝛾 − 𝛿2𝜔2} − 1) + 𝑖𝜔 (𝛼𝑡 −
𝑡𝜎2

2
𝛽 exp(−𝜆𝑡) �̅�) −

1

2
𝑡𝑖𝜔2     (12) 

be the characteristic exponent or cumulant generating function, where �̅� ≡ 𝑒𝛾+
𝛿2

2 − 1. We then 

have 

𝜙(𝜔) = exp[𝑡𝜓(𝜔)] 

The characteristic exponent (12) can be alternatively obtained by substituting the Lévy measure of 

the model 

ℓ(𝑑𝑥) =
𝜆

√2𝜋𝛿2
exp {

(𝑑𝑥 − 𝛾)

2𝛿2
} = 𝛽 exp(−𝜆𝑡) 𝑓(𝑑𝑥) 

into the Lévy-Khinchin representation of the finite variation type (Matsuda (2004)) 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ ∫ {exp(𝑖𝜔𝑥) − 1}ℓ(𝑑𝑥)

∞

−∞

 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ ∫ {exp(𝑖𝜔𝑥) − 1}𝛽 exp(−𝜆𝑡) 𝑓(𝑑𝑥)

∞

−∞

 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ 𝛽 exp(−𝜆𝑡) ∫ {exp(𝑖𝜔𝑥) − 1}𝑓(𝑑𝑥)

∞

−∞

 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ 𝛽 exp(−𝜆𝑡) { ∫ exp(𝑖𝜔𝑥)𝑓(𝑑𝑥) − ∫ 𝑓(𝑑𝑥)

∞

−∞

∞

−∞

}         (13) 

Since ∫ exp(𝑖𝜔𝑥)𝑓(𝑑𝑥)
∞

−∞
 is the characteristic function of 𝑓(𝑑𝑥), 
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∫ exp(𝑖𝜔𝑥)𝑓(𝑑𝑥)

∞

−∞

= exp (𝜔𝑖𝜐 −
𝛿2𝜔2

2
) 

Therefore, 

𝜓(𝜔) = 𝜔𝑖𝜐 −
𝛿2𝜔2

2
+ 𝛽 exp(−𝜆𝑡) {exp (𝜔𝑖𝜐 −

𝛿2𝜔2

2
) − 1}                  (14) 

where 𝜐 = 𝛼𝑡 −
𝑡𝜎2

2
𝛽 exp(−𝜆𝑡) �̅�. This corresponds to (12). According to Matsuda (2004), the 

Characteristic exponent (12) generates cumulants as follows 

𝑐𝑢𝑚1 = 𝛼 −
𝜎2

2
𝛽 exp(−𝜆𝑡) �̅� +

𝜆

𝛽
𝜇 

𝑐𝑢𝑚2 = 𝜎2 + 𝛿2𝜆 + 𝜇2𝛽𝜆 

𝑐𝑢𝑚3 = 𝜆(3𝛿2𝜇 + 𝜇3) 

𝑐𝑢𝑚4 = 𝜆(3𝛿4𝜇 + 6𝜇2𝛿2 + 𝜇4) 

Annualized (per unit of time) mean, variance, skewness, and excess kurtosis of the log-return 

density 𝑃(𝑥𝑡) are computed from above cumulants as follows 

𝐸(𝑥𝑡) = 𝑐𝑢𝑚1 = 𝛼 −
𝜎2

2
𝛽 exp(−𝜆𝑡) (𝑒𝛾+

𝛿2

2 − 1) +
𝜆

𝛽
𝜇 

Var(𝑥𝑡) = 𝑐𝑢𝑚2 = 𝜎2 + 𝛿2𝜆 + 𝜇2𝛽𝜆 

Skewness(𝑥𝑡) =
𝑐𝑢𝑚3

(𝑐𝑢𝑚2)3 2⁄
=

𝜆(3𝛿2𝜇 + 𝜇3)

(𝜎2 + 𝛿2𝜆 + 𝜇2𝛽𝜆)3 2⁄
 

Kurtosis(𝑥𝑡) =
𝑐𝑢𝑚4

(𝑐𝑢𝑚2)2
=

𝜆(3𝛿4𝜇 + 6𝜇2𝛿2 + 𝜇4)

(𝜎2 + 𝛿2𝜆 + 𝜇2𝛽𝜆)2
 

2.3 Quasi-maximum likelihood estimation of log-returns for the proposed exchange rate 

model 

It has been noted that the exact maximum likelihood estimation is mostly infeasible for the 

statistical model (3) and (6), since the transition probability associated with X in (3) is not available 

in a closed form, hence the sought for alternative M-estimation and of interest is the Quai-

maximum likelihood estimation, which is known to have the advantage of computational 

simplicity and robustness for model misspecification, in compensation for some amount of 

information loss (Masuda, 2011). We refer to Shimizu and Yoshida (2006) and Ogihara and 

Yoshida (2011) for details in parametric estimation of jump-diffusion processes. 

For the quasi-maximum likelihood estimation applied in our study, we follow the specification in 

Brouste et al., (2014) by considering the diffusion process 

𝑑𝑄𝑡 = 𝑎(𝑄𝑡, 𝜃2)𝑑𝑡 +  𝑏(𝑄𝑡, 𝜃1)𝑑𝑊𝑡                     𝑄0 = 𝑞0,   
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with 𝑊𝑡 being a standard Wiener process independent of the initial variable 𝑄0 and (𝜃1, 𝜃2) ∈⊂

ℝ. Given sampled data 𝑸𝑛 = (𝑄𝑡𝑖
)

𝑖=0,…,𝑛
 with 𝑡𝑖 = 𝑖∆𝑛, ∆𝑛→ 0 as 𝑛 → ∞, quasi-maximum 

likelihood estimator makes use of the following approximation of the true log-likelihood for 

multidimensional diffusions 

ℓ𝑛(𝑸𝑛, 𝜃) = −
1

2
∑ {log det(Σ𝑖−1(𝜃1)) +

1

∆𝑛
Σ𝑖−1

−1 (𝜃1) [(∆𝑄𝑖 − ∆𝑛𝑎𝑖−1(𝜃2))
⨂ 2

]}

𝑛

𝑖=1

, 

where 𝜃 = (𝜃1, 𝜃2), ∆𝑄𝑖 = 𝑄𝑡𝑖
− 𝑄𝑡𝑖−1

, Σ𝑖(𝜃1) = Σ(𝜃1, 𝑄𝑡𝑖
),  𝑎𝑖(𝜃2) = 𝑎(𝑄𝑡𝑖

, 𝜃2), Σ = 𝑏⨂2, 

𝐴⨂2 = 𝐴𝐴′ and 𝐴−1 is the inverse of 𝐴, 𝐴[𝐵] = tr(𝐴𝐵). Then the QMLE of 𝜃 is an estimator that 

satisfies 

𝜃 = arg max
𝜃

ℓ𝑛(𝑸𝑛, 𝜃) 

exactly or approximately. 

For the requirement of consistency of the estimator 𝜃1, it is assumed that  ∆𝑛→ 0 as 𝑛 → ∞. Indeed, 

under this condition, 𝜃1 has asymptotically (mixed) normality (Uchida and Yoshida (2012), 

Brouste et al., (2014)). For the consistency of 𝜃2, when 𝑇 = 𝑛∆𝑛→ ∞, usually ergodicity is 

assumed to ensure a law of large numbers and as a result the consistency of 𝜃2 is obtained and 

asymptotic normality is also established. This is so because the Fisher information for 𝜃2 is finite 

for a finite T and consistent estimation of 𝜃2 is theoretically impossible.  

3. Results and Discussion 

3.1 Examination of Bonny Light Crude Oil Price Time series properties 

Figure 1 shows the time series plot of the Bonny light crude oil price data from the period of 

January 2006 to April 2024. Examining the time series properties of the data shows that the price 

is highly volatile. Moreover, due to the presence of skewness and fat tails in the empirical 

distribution of oil price returns, the series is more effectively modelled using Levy models which 

assign higher probabilities to sudden unexpected events unlike the Gaussian models like Black 

Scholes model. Figure 2 further shows the properties of the dataset as it is decomposed to the 

seasonal, trend and random components. 



Ekong A. H. et al.  JRSS-NIG. Group Vol. 1(1), 2024, pg. 1 - 23 

13 
 

 
Figure 1. Time series plot of the Bonny light crude oil price data  

 

 

 
Figure 2. Additive Decomposition of the Bonny light crude oil price data  
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The series shows the randomness as well as seasonality in the data with no particular trend over 

the cumulative period, even though there have been highs and lows, period when the prices have 

been highest and lowest respectively. The highs and lows seem to indicate the possible jumps in 

the crude oil prices that seem to influence the volatility of the price in time. We investigate further 

these possible jumps by examining the histogram and density plots of the data as given in Figure 

3. To confirm the seasonality factor in the time series, we run a dickey fuller test to check for 

stationarity. The augmented Dickey-Fuller test gave a Dickey-Fuller statistic of -2.4063, Lag order 

of 6 and a p-value of 0.4054, indicating the non-stationarity of the dataset. 

As evidenced from the Figure 3 below, the Bonny light crude oil price is quite volatile as 

characterized by a number of jumps. Examining stationarity of the data, we shall transform the 

prices to log returns to better analyse and examine the parameter estimation. 

 

 
Figure 3. Histogram and Density plot of the Bonny light crude oil price data  
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Figure 4 Histogram and Density plot of the log-returns of Bonny light crude oil price   

 

From Figure 4 above, we see from the log-returns that there has been heightened variance in the 

crude oil price, with the earlier periods being characterized by relatively high prices and low levels 

for the most recent periods. Figure 3 shows that also shows that the crude oil price series is not 

Gaussian in distribution, whereas the log-return plot in Figure 4 shows an approximate Gaussian 

distribution with negative skewness. These properties mean that the crude oil price cannot be 

efficiently modelled using existing approaches the geometric Brownian motion, or the Black and 

Scholes model. This negative skewness and kurtosis in the log-return density of the crude oil price 

can be better captured in Merton jump diffusion (MJD) model with the introduction three extra 

parameters to the original Black and Scholes model, as noted by Matsuda (2004).  

We therefore apply our extension of the Merton model to cater for the negative skewness and 

kurtosis, and the volatility is also captured by the inclusion of the exponential jump process with 

nonconstant intensity. First, since it is known from the theory that the estimation of the drift in a 

diffusion process strongly depends on the length of the observation interval [0, T], we carry out a 

simulation exercise to see the effects of sample size and the length of the observation interval [0, 

T] on the estimation of the eMJD model against other models under consideration.  

3.2 Simulation study for Comparison of models 

We simulated a stochastic differential equation diffusion process with a compound Poisson jump 

and exponential decaying intensity with parameter values drift = 0.1, diffusion coefficient = 0.5, 

beta = 10, lambda = 0.2, gamma = 2 and jump coefficient = 15. We considered sample size of 

simulations, 𝑛 as 500, 3500 and 10000 and we took 𝑇 =  𝑛1 3⁄ , with n = 500, we have  
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approximatively 7.94, with n = 3500, we have approximately 15.18 and with n = 10000 we have 

approximately  21.54. We also varied T using the values 10 and 1 each for n = 10000. The results 

from the simulation are given in Table 1 and Table 2. We compared eMJD approach with Gaussian 

diffusion processes of geometric Gaussian motion (GBM), Ornstein-Uhlenbeck (O-U) stochastic 

process and its extension with mean reverting property also referred to Vasicek (VAS) model and 

MJD process. 

Table 1: Simulation Results for n = 500 and 3500  
GBM O-U VAS MJD eMJD  

n = 500; T = 7.94 

AIC 10216.66 4155.36 5708.61 3120.55 2306.60 

BIC 10225.09 4163.79 5721.25 3141.62 2327.66 

log 

like 

10212.66 4151.36 5702.61 3110.55 2296.60 

rmse 844.7616 172.1288 1881.2910 12.4500 12.5768 

smape 1.9990 1.6196 1.9989 1.5373 1.4720  
n = 3500; T = 15.18  

AIC 13122.82 11983.31 19450.70 11580.88 11199.59 

BIC 13133.44 11993.93 19466.64 11607.44 11226.16 

log 

like 

13118.82 11979.31 19444.70 11570.88 11189.59 

rmse 1.4363 146.9239 4129.6580 12.4317 21.8906 

smape 1.4473 1.2777 1.9995 1.3244 1.5702 

 

We decided to use the model comparison diagnostics of Akaike information criterion (AIC), 

Bayesian information criterion (BIC) and log-likelihood to compare the models, while root mean 

squared error (RMSE) and symmetric mean absolute percentage error (SMAPE) were used to 

compare the parameter estimates to the specified true values. We however, point out that since the 

models compared do not all have the same parameterisation, our comparison of the estimated 

coefficients with the true values may not be very accurate, but we nonetheless anchor our 

comparison here on the fact that the models all estimates the drift and diffusion coefficients.  

From Table 1 we observe that with sample size 500, the eMJD model had the lowest AIC, BIC, 

log-likelihood and SMAPE followed by MJD which had the lowest RMSE. With sample size 3500, 

Ornstein-Uhlenbeck model had lowest SMAPE, geometric Brownian motion had the lowest 

RMSE, whereas eMJD had the lowest AIC, BIC and log-likelihood and again closely followed by 

MJD. We also noted that the AIC, BIC and log-likelihood increased as sample size increased from 

500 to 3500 for all models.   
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 Table 2: Simulation Results for n = 10000 and Varied T  
GBM O-U VAS MJD eMJD  

n = 10000; T = 21.54 

AIC 93866.54 98240.60 98242.60 85364.89 69509.11 

BIC 93880.96 98255.02 98264.23 85400.95 69545.16 

log like 93862.54 98236.60 98236.60 85354.89 69499.11 

rmse 0.2442 368.7551 521.5025 12.4351 16.1974 

smape 0.7121 1.1924 1.9962 1.3222 1.5496  
n = 10000; T = 10 

AIC 76031.83 68989.43 105793.20 73301.14 46321.99 

BIC 76046.25 69003.85 105814.90 73337.19 46358.04 

log like 76027.83 68985.43 105787.20 73291.14 46311.99 

rmse 0.8463 85.1447 1248.9450 7.1107 12.4790 

smape 1.4100 1.5640 1.9984 0.8476 1.4687  
n = 10000; T = 1 

AIC 22107.41 6883.78 112921.40 22019.06 8860.02 

BIC 22121.83 6898.20 112943.00 22055.11 8896.07 

log like 22103.41 6879.78 112915.40 22009.06 8850.02 

rmse 0.0448 3.4790 1792.3130 7.9941 12.0006 

smape 0.2363 1.8310 1.9989 0.8908 1.4031 

From Table 2 it is seen that again the AIC, BIC and log-likelihood increased as sample size 

increased from 3500 to 10000 for all models with T = 21.54. However, as T dropped to 10 and 1, 

the AIC, BIC and log-likelihood also dropped. As T varied from 21.54 to 10 to 1, eMJD was the 

preferred model to others as evidenced in the AIC, BIC and log-likelihood values reported. Hence, 

from the simulation results, the sample size and the length of the observation interval T, does affect 

the quasi-maximum likelihood estimation of the diffusion models with jumps, but in whichever 

case, the eMJD model was preferred to the models compared with in this study. 

3.3 Application of models to Bonny Light crude oil price data 

The models compared in the simulation study are fitted to the real dataset of Bonny light crude oil 

price. Table 3 presents the drift coefficient and diffusion coefficients along with AIC, BIC and 

log-likelihood values for each of the five models considered. We see that the MJD and eMJD 

models have the same values for the drift and diffusion coefficients. Comparing the models with 

AIC, BIC and log-likelihood from Table 3 shows eMJD with lowest of these values, giving 

evidence to the eMJD model as being the best fitting model for the Bonny light crude oil price. 
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Table 3: Model fits on Bonny Light Crude Oil Prices  
GBM O-U  VAS MJD eMJD 

drift 2.204272 0.748217 0.000195 4.144635 4.144635 

diffusion -1.96553 242.9948 4792.073 1.687838 1.687838 

AIC 1604.690 1659.503 2922.865 1537.729 1499.390 

BIC 1611.477 1666.291 2933.046 1554.697 1516.358 

log like 1600.690 1655.503 2916.865 1527.729 1489.390 

A look at the eMJD model fit summary statistics for the Bonny light crude oil price as shown in 

Table 4 shows a drift coefficient (mu) value of 4.145 and a diffusion coefficient (sigma) value of 

1.688 with standard error of 0.0825. The value of the Poisson intensity parameter (lambda) was 

0.001 and the rate (gamma) of the exponential intensity was 0.1. The average jump time was 0.491 

and the estimated jumps was 9 with an average jump size and jump threshold of -11.487 and 15.875 

respectively. We not from the structure of above model that there are periods of normal price 

distribution and random intermittent unusual price movements resulting in jumps. We noted from 

the result that for the Bonny light crude oil price studied, the diffusion was positive and significant, 

whereas the jump component was also positive, it was not really significant at 0.001. This means 

that for this dataset, the jumps were not quite as influential in the crude oil price dynamics. The 

high drift coefficient indicated that the presence of intermittent upward trends in the crude oil price 

with variable probability of the jumps. The forecast values from the eMJD model fit as shown in 

Figure 5, highlights the forecast jump trajectory to be consistent with the crude oil price. The 

implementation of the modelling and data analyses were carried out using the yuima package 

(Brouste et al., (2014) for R. The distinction between the true price trajectories and the forecast 

jumps in Figure 5 is shown by the jump diffusion model forecasts (circles) on the price series path.  
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Table 4: eMJD model fits Summary on Bonny Light Crude Oil Prices 

  Coeff. Estimate Std. 

Error 

  

 
sigma 1.68784 0.08246 

  

 
mu 4.14464 1.84455 

  

 
beta 2.29191 3.24089 

  

 
lambda 0.00100 2.80578 

  

 
gamma 0.10000 0.07070 

  

 
Number of estimated jumps: 9 

 

 
Average inter-arrival times: 0.080853 

 

 
Average jump size: -11.4867 

  

 
Standard Dev. Of jump size: 19.65021 

 

 
Jump Threshold: 15.87451 

  

Summary statistics for jump times: 
  

Min. 1st Qu. Median Mean 3rd Qu. Max. 

0.119 0.131 0.6706 0.4912 0.754 0.7659       

Summary statistics for jump size: 
  

Min. 1st Qu. Median Mean 3rd Qu. Max. 

-28.51 -21.9 -18.01 -11.49 -16.75 23.3 

 

  
Figure 5: Plot of Original Bonny light Crude oil prices and eMJD model forecast values   

4. Conclusion 

We studied the price fluctuations of Nigeria’s Bonny light crude oil, looking at the time series 

properties and the possibility of fitting an extension of the Merton jump diffusion (MJD) model to 
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accommodate the skewness, kurtosis and non-stationarity in the crude oil price. The stochastic 

differential equation (SDE) with jump diffusion introduces modelling approach for the stochastic 

volatility in the time series. The MJD involved a compound Poisson process with constant intensity 

and this study examined the case of non-constant intensity using an exponential distribution for 

the intensity function to account for more randomness in the jump process, and referred to this 

extension as eMJD. We compared eMJD approach with Gaussian diffusion processes of geometric 

Gaussian motion (GBM), Ornstein-Uhlenbeck (O-U) stochastic process and its extension with 

mean reverting property also referred to Vasicek (VAS) model and MJD process. We saw that the 

MJD and eMJD were very close in their parameters estimates as against the Gaussian diffusion 

processes and were preferred to the Gaussian processes. Comparing MJD and eMJD models using 

AIC and BIC showed that eMJD was preferred to MJD in both the simulation study and the crude 

oil price. SDE with Levy jump process as noted in the literature captures more than the stochastic 

volatility in prices, but also captures other properties like skewness, kurtosis and jumps as seen in 

crude oil price studied here. Several extensions for future studies are possible to capture more time 

series properties and trajectories by looking at other functions for the Poisson intensity. Also, other 

distributions for the jump process like gamma distribution could be fitted. With the help of R 

packages such as yuima application of these approaches can be easily done by practitioners in 

industry to better understand the price dynamics.     
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