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Abstract: 

This article derived a new family of continuous probability distributions known as New Frѐchet-

G family of distributions. The study presents expansion and linear representation of the CDF and 

CDF of the new Frѐchet-G (NFr-G) family of distribution. The structural properties of the 

proposed family of distribution, such as quantile function, moment, moment generating function, 

characteristic function, reliability analysis and order statistics were derived. The parameters of 

the new family have been estimated using the method of maximum likelihood estimation. Four 

special models have been derived and discussed from the new Frѐchet-G family. The shapes of 

their densities and CDFs of the special models for some chosen parameter values were also 

discussed. The plots of the PDFs of the special models revealed that the NFr-G family will 

generate distributions with different shapes which is an indication that the proposed family is 

skewed and flexible. Monte Carlo simulation study was conducted to check the stability of the 

parameters of the proposed family through the NFrExD and the results revealed that the 

estimators of the parameters are consistent. The performance of the proposed family was 

assessed via the NFrExD by some applications of the model to real life data sets.  

 

Key words: Frѐchet distribution, Frѐchet-G family, Frѐchet-exponential distribution, Maximum 

Likelihood Estimation, Simulation, Real life data.  

 

 

1. Introduction 

The functions, properties and interrelationships of probability distributions are very important in 

describing real life events. Many standard probability models have been used in the past decades 

for modeling data in several fields. However, extending these classical distributions has 

produced several compound or modified distributions that are found to be more flexible and 

appropriate for modelling events as compared to their standard forms. Sequel to this fact, a large 

number of useful families of distributions have been proposed in literature such as quadratic rank 

transmutation map by Shaw and Buckley (2007), Exponentiated T-X by Alzaghal et al. (2013), 

Weibull-X by Alzaatreh et al. (2013), Weibull-G by Bourguignon et al. (2014), a Lomax-G 

family by Cordeiro et al. (2014), a new Weibull-G family by Tahir et al. (2016), a Lindley-G 

family by Cakmakyapan and Ozel (2016), a Gompertz-G family by Alizadeh et al. (2017) and 

Odd Lindley-G family by Gomes-Silva et al. (2017), odd Lomax-G family by Cordeiro et al. 
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(2019), the shifted Gompertz-G family of distributions by Eghwerido et al. (2021a), the shifted 

exponential-G family of distributions by Eghwerido et al. (2022), the transmuted alpha power-G 

family of distributions by Eghwerido et al. (2021b), the alpha power Marshall-Olkin-G 

distribution by Eghwerido et al. (2021c), a new flexible odd Kappa-G family of distributions by 

Al-Shomrani and Al-Arfaj (2021), an odd Chen-G family of distributions by Anzagra et al. 

(2022), a new sine family of generalized distributions by Benchiha et al. (2023), the Topp-Leone 

type II exponentiated half logistic-G family of distributions by Gabanakgosi and Oluyede (2023), 

a truncated Cauchy power Weibull-G class of distributions by Alotaibi et al. (2022), the 

truncated Burr X-G family of distributions by Bantan et al. (2021), the flexible Burr X-G family 

of distribution by Al-Babtain et al. (2021), the Marshall-Olkin-odd power generalized Weibull-G 

family of distributions by Chipepa et al. (2022), a novel bivariate Lomax-G family of 

distributions Fayomi et al. (2023) and X-exponential-G Family of Distributions by Mohammad 

(2024). 

The Fréchet distribution is a very useful distribution especially in extreme value theory and it is 

applied in different areas such as accelerated life testing as well as earthquakes, floods, horse 

racing, rainfall, queues in supermarkets, wind speeds and sea waves etc. Details of the properties, 

importance and applications of the Fréchet distribution can be obtained from Kotz and Nadarajah 

(2000), Harlow (2002), Nadarajah and Kotz (2008), Zaharim et al. (2009) and Mubarak (2012). 

A random variable T is said to follow a Fréchet distribution with parameters a  and b  if its 

probability density function (PDF) and cumulative distribution function (CDF) are respectively 

given by: 

                         

( ) ( )1e
a

b
ta af t ab t

−− −=

                                                        

            (1) 

and  

                          

( ) ( )
e

a
b
tF t

−
=

                                                                               

(2) 

where 0, 0, 0t a b   ; while a  and b  are the shape and scale parameters of the Fréchet 

distribution respectively. 

Using the Frѐchet distribution above, many researchers have developed Frѐchet based families of 

probability distributions which include, the Odd Frѐchet Generalised (OFr-G) family of 

distributions by Haq and Elgarhy (2018), the extended odd Fréchet (EOFr-G) family of 

distributions by Nasiru (2018), the Fréchet Topp Leone-G (FTL-G) family by Reyad et al. 

(2019),  the Generalized Odd Frѐchet-G family of distributions  by Marganpoor et al., (2020) and 

the exponentiated Frѐchet-G family of distribution by Baharith and Alamoudi (2021). 

Based on the literature reviewed, it is discovered that there are very scanty distributions that are 

based on the Fréchet-G family unlike other families of distributions and hence the need for more 

Frѐchet-based distributions. It is also discovered that the odd Frѐchet-G family (with link function, 

( ) ( )1G x G x− ) by Haq and Elgarhy (2018)  and the extended odd Frѐchet-G family (with link 

function, ( ) ( )1G x G x
 

− ) by Nasiru (2018) do not include the scale parameter of the Frѐchet 

distribution which is supposed to add to the shape of the Fréchet families. Also, it has been 
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discovered that no Frѐchet-based family has considered the link function, ( )log 1 G x− −    as 

proposed by Alzaatreh et al., (2013a), which has been found to be efficient in other families of 

distributions (Cordeiro et al., (2014); Alzaatreh et al., (2013b), Cakmakyapan and Ozel (2016); 

Alizadeh et al., (2017)). 

Therefore, this article introduced and studied a new Fréchet-G family (NFr-G) by employing the 

Transformed–Transformer (T-X) method proposed by Alzaatreh et al., (2013a) with the link 

function, ( )log 1 G x− −   . The proposed NFr-G family is found to be flexible with tractable sub-

models and will aid the generalization of many other continuous distributions with various 

shapes and a wide range of applications. 

The remaining sections of this article are presented as follows: The NFr-G family and reliability 

functions are defined in section 2. Some special distributions from the NFr-G family are derived 

in section 3 and the expansion and linear representation of the CDF and PDF of the NFr-G 

family is given in section 4. In section 5, the article derived the structural properties of the NFr-G 

family. The estimation of parameters of the NFr-G family and a simulation study to check the 

consistency of the estimators is done in section 6 and 7 respectively. The performance of the 

NFr-G family is illustrated using three real life datasets with respect to one of the special models 

in section 8. The conclusion of the study is presented in section 9. 

2.   New Frechet-G Family of Continuous Probability Distributions  

Considering the method of generating families of continuous probability distributions (the 

Transformed-Transformer, “T-X” method) by Alzaatreh et al. (2013a), the CDF and PDF of the 

proposed new Frechet-G family of probability distributions are defined respectively (for 0x  ) 

as: 

  

( )
( )

( )
( )

( )( ) 
; log 1 ;

1

0 0

( ; , , ) e exp log 1 ;
a

b
t

W G x G x
a

a a aF x a b f t dt ab t dt b G x

 

 

  −  −    
−−− −  = = = − − −  

 

(3) 

and  

      
( ) ( )( )

( )
( )( ) 

1

; log 1 ;
( ; , , ) exp log 1 ;

1 ;

a
a

a
a

ab g x G x
f x a b b G x

G x

 
 



− −

−− −  
= − − −  −  

               (4) 

where 0a 
 
and 0b   are the two shape parameters that will enhance the flexibility and shape of 

the new family, ( )g x and ( )G x
 
are the PDF and CDF of any baseline distribution respectively 

and 
 
is a 1p vector of parameters for the baseline ( );G x  . 

Considering the results in equation (3) and (4), the survival and hazard functions (reliability 

functions) of the new Frechet-G family of distribution are defined respectively as: 

                   ( )( ) ( , , , ) 1 ( , , , ) 1 exp log 1 ;
a

aS x a b F x a b b G x  
−

= − = − − − −             (5) 

and 
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( ) ( )( ) ( )( ) 
( ) ( )( ) 

1
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( , , , )
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( , , , ) 1 ; 1 exp log 1 ;

a a
a a

a
a

ab g x G x b G x
f x a b

h x a b
S x a b G x b G x
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


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− − −

−

− − − − −      
= =

 − − − − −        

(6)  

3.   Special NFr Distributions 

This section derives some special distributions generated from the new family to show its 

usefulness for extending every other continuous probability distribution, with some important 

plots using arbitrary values of their parameters.  

3.1   Fréchet-exponential distribution 

The PDF and CDF of the exponential distribution are defined respectively as ( ) e xg x  −=   and 

( ) 1 e xG x −= − ,  where for 0x   and 0   is the scale parameter of the distribution. 

Substituting the pdf and cdf of the exponential distribution into the NFr-G family of distribution 

in equation (3) and (4) accordingly and simplifying, the cdf and pdf of the New Frechet-

exponential distribution (NFrExD) are obtained as given in Equation (7) and (8) respectively 

below: 

                               
( ) exp

a

ab
F x x



−
   

= −  
   

                                                            (7) 

and 

                             

1( ) exp

a a

a ab b
f x a x x

 

− − −
     

= −    
                                                   

 (8)

     
 

where , , 0,a b     are the parameters of the NFrExD.  

3.2   Fréchet-Weibull distribution 

The PDF and CDF of the Lindley distribution are defined respectively as ( ) 1e xg x x
  − −=  

and ( ) 1 e xG x
−= − , where 0,0,0  x , α and β are the scale and shape parameters 

respectively. Substituting the pdf and cdf of the Weibull distribution into the NFr-G family in 

Equation (3) and (4) accordingly and simplifying, the cdf and pdf of the new Frechet-Weibull 

distribution (NFrWeiD) are obtained as given in Equation (9) and (10) respectively: 

                               
( ) exp

a

ab
F x x 



−
   

= −  
   

                                                            (9) 

and 

                             

1( ) exp

a a

a ab b
f x a x x 

 

− − −
     

= −    
                                         

 (10)

     
 

where , , , 0a b      are the parameters of the NFrWeiD.  
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3.3   Fréchet-Gompertz distribution 

The PDF and CDF of the Gompertz distribution with parameters   and   are defined 

respectively as ( ) ( )e 1
e e

x
xg x




− −
=   and ( ) ( )1

1 e
xe

G x



− −

= − , where 0, 0, 0x     ,   is a 

scale parameter and   is a shape parameter of the Gompertz distribution. Substituting the pdf 

and cdf of the Gompertz distribution into the NFr-G family in Equation (3) and (4) accordingly 

and simplifying, the cdf and pdf of the new Frechet-Gompertz distribution (NFrGomD) are 

obtained as given in Equation (11) and (12) respectively: 

                       
( )( ) exp e 1

a
a

xb
F x 



−   
= − −  

   

                                                       (11) 

and 

                       

( ) ( )
1

( ) e e 1 exp e 1

a a
a a

x x xb b
f x a    


 

− − −     
= − − −    

                   

(12)

     
 

where , , , 0,a b      are the parameters of the NFrGomD.  

3.4   Fréchet-Dagum distribution 

The PDF and CDF of the Dagum distribution are defined respectively as 

( )
1

1( ) 1g x x x


  
− −

− − −= +   and ( )( ) 1G x x



−

−= + , where 0x  , , , 0    . The scale 

parameter is   while   and   are the shape parameters. Substituting the pdf and cdf of the 

Dagum distribution into the NFr-G family in Equation (3) and (4) accordingly and simplifying, 

the cdf and pdf of the new Frechet-Dagum distribution (NFrDaD) are obtained as given in 

Equation (13) and (14) respectively: 

                   
( )( )( ) exp log 1 1

a
aF x b x


−

−
−  = − − − +    

                                                  (13) 

and 
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  

 


 
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−

− − −
−

−
−

+ −
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 − − +
      = − − − +      + − +
    

(14)

     
 

where , , , , 0,a b       are the parameters of the NFrDaD.  

The Figures 1(a)-1(d) present the PDF and CDF of some special distributions using arbitrary 

parameter values. 
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Figure 1: PDF and CDF of NFrExD and NFrWeiD for selected parameter values. 

The plots of the PDFs of the NFrExD and NFrWeiD show that the proposed family of 

distribution is skewed and flexible and that its shape depends on the values of the parameters. 

Also, the shapes can be classified as decreasing, unimodal, right-skewed and asymmetrical 

shapes, as shown in Figures 1(a) and 1(c). The plot of CDFs all converges to one as expected 

which also confirms the validity of the NFr-G family of probability distribution as displayed in 

Figures 1(b) and 1(d) for NFrExD and NFrWeiD respectively. 

4.   Useful Expansions of the CDF and PDF of the NFr-G Family of Distribution.  

This section presents a useful expansion and mixture or linear representation of the CDF and 

PDF of the new Frechet-G family of distribution. 
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Recall that according to Taylor series expansion, ( )
( )

0

1
exp

!

i i

i

z
z

i



=

−
− = , this implies that the 

exponential term in the CDF and PDF of the NFr-G family can be expressed as: 

                   ( )( )  ( )
( )( )

0

1
exp log 1 log 1

!

i ai
a ai

a

i

b
b G x G x

i

− −

=

−
− − − = − −                         (15) 

Also, according to Tahir et al., (2016), the logaritmic function in Equation (15) can be expressed 

as: 

( )( )
( ) ( )

( )
( ),

, 0 0

1
log 1 1

j k l
kai l

j k

k l j

k ai k ai kai
G x P G x

k j lai j

+ +
−

= =

− +−    
   − − = −      −    

   (16) 

where for (for 0j  ), ,0 1jP =
 and (for 1,2,3,...k = ), ( )

( )

( )
1

, ,

1

1
1

1

k
m

j k j k m

m

m j k
P k P

m

−

−

=

+ −  = −
+

  

Now, for l greater than zero, we can expand the last term in Equation (16) as: 

                            ( ) ( ) ( )
0

1 1
l mm

m

l
G x G x

m



=

 
   − = −     

 
                                            (17) 

Using Equation (16) and (17) in Equation (15) and simplifying, we have: 

( )( )  ( ) ( )

( )
( ),

, , , 0 0

1
exp log 1

!

i j k l m
ka ma

j kai
i k l m j
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+ + + +
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−
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 

 

Therefore, the mixture form expression of the CDF of the NFr-G family, ( )F x , becomes:  

( )
( ) ( )

( )
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, , , 0 0

1

!

i j k l m
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j kai
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Hence, 
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

=

 =                                                                               (18) 

where 
( ) ( )

( ) ,

, , 0 0

1

!

i j k l m
k

l j kai
k l m j

k ai k ai k lai
P

k j l mi ai j b


+ + + +


−
= =

− +−     
=     

−     
    is a constant. 

Similarly, using the expansion in Equation (15), (16) and (17), the mixture form expression of 

the PDF of the NFr-G family, ( ); , ,f x a b  , is given as:  



Ieren T. G. et al.  JRSS-NIG. Group Vol. 1(1), 2024, pg. 46-71 

53 
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m
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i
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where 

( ) ( )( )
( ) ( )( )( )

( )( ) ( )( )
1 ,1
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1 1 1 1 1 1 1 1

1 1 !

i j k l m
k
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a a i k a i a i kk l
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j mb a i j i k l


+ + + +


+ − +
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   − + + − + + + + + −   
=          + + −       
 

  is a constant. 

5.   Mathematical Properties of the New Frechet-G Family of Distribution 

This section presents various structural, statistical, and mathematical properties of the NFr-G 

family of probability distribution. 

5.1   Quantile Function 

Using the CDF of the NFr-G family defined in Equation (3), the quantile function is obtained as 

follows; 

                              
( )( ) ( , , , ) exp log 1 ;

a
aF x a b b G x u 

−

= − − − =  
                       (20)

 

Simplifying the expression above, the quantile function of the NFr-G family is given by;  

                       
( ) ( )( ) 

1

1 exp ln ;
aa

GQ u Q b u 
−

−  
= − − −  

                                             (21) 

where ( ) ( )1.;. .;.GQ G−=  is the baseline quantile function that correspond to the CDF of the 

baseline distribution, ( );G x  .  

5.2     Moments 

The thr  non-central moment of a random variable X  is defined as; 

                              ( )'

0

r r

r E X x f x dx  = =                                                                         (22)                    

Substituting the mixture representation of the density function into the definition above 

simplifying produces: 

                             ( ) ( )'

1

0 0

;
mr

r l

i

x g x G x dx  


+

=

 =                                                           (23)             

5.3    Moment Generating Function 

The moment generating function of a random variable X can be obtained as; 

               

( ) ( )
0

e etx tx

XM t E f x dx



 = =                                                                                 (24)                                                       
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Using power series expansion and simplifying, the moment generating function of a random 

variable X can also be expressed as: 

                

( ) ( ) ( )1

0 0 0

;
!

r
mr

X l

r i

t
M t x g x G x dx

r
 

 

+

= =

 =   
                                                          (25)                   

5.4     Characteristics Function 

A representation for the characteristics function is given by: 

                           ( ) ( ) ( )
0

itx itx

x t E e e f x dx


= =                                                                     (26)                        

Hence, simple algebra and use of the power series expansion gives the following results: 

                       

( )
( )

( ) ( )1

0 0 0

;
!

r
mr

X l

r i

it
t x g x G x dx

r
  

 

+

= =

 =   
                                                  (27) 

5.5    Distribution of Order Statistics 

Suppose 
1 2, ,......, nX X X  is a random sample from a distribution with PDF, ( )f x , and let 

1: 2: :, ,......,n n i nX X X  denote the corresponding order statistic obtained from this sample. The PDF,

( ):i nf x  of the thi  order statistic can be defined as; 

          ( )
( ) ( )

( ) ( ) ( )
1

:

0

!
1

1 ! !

k ik

i n

k

n in
f x f x F x

ki n i


+ −

=

− 
 = −    − −  

                                      (28) 

Taking ( )f x  and ( )F x  to be the PDF and CDF of the NFr-G family respectively and using 

Equation (3) and (4), the PDF of the thi  order statistics :i nX for the NFr-G family can be 

expressed from (28) as; 

( )
( ) ( )

( )
( ) ( )( ) 

( ) ( )( )
( )( ) 

1

: 1
0

; exp log 1 ;
!

1 exp log 1 ;
1 ! ! 1 ; log 1 ;

a
a

k i
ak a

i n a
a

k

ag x b G xn in
f x b G x

ki n i b G x G x

 


 

−

+ − −

+
−

=

 − − − −   
 = − − − −    − −       − − −   



 

Hence, the PDF of the minimum order statistic 
( )1

X  and maximum order statistic 
( )n

X  of the 

NFr-G family are given by; 

    

( ) ( )
( ) ( )( ) 

( ) ( )( )
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; exp log 1 ;1
1 exp log 1 ;
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n a
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k
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f x n b G x

k b G x G x

 


 

−

 −

+
−

=

 − − − −   
 = − − − −          − − −   


    (29) 

and 
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     ( )
( ) ( )( ) 

( ) ( )( )
( )( ) 

1

: 1

; exp log 1 ;
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1 ; log 1 ;

a
a
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n n a
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ag x b G x

f x n b G x
b G x G x

 


 

−

−
−

+
−

 − − −   
 = − − −      − − −                             (30)

 

respectively. 

6.   Estimation of Parameters of the NFr-G Family  

In this section, we used the maximum likelihood estimation (MLE) method to derive estimators 

for the unknown parameters of the NFr-G family of distribution. Let nXXX .,,........., 21  be a 

sample of size ‘n’ independently and identically distributed random variables from the NFr-G 

family with unknown parameters, a , b  and   defined previously. The likelihood function is 

given by: 

( ) ( )
( ) ( )( )

( )
( )( )

1
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; log 1 ;
| , , exp log 1 ;
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n n an i ia a
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==

 − −     = − − −    −     
 


          

(31) 

 For ease of differentiation, we take the natural logarithm of the likelihood function in Equation 

(31) and let the log-likelihood function be ( )log | , ,l L X a b = , such that: 

( )  ( ) ( )( ) ( ) ( )( )
1 1 1 1

log log log ; 1 log log 1 ; log 1 ; log 1 ;
n n n n a

a

i i i i

i i i i

l n a an b g x a G x G x b G x   
−

= = = =

= + + − + − − − − − − −             

 (32) 
Differentiating 𝑙 in Equation (37) partially with respect to the parameters, a , b  and   
respectively gives; 

      ( )( ) ( )( ) ( )( ) 
1 1
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 (35) 

where ( )
( );

;
g x

g x






 =


 and ( )

( );
;

G x
G x







 =


. The solution of the non-linear system of 

Equations  
l

a




, 

l

b



   
and 

l






 will give us the maximum likelihood estimates of parameters, a , 

b  and  . However, the solution cannot be obtained analytically except numerically with the aid 

of suitable statistical software like Python, R, SAS, Mapple, e.t.c when data sets are available. 

7.   Simulation study 

This section assesses the behavior of the maximum likelihood estimators (MLEs) of the NFrExD 

for a finite sample of size n. A simulation study based on the NFrExD is performed. The 
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generation of random numbers is done by the quantile technique from the NFrExD using optim() 

R-function with the argument method “L-BFGS-B”. The simulation study is based on the 

following steps: 

(1) Generation of N=1000 samples of sizes n =25, 50, . . . , 1000 from the NFrExD 

(2) Computation of maximum likelihood estimates for the model parameters 

(3) Computation of the mean square errors (MSEs) and biases (absolute biases) given by 

         ( ) ( )
1000 2

1

1 ˆMSE
1000 i=

 = −  and ( ) ( )
1000

1

1 ˆBias
1000 i=

 = −  respectively, where 

( ), ,a b  =  and ( )ˆ ˆˆ ˆ, ,a b  = . 

The simulation study is conducted for four different combination of   , a  and b . These are: 

 (i) 1.0, 1.0, 1.0a and b = = =  (ii) 2.0, 1.0, 1.0a and b = = =   

(iii) 1.0, 1.0, 2.0a and b = = =  and (iv) 0.5, 1.0, 0.5a and b = = = . 

The assessment of the estimators, ˆˆ ˆ, ,MLE MLE MLEa and b  is done by using MSE and Bias. For 

every sample size, the average MLEs, MSEs, Absolute biases were computed. The results 

obtained are presented in Tables 1-4 and displayed graphically in Figures 2–5 as follows: 

 

 

Table 1: Simulation results of the NFrExD when 1.0, 1.0, 1.0a and b = = =  

n Measure

s/Criteri

a 

Parameters n Measure

s/Criteri

a 

Parameters 

  a  b    a  b  

n=25 MLEs 1.0500  1.0600  1.0708 n=300 MLEs 1.0160  1.0044  1.0146 

Biases 0.0500  0.0600  0.0708 Biases 0.0160  0.0044  0.0146 

MSEs 0.0182  0.0328  0.0270 MSEs 0.0014  0.0021  0.0012 

n=50 MLEs 1.0371  1.0283  1.0430 n=500 MLEs 1.0100  1.0009  1.0135 

Biases 0.0371  0.0283  0.0430 Biases 0.0100  0.0009  0.0135 

MSEs 0.0088  0.0150  0.0100 MSEs 0.0007  0.0012  0.0008 

n=75 MLEs 1.0296  1.0163  1.0352 n=700 MLEs 1.0106  1.0018  1.0093 

Biases 0.0296  0.0163  0.0352 Biases 0.0106  0.0018  0.0093 

MSEs 0.0055  0.0093  0.0064 MSEs 0.0006  0.0008  0.0005 

n=100 MLEs 1.0243  1.0119  1.0283 n=900 MLEs 1.0084  1.0008  1.0090 

Biases 0.0243  0.0119  0.0283 Biases 0.0084  0.0008  0.0090 

MSEs 0.0039  0.0061  0.0041 MSEs 0.0004  0.0007  0.0004 

n=200 MLEs 1.0202  1.0107  1.0183 n=1000 MLEs 1.0072  1.0014  1.0095 

Biases 0.0202  0.0107  0.0183 Biases 0.0072  0.0014  0.0095 

MSEs 0.0022  0.0034  0.0020 MSEs 0.0004  0.0006  0.0004 
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Table 2: Simulation results of the NFrExD when 2.0, 1.0, 1.0a and b = = =  

n Measure

s/Criteri

a 

Parameters n Measure

s/Criteri

a 

Parameters 

  a  b    a  b  

n=25 MLEs 2.0363  1.0687  1.0391 n=300 MLEs 2.0180  1.0040  1.0060 

Biases 0.0363 0.0687 0.0391 Biases 0.0180 0.0040 0.0060 

MSEs 0.0246  0.0426  0.0249 MSEs 0.0024  0.0021  0.0016 

n=50 MLEs 2.0253  1.0274  1.0299 n=500 MLEs 2.0110  1.0023  1.0075 

Biases 0.0253 0.0274 0.0299 Biases 0.0110 0.0023 0.0075 

MSEs 0.0120  0.0139  0.0117 MSEs 0.0013  0.0011  0.0010 

n=75 MLEs 2.0282  1.0141  1.0189 n=700 MLEs 2.0112  1.0029  1.0046 

Biases 0.0282 0.0141 0.0189 Biases 0.0112 0.0029 0.0046 

MSEs 0.0086  0.0087  0.0076 MSEs 0.0010  0.0009  0.0007 

n=100 MLEs 2.0206  1.0163  1.0195 n=900 MLEs 2.0091  1.0018  1.0050 

Biases 0.0206 0.0163 0.0195 Biases 0.0091 0.0018 0.0050 

MSEs 0.0066  0.0069  0.0060 MSEs 0.0007  0.0007  0.0006 

n=200 MLEs 2.0157  1.0084  1.0126 n=1000 MLEs 2.0089  1.0022  1.0041 

Biases 0.0157 0.0084 0.0126 Biases 0.0089 0.0022 0.0041 

MSEs 0.0031  0.0032  0.0028 MSEs 0.0007  0.0006  0.0005 

 

 

Table 3: Simulation results of the NFrExD when 1.0, 1.0, 2.0a and b = = =  

n Measure

s/Criteri

a 

Parameters n Measure

s/Criteri

a 

Parameters 

  a  b    a  b  

n=25 MLEs 1.0204  1.0613  2.0513 n=300 MLEs 1.0062  1.0026  2.0176 

Biases 0.0204  0.0613  0.0513 Biases 0.0062  0.0026  0.0176 

MSEs 0.0206  0.0369  0.0286 MSEs 0.0017  0.0019  0.0024 

n=50 MLEs 1.0155  1.0283  2.0396 n=500 MLEs 1.0058  1.0022  2.0130 

Biases 0.0155  0.0283  0.0396 Biases 0.0058  0.0022  0.0130 

MSEs 0.0103  0.0138  0.0149 MSEs 0.0011  0.0012  0.0016 

n=75 MLEs 1.0146  1.0169  2.0294 n=700 MLEs 1.0050  1.0021  2.0104 

Biases 0.0146  0.0169  0.0294 Biases 0.0050  0.0021  0.0104 

MSEs 0.0073  0.0082  0.0091 MSEs 0.0008  0.0009  0.0010 

n=100 MLEs 1.0115  1.0127  2.0289 n=900 MLEs 1.0042  1.0028  2.0090 

Biases 0.0115  0.0127  0.0289 Biases 0.0042  0.0028  0.0090 

MSEs 0.0051  0.0065  0.0077 MSEs 0.0005  0.0007  0.0007 

n=200 MLEs 1.0070  1.0080  2.0229 n=1000 MLEs 1.0038  1.0008  2.0097 

Biases 0.0070  0.0080  0.0229 Biases 0.0038  0.0008  0.0097 

MSEs 0.0028  0.0032  0.0040 MSEs 0.0005  0.0006  0.0007 
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Table 4: Simulation results of the NFrExD when 0.5, 1.0, 0.5a and b = = =  

n Measure

s/Criteri

a 

Parameters n Measure

s/Criteri

a 

Parameters 

  a  b    a  b  

n=25 MLEs 0.5589  1.0515  0.5675 n=300 MLEs 0.5147  1.0045  0.5152 

Biases 0.0589  0.0515  0.0675 Biases 0.0147  0.0045  0.0152 

MSEs 0.0099  0.0336  0.0120 MSEs 0.0006  0.0021  0.0006 

n=50 MLEs 0.5380  1.0334  0.5421 n=500 MLEs 0.5104  1.0045  0.5110 

Biases 0.0380  0.0334  0.0421 Biases 0.0104  0.0045  0.0110 

MSEs 0.0043  0.0149  0.0049 MSEs 0.0003  0.0012  0.0003 

n=75 MLEs 0.5296  1.0144  0.5314 n=700 MLEs 0.5092  1.0031  0.5095 

Biases 0.0296  0.0144  0.0314 Biases 0.0092  0.0031  0.0095 

MSEs 0.0024  0.0089  0.0029 MSEs 0.0002  0.0009  0.0002 

n=100 MLEs 0.5274  1.0160  0.5276 n=900 MLEs 0.5083  1.0003  0.5080 

Biases 0.0274  0.0160  0.0276 Biases 0.0083  0.0003  0.0080 

MSEs 0.0019  0.0069  0.0022 MSEs 0.0002  0.0007  0.0002 

n=200 MLEs 0.5168  1.0084  0.5188 n=1000 MLEs 0.5076  1.0021  0.5074 

Biases 0.0168  0.0084  0.0188 Biases 0.0076  0.0021  0.0074 

MSEs 0.0008  0.0030  0.0009 MSEs 0.0002  0.0006  0.0001 

 

 

 

Figure 2: Plots of MLEs, Absolute Biases and MSEs of the NFrExD when
1.0, 1.0, 1.0a and b = = =  
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Figure 3: Plots of MLEs, Absolute Biases and MSEs of the NFrExD for 

2.0, 1.0, 1.0a and b = = =  

 

Figure 4: Plots of MLEs, Absolute Biases and MSEs of the NFrExD for 

1.0, 1.0, 2.0a and b = = =  

 

Figure 5: Plots of MLEs, Absolute Biases and MSEs of the NFrExD for 

0.5, 1.0, 0.5a and b = = =  
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The averages of the MLEs (Mean), their biases (Absolute Bias) and mean square errors (MSEs) 

for the parameters of the NFrExD are presented in Tables 1–4 and shown in Figures 2–5. Based 

on the values from the tables and the figures, the study revealed that the average estimates tend 

to be closer to the true parameters when sample size increases and the biases and mean square 

errors all decrease as sample size increases which is in agreement with the asymptotic theory of 

estimation. This is in line with the results of other related studies such as Reis et al. (2022), 

Ahmad et al. (2021), Ieren and Abdullahi (2020), Ahmad et al. (2020), Alghamdi and Abd El-

Raof (2023) as well as Rao and Mbwambo (2019). 

8.   Applications to Real Life Datasets 

In this section, the performance of the NFrExD (NFr-G family) was illustrated using real data 

sets. For the purpose of comparison, the following models were fitted to the data together with 

the proposed NFrExD (NFr-G family): Odd Frechet-exponential distribution (OFrExD) from the 

Odd Frechet-G family of distribution by Haq and Elgarhy (2018), Extended Odd Frechet-

exponential distribution (EOFrExD) from the extended odd Frechet-G family of distribution by 

Nasiru (2018), Generalized Odd Frechet-exponential distribution (GOFrExD) from the 

generalized odd Frechet-G family of distribution by Marganpoor et al. (2020), Exponentiated 

Frechet-exponential distribution (ExpFrExD) from the exponentiated Frechet-G family of 

distribution by Baharith and Alamoudi (2021), Lomax-exponential distribution (LomExD) from 

the Lomax-G family of distribution by Cordeiro et al. (2014), Weibull-exponential distribution 

(WeiExD) from the Weibull-G family of distribution by Bouguignon et al. (2014), Lindley-

exponential distribution (LinExD) from the Lindley-G family of distribution by Cakmakyapan 

and Ozel (2016), Transmuted exponential distribution (TrExD) from the Quadratic rank 

transmutation map by Shaw and Buckley (2007) and Conventional exponential distribution 

(ExD).  

The model selection process was done based on the value of the Akaike Information Criterion 

(AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC), 

Hannan Quin Information Criterion (HQIC) and Kolmogorov-smirnov (K-S) statistics. More 

information about these measures has also been discussed in Chen and Balakrishnan (1995). 

Hence, the smaller the value of these measures for a distribution, the better the fit of the 

distribution.  

Data set I: This dataset reflects the body fat percentage of 202 Australian athletes, it was 

extracted from Oguntunde et al., (2018) and has also been used by Al-Noor and Hadi (2021). 

The descriptive statistics of this data set are shown in Table 5.  

Table 5: Summary Statistics for data set I 

parameters n Mini 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

Values 202 5.630 8.545  11.650  18.080 13.507 35.520 38.31395  0.75955  -0.1733  

 

Table 5 suggests that the dataset is positively skewed because the coefficient of skewness is 

more than 0.5. 
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Table 6: Maximum Likelihood Parameter Estimates for dataset I 
Distribution Parameter Estimates 

NFrExD ̂ = 0.66569702   â =2.2400303  b̂ = 6.5283361      
 

OFrExD ̂ = 0.30195964   b̂ = 0.5160480         
      

EOFrExD ̂ = 0.11545505   b̂ = 2.7466403  ̂ = 1.5295591       

GOFrExD ̂ = 0.32089328   â =8.8682509  b̂ = 0.5032821      
 

ExPFrExD ̂ = 0.26728450   ̂ = 1.0570255  ̂ = 2.6073970  ̂ = 2.1947 

LomExD ̂ = 0.05090581   ̂ = 8.7378644  ̂ = 6.3253257      
 

WeiExD ̂ = 0.02223500   ̂ = 0.3629870  ̂ = 3.5710713      
 

TrExD ̂ = 0.05983939  ̂ = -0.1875335         
  

LinExD ̂ = 0.37581293   ̂ = 2.8187918         
       

ExD ̂ = 0.07431838          
             

 

  

Table 7: The statistics ℓ, AIC, CAIC, BIC, HQIC, K-S statistic and P-values for dataset I  

Distribution ˆ  
AIC CAIC  BIC  HQIC K-S P-Value (K-S) 

NFrExD 635.6719  1277.344  1277.465  1287.269  1281.359  0.085155  0.1068  

OFrExD 821.8358  1647.672  1647.732  1654.288  1650.349  0.63505  2.2e-16  

EOFrExD 724.2530  1454.506  1454.627  1464.431  1458.522  0.32884  2.2e-16  

GOFrExD 646.8376  1299.675  1299.796  1309.600  1303.691  0.18153  3.304e-06  

ExPFrExD 654.4528  1316.906  1317.109  1330.139  1322.260  0.20627  6.853e-08  

LomExD  737.2964  1480.593  1480.714  1490.518  1484.608  0.32381  2.2e-16  

WeiExD 1813.2660  3632.532  3632.653  3642.457  3636.548  0.8469  2.2e-16  

TrExD 730.4904  1464.981  1465.041  1471.597  1467.658  0.24943  2.429e-11  

LinExD 691.8825  1387.765  1387.825  1394.381  1390.442  0.27435  1.245e-13  

ExD 727.8559  1457.712  1457.732  1461.020  1459.050  0.34522  2.2e-16  

 

The following figure presents a plot of estimated PDFs (densities) and CDFs of the fitted models 

to dataset I. 
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Figure 6: Plots of the estimated densities and CDFs of the fitted distributions to dataset I. 

 

Figure 7: Probability plots for the fitted distributions based on dataset I. 

Data Set II. This is a real life dataset and it represents the active repair times (hr) for an airborne 

communication transceiver. It was reported by Chikara and Folks (1977) and has been used by 

Dimitrakopoulou et al. (2007) and Oluyede et al., (2022). The descriptive statistics of this data 

set are shown Table 8.  

Table 8: Summary Statistics for data set II 

n Minimum 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

46  0.200  0.800 1.750 4.375 3.607  24.500 24.44507 2.88834 8.80256 
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Table 8 also revealed that the dataset is positively skewed with 2.88834 coefficient of skewness. 

 

Table 9: Maximum Likelihood Parameter Estimates for dataset II 

Distribution Parameter Estimates 

NFrExD ̂ =4.2128113  â =1.0299381  b̂ = 4.7474874               

OfrExD ̂ =0.3729384  b̂ = 0.5249994                    

EOFrExD ̂ =0.9624714  b̂ = 1.5395943  ̂ = 6.3964525               

GOFrExD ̂ =0.5022227  â =1.0017863  b̂ = 0.6066838               

ExPFrExD ̂ =0.7536618  ̂ = 2.1499805  ̂ = 0.7021404  ̂ = 1.871423 

LomExD ̂ =0.8616947  ̂ = 3.5685917  ̂ = 8.0645112               

WeiExD ̂ =0.1618339  ̂ = 4.7212988  ̂ = 0.4238973               

TrExD ̂ =0.2004948  ̂ = 0.7397945                    

LinExD ̂ =3.2728306  ̂ = 9.6556276                    

ExD ̂ =0.2772698                           

 

Table 10: The statistics ℓ, AIC, CAIC, BIC, HQIC, K-S statistic and P-values for dataset II 

Distribution ˆ  
AIC CAIC  BIC  HQIC K-S P-Value (K-S) 

NFrExD 100.70286  207.4057  207.9771  212.8916  209.4608   0.085649 0.8885   

OFrExD 102.94834  209.8967  210.1758  213.5540  211.2667  0.18756  0.07861   

EOFrExD 102.84175  211.6835  212.2549  217.1694  213.7386  0.12175  0.5029   

GOFrExD 102.04478  210.0896  210.6610  215.5755  212.1446  0.10658  0.673  

ExPFrExD 99.86414  207.7283  208.7039  215.0429  210.4684  0.077359 0.9459   

LomExD 102.95498  211.9100  212.4814  217.3959  213.9650  0.12603  0.4581   

WeiExD 278.13531  562.2706  562.8420  567.7565  564.3257  0.76534 2.2e-16  

TrExD 103.67541  211.3508  211.6299  215.0081  212.7209  0.11574 0.5687   

LinExD 105.74635  215.4927  215.7718  219.1500  216.8627  0.173 0.1274  

ExD 105.00621  212.0124  212.1033  213.8411  212.6974  0.15974 0.191   

 

The following figure presents a histogram and estimated densities and CDFs of the fitted models 

to dataset II.  
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Figure 8: Plots of the estimated densities and CDFs of the fitted distributions to dataset II. 

 

Figure 9: Probability plots for the fitted distributions based on dataset II. 

Data Set III. The third data set is on shape measurements of 48 rock samples from a petroleum 

reservoir. This data was extracted from BP research, image analysis by Ronit Katz, U Oxford 

and has been used for analysis by Javanshiri et al. (2015) and Alhaji and Haruna (2023). Its 

summary is presented in Table 11.  
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Table 11: Summary Statistics for data set III 

parameters n Mini 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

Values 48  0.09033  0.16226 0.19880 0.26267 0.21811 0.46413 0.00697 1.16939 1.10986 

The information in Table 11 shows that the dataset is positively skewed with 1.16939 coefficient 

of skewness.  

 

 

 

Table 12: Maximum Likelihood Parameter Estimates for dataset III 

Distribution Parameter Estimates 

NFrExD ̂ =7.55375719   â =3.08200905  b̂ = 1.316282            

OFrExD ̂ =3.95484073   b̂ = 2.17736507             

EOFrExD ̂ =0.03395197   b̂ = 0.04135533  ̂ = 4.027266            

GOFrExD ̂ =6.24285622   â =1.70475473  b̂ = 1.590581            

ExPFrExD ̂ =5.24386237   ̂ = 6.06459001  ̂ = 1.357340  ̂ = 1.931753 

LomExD ̂ =3.93788555   ̂ = 9.36332482  ̂ = 7.911336            

WeiExD ̂ =0.41926301   ̂ = 8.37402316  ̂ = 1.245374            

TrExD ̂ =6.68054539  ̂ = -0.99617300             

LinExD ̂ =0.44191564   ̂ = 0.06740521             

ExD ̂ =4.58488876                    

 

Table 13: The statistics ℓ, AIC, CAIC, BIC, HQIC, K-S statistic and P-values for dataset 

III 

Distribution ˆ  
AIC CAIC  BIC  HQIC K-S P-Value (K-S) 

NFrExD -56.346362   -106.6927   -106.1473   -101.0791   -104.5713 0.067173 0.9819 

OFrExD -54.902172   -105.8043  -105.5377 -102.0619 -104.3901 0.069344 0.9751 

EOFrExD -5.071422 -4.142844 -3.597389 1.470759 -2.021455 0.8645 2.2e-16 

GOFrExD -54.912199   -103.8244  -103.2789  -98.21079  -101.703 0.071479 0.9669 

ExPFrExD  -55.155464   -102.3109 -101.3807  -94.82612 -99.48241 0.10424 0.6741 

LomExD -22.943690    -39.887381    -39.341926    -34.273778    -37.765992 0.38234 1.608e-06 

WeiExD  -4.771455     -3.542911     -2.997456      2.070692     -1.421522 0.3807 1.813e-06 

TrExD -39.144179    -74.288357    -74.021691    -70.545955    -72.874098 0.28105 0.001018 

LinExD -32.350675    -60.701349    -60.434682    -56.958947    -59.287090 0.25971 0.003083 

ExD -25.092746    -48.185492    -48.098535    -46.314291    -47.478362 0.38583 1.243e-06 

 

The following figure presents a histogram and estimated densities and CDFs of the fitted models 

to dataset III. 
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Figure 10: Plots of the estimated densities and CDFs of the fitted distributions to dataset III. 

 

Figure 11: Probability plots for the TEN fitted distributions based on dataset III. 

Tables 6, 9 and 12 present the maximum likelihood parameter estimates of the ten fitted 

distributions based on dataset I, dataset II and dataset III respectively and Tables 7, 10 and 13 list 

the values of AIC, CAIC, BIC, HQIC and K-S with p-value for the fitted distributions based on 

dataset I, dataset II and dataset III respectively. Similarly, the plots of the fitted densities and 

cumulative distribution functions of the NFrExD with those of competing distributions for 

dataset I, dataset II and dataset III are displayed in Figures 6, 8 and 10 respectively and the 

probability plots of the fitted distributions for dataset I, dataset II and dataset III are displayed in 

figures 7, 9 and 11 respectively. The values of AIC, CAIC, BIC, HQIC and K-S in Table 7 

which is for dataset I are smaller for the proposed NFrExD compared to the other nine fitted 

probability distributions. This indicates that the NFrExD from the proposed New Frechet-G 
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family performs better than the other fitted distributions. This outstanding performance of the 

NFrExD is followed by GOFrExD and ExpFrExD coming second and third respectively. This 

result for dataset I which based on the values of AIC, CAIC, BIC, HQIC and K-S is in agreement 

with the plots of the estimated PDFs and CDFs of the fitted distributions to dataset I displayed in 

Figure 6 as well as the probability plots Figure 7. Also, considering the results for dataset II 

based on the values of AIC, CAIC, BIC, HQIC and K-S from Table 10, it is revealed that the 

NFrExD has lower values of the AIC, CAIC, BIC, HQIC and K-S as compared to the other nine 

fitted distributions. This means that the proposed distribution (NFrExD) fits the data (dataset II) 

better than the other distributions from the other families of distribution. The result for dataset II 

which based on AIC, CAIC, BIC, HQIC and K-S was confirmed by the plots of the estimated 

PDFs and CDFs of the fitted distributions to dataset II displayed in Figure 8 as well as the 

probability plots Figure 9. More so, the proposed NFrExD has minimum values of AIC, CAIC, 

BIC, HQIC and K-S from Table 13 for dataset III which shows that it has the best fitting 

performance compared to the other fitted distributions. This means that the proposed distribution 

(NFrExD) fits dataset III better than the other nine distributions. The result for dataset III from 

Table 13 which based on AIC, CAIC, BIC, HQIC and K-S was confirmed by the plots of the 

estimated PDFs and CDFs of the fitted distributions to dataset III displayed in Figure 10 as well 

as the probability plots in Figure 11. This result shows that the NFr-G family is a good family for 

extending other probability distributions and also confirms the fact that compound or extended 

probability distributions are better than the standard ones or the baseline distributions as 

previously reported by Bhat et al. (2023), Bouguignon et al. (2014), Ieren and Balogun (2021), 

Umar et al. (2021), Haq and Elgarhy (2018), Cordeiro et al. (2019), Anzagra et al. (2022), 

Benchiha et al. (2023), Gabanakgosi and Oluyede (2023), Alotaibi et al. (2022), Fayomi et al. 

(2023), Mohammad (2024), and so on. 

9.   Conclusion 

This article has developed a new family of distributions known as “New Frechet-G family” with 

special models and structural properties as well as the maximum likelihood estimation of the 

unknown parameters. The shapes of the densities of the special models for some chosen 

parameter values were also discussed. The plots of the CDFs of the special models were also 

presented and discussed. Monte Carlo simulation study was conducted to check the behaviour of 

the parameters. The plots of the PDFs of the NFrExD and NFrWeiD show that the proposed 

family of distribution is skewed and flexible and that its shape depends on the values of the 

parameters. Also, the shapes can be classified as decreasing, unimodal, right-skewed and 

asymmetrical shapes. Also, the plots of the CDF confirmed that the special models and the entire 

NFr-G family is a valid family of probability distribution. From the results of the simulation 

study of NFr-G family through NFrExD, it is revealed that the average estimates tend to be 

closer to the true parameters when sample size increases and the biases and mean square errors 

all decrease as sample size increases which is in agreement with the statistical principle of 

estimation. It is also discovered that the values of the parameters have no effect on the estimators 

of any other parameter because changing the values of the parameters alone does not change the 

direction of the result or the bias and mean squared errors. Applications of the proposed 

distribution using three real life datasets revealed that the NFrExD fits the three datasets more 

appropriate and has better fitting performance compared to the other competing models 

considered in this study. 
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