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Abstract 

This study introduces a new four-parameter distribution, the Exponentiated Generalized Burr XII 

(EGBXII) distribution. The model was developed by combining the classical Burr XII 

distribution with the Exponentiated Generalized family, offering enhanced flexibility. Its 

probability density function (pdf) exhibits desirable features, including unimodal and inverted 

bathtub shapes. The hazard rate function can represent both increasing and decreasing patterns, 

making it versatile for modeling diverse real-world phenomena. Key properties of the 

distribution, such as moments, the moment-generating function, skewness, and kurtosis, are 

derived. The parameters of the distribution were estimated using the maximum likelihood 

method. A simulation study was conducted to evaluate the behavior of these estimated 

parameters. Finally, the proposed model was applied to two real-world datasets, where it 

demonstrated superior performance in terms of efficiency and consistency compared to other 

existing models, as evaluated using comparative criteria, including Akaike information Criterion 

(AIC), Bayesian information criterion (BIC), Hannan Quinn information criterion (HQIC), 

Corrected Akaike Information Criterion (CAIC), and the Kolmogorov-Smirnov (KS) test. 

Keywords: Exponentiated Generalized G., Burr XII, Moments, Maximum likelihood estimation, 

AIC. 

1. Introduction 

Probability distributions are fundamental tools in statistics and data analysis, enabling the 

modeling and understanding of random processes. They describe the likelihood of different 

outcomes and are widely applied across various fields, including engineering, finance, 

healthcare, and environmental science. Classical distributions, such as the Weibull, exponential, 

mailto:kingsley.arum@unn.edu.ng3
mailto:henrietta.oranye@unn.edu.ng


Bashiru et al.  JRSS-NIG. Group Vol. 1(2), 2024, pg. 1 - 18 

2 
ISSN NUMBER: 1116-249X 

and gamma distributions, are commonly used for modeling data, predicting outcomes, and 

conducting analyses (Qayoom et al. 2024). 

However, while these classical distributions are versatile, they often struggle to fit complex or 

highly skewed datasets effectively. Their inherent structures may not capture critical data 

characteristics, such as heavy tails or multimodality, which can lead to suboptimal model 

performance and inaccurate conclusions. Consequently, there is a need for more flexible 

probability distributions that can address these challenges and improve analytical accuracy.  

To meet this need, researchers have developed new and more flexible distributions by modifying 

existing ones through distribution families. These families introduce additional parameters, such 

as scale, shape, or location, thereby enhancing the flexibility and applicability of classical 

distributions. Examples of such families in the literature include the shifted Gompertz-G family 

of distributions by Eghwerido and Agu (2021), the transmuted Burr X-G Family by Al-Babtain 

et al. (2021), the Odd Gompertz-G family by Kajuru et al. (2023), the new Generalized Odd 

Frechet-G family by Sadiq et al. (2023), the Sine Type II Topp-Leone G family by Isa et al. 

(2023), the alpha-sine-G family by Benchiha et al. (2023), the new Fréchet-G family by Ieren et 

al. (2024), the tangent exponential-G family by Hussam et al. (2024), and the Generalized 

Gompertz-G family by Garba et al. (2024). 

The classical Burr XII distribution, introduced by Burr in 1942, is widely utilized in fields such 

as reliability studies, actuarial science, and various other domains. Several extensions have been 

proposed to improve its flexibility, including the Kumaraswamy Burr XII distribution by 

Paranaiba et al. (2013), the odd exponentiated half-logistic Burr XII distribution by Aldahlan and 

Afify (2018), the modified Burr XII distribution by Jamal et al. (2020), the exponentiated 

exponential Burr XII distribution by Badr and Ijaz (2021), the harmonic mixture Burr XII 

distribution by Cloo et al. (2023), the odd logistic Burr XII distribution by Sandos and Pescim 

(2023), the Marshall–Olkin Weibull–Burr XII distribution by Alsadat et al. (2023), the bell Burr 

XII distribution by Alanzi et al. (2023), the type II Topp-Leone Burr XII distribution by Ogunde 

and Adeniji (2023), the new weighted Burr XII by Nafo et al. (2024), the sine type II Topp-

Leone Burr XII distribution by Isa et al. (2024), and the toppleone exponentiated Burr XII 

distribution by Isa et al. (2024) . 
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In this work, we introduce a new extension of the Burr XII distribution by compounding it with 

the Exponentiated Generalized family of distributions proposed by Cordeiro et al. (2013), 

resulting in a more versatile model. This new distribution, called the Exponentiated Generalized 

Burr XII (EGBXII) distribution, enhances the flexibility of the Burr XII distribution, making it 

more effective at fitting complex datasets across various domains. The motivation behind this 

extension is to address the need for more sophisticated probability distributions capable of 

handling intricate real-world data. Through rigorous theoretical analysis and empirical 

validation, this study demonstrates the efficacy of the EGBXII distribution in addressing these 

modeling challenges, offering more accurate and reliable statistical inference across a wide range 

of applications. 

2. Methods and Methodology 

2.1 Exponentiated Generalized Family of Distributions 

The cumulative distribution function (CDF) of the Exponentiated Generalized G family of 

distribution is given by: 

𝐹(𝑥) = {1 − [1 − 𝐺(𝑥)]𝜆}
𝜃
                                                                                                                       (1) 

and the corresponding probability density function (PDF) is given by: 

𝑓(𝑥) = 𝜆𝜃𝑔(𝑥)[1 − 𝐺(𝑥)]𝜆−1{1 − [1 − 𝐺(𝑥)]𝜆}
𝜃−1

;  𝑓𝑜𝑟 𝑥 > 0                                                   (2) 

where 𝜆 >  0 𝑎𝑛𝑑 𝜃 >  0 are the shape parameters. 

2.1 Burr XII Distribution 

The CDF and the PDF of the proposed Exponentiated Generalized Burr XII distribution is given 

in equation (3) and (4) respectively as follows: 

𝐺(𝑥) = 1 −
1

(1 + 𝑥𝛼)𝛽
                                                                                                                               (3) 

and 

𝑔(𝑥) =
𝛼𝛽𝑥𝛼−1

(1 + 𝑥𝛼)𝛽+1
 ;  𝑓𝑜𝑟 𝑥 >  0                                                                                                          (4) 
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where 𝛼 >  0 𝑎𝑛𝑑 𝛽 >  0 are the shape parameters respectively. 

2.3 The Proposed Exponentiated Generalized Burr XII (EGBXII) Distribution 

The cumulative distribution function (CDF) of the proposed EGBXII distribution is derived by 

substituting the CDF of the Burr XII distribution from Equation (3) into Equation (1), yielding: 

𝐹(𝑥) = {1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝜃

                                                                                              (5) 

By substituting equations (3) and (4) into equation (2), the PDF of the proposed EGBXII is given 

in equation (6) as follows: 

𝑓(𝑥) =
𝛼𝛽𝜆𝜃𝑥𝛼−1

(1 + 𝑥𝛼)𝛽+1
[1 − (1 −

1

(1 + 𝑥𝛼)𝛽
)]
𝜆−1

{1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝜃−1

                (6) 

The survival function, hazard function, and quantile function are presented in equations (7) to 

(9), respectively. These functions are derived by substituting the expressions from equations (5) 

and (6) into their respective formulas. 

𝑆(𝑥) = 1 − 𝐹(𝑥) = 1 − {1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝜃

                                                                (7) 

ℎ(𝑥) =
𝑓(𝑥)

1 −  𝐹(𝑥)
 

=

𝛼𝛽𝜆𝜃𝑥𝛼−1

(1 + 𝑥𝛼)𝛽+1
[1 − (1 −

1
(1 + 𝑥𝛼)𝛽

)]
𝜆−1

{1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝜃−1

1 − {1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝜃
                          (8) 

𝑄(𝑢) = 𝐹−1(𝑢) =

{
 

 

1 − [1 − (1 − (1 − 𝑢
1
𝜃)

1
𝜆
)]

−
1
𝛽

− 1

}
 

 

1
𝛼

                                                            (9) 

Figures 1 to 4 illustrate the characteristics of the proposed EGBXII distribution. The probability 

density function (PDF) is right-skewed and unimodal. The CDF ranges from 0 to 1, as expected 

for any valid probability distribution. The survival function declines from 1 to 0, reflecting the 
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decreasing likelihood of survival over time. Lastly, the hazard function shows an increasing and 

then decreasing failure rate pattern, suggesting that the risk of failure varies over time. 

  

Figure 1: PDF plot of EGBXII distribution Figure 2: CDF plot of EGBXII distribution 

  

Figure 3: Survival plot of EGBXII distribution Figure 4: HRF plot of EGBXII distribution 

 

3.  Useful Expansion 

The CDF of the EGBXII distribution can be expanded using power series expansion as follows: 

{1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝜃

=∑(−1)𝑖 

∞

𝑖=0

(
𝜃

𝑖
) [1 − (1 −

1

(1 + 𝑥𝛼)𝛽
)]
𝜆𝑖
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[1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆𝑖

=∑(−1)𝑗
∞

𝑗=0

(
𝜆𝑖

𝑗
) (1 −

1

(1 + 𝑥𝛼)𝛽
)
𝑗

 

(1 −
1

(1 + 𝑥𝛼)𝛽
)
𝑗

=∑(−1)𝑘
∞

𝑘=0

(
𝑗

𝑘
) (1 + 𝑥𝛼)−𝛽𝑘 

𝐹(𝑥) =∑(−1)𝑖+𝑗+𝑘 

∞

𝑖=0

(
𝜃

𝑖
) (
𝜆𝑖

𝑗
) (
𝑗

𝑘
) (1 + 𝑥𝛼)−𝛽𝑘 

𝐹(𝑥) = ∑ Ψ𝑖,𝑗,𝑘(1 + 𝑥
𝛼)−𝛽𝑘

∞

𝑖,𝑗,𝑘=0

                                                                                                            (10) 

where  

Ψ𝑖,𝑗,𝑘 = (−1)𝑖+𝑗+𝑘 (
𝜃

𝑖
) (
𝜆𝑖

𝑗
) (
𝑗

𝑘
) 

The PDF can also be expanded as follows: 

{1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝜃−1

= ∑(−1)𝑚
∞

𝑚=0

(
𝜃 − 1

𝑚
) [1 − (1 −

1

(1 + 𝑥𝛼)𝛽
)]
𝜆𝑚

 

[1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆𝑚+𝜆−1

=∑(−1)𝑛
∞

𝑛=0

(
𝜆𝑚 + 𝜆 − 1

𝑛
) (1 −

1

(1 + 𝑥𝛼)𝛽
)
𝑛

 

(1 −
1

(1 + 𝑥𝛼)𝛽
)
𝑛

=∑(−1)𝑝
∞

𝑝=0

 (
𝑛

𝑝
) (1 + 𝑥𝛼)−𝛽𝑝 

𝑓(𝑥) = ∑ (−1)𝑚+𝑛+𝑝𝜃𝜆𝛼𝛽

∞

𝑚,𝑛,𝑝=0

(
𝜃 − 1

𝑚
) (
𝜆𝑚 + 𝜆 − 1

𝑛
) (
𝑛

𝑝
) 𝑥𝛼−1(1 + 𝑥𝛼)−(𝛽𝑝+𝛽+1) 

Therefore, the PDF can be expressed as follows: 

𝑓(𝑥) = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛼𝛽

∞

𝑚,𝑛,𝑝=0

𝑥𝛼−1(1 + 𝑥𝛼)−(𝛽𝑝+𝛽+1)                                                                        (11) 
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where Ψ𝑚,𝑛,𝑝 = (−1)
𝑚+𝑛+𝑝 (

𝜃 − 1

𝑚
) (
𝜆𝑚 + 𝜆 − 1

𝑛
) (
𝑛

𝑝
) 

4. Statistical Properties 

Some of the statistical properties of the proposed EGBXII distribution such as the moment 

generating function, 𝑟𝑡ℎ moment, measures of skewness and kurtosis, and probability weighted 

moment were derived in this section. 

4.1 Moment Generating Function 

The moment generating function of a random variable X is obtained using the formula: 

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

−∞

 

The moment generating function of the proposed EGBXII distribution is given by: 

𝑀𝑥(𝑡) = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛼𝛽

∞

𝑚,𝑛,𝑝=0

∫ 𝑒𝑡𝑥 𝑥𝑟+𝛼−1
∞

0

(1 + 𝑥𝛼)−(𝛽𝑝+𝛽+1)𝑑𝑥 

Integrating and simplifying, the integral becomes: 

𝑀𝑥(𝑡) = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽

∞

𝑚,𝑛,𝑝=0

 𝑡𝑞

𝑞!
𝐵(𝑞 + 1, 𝛽𝑝 + 𝛽 − 𝑞)                                                                      (12) 

4.2 Moment 

The 𝑟𝑡ℎ moment of the EGBXII distribution is obtained as follows: 

𝜇𝑟 = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛼𝛽

∞

𝑚,𝑛,𝑝=0

∫ 𝑥𝑟+𝛼−1
∞

0

(1 + 𝑥𝛼)−(𝛽𝑝+𝛽+1)𝑑𝑥 

𝜇𝑟 = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽

∞

𝑚,𝑛,𝑝=0

 𝐵 (
𝑟

𝛼
, 𝛽𝑝 + 1 −

𝑟

𝛼
)                                                                                      (13) 

The first, second, third and the forth moments are obtained by substituting 𝑟 = 1, 2, 3, and 4 into 

equation (13) as follows: 
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𝜇1 = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽

∞

𝑚,𝑛,𝑝=0

 𝐵 (
1

𝛼
, 𝛽𝑝 + 1 −

1

𝛼
)                                                                                      (14) 

𝜇2 = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽

∞

𝑚,𝑛,𝑝=0

 𝐵 (
2

𝛼
, 𝛽𝑝 + 1 −

2

𝛼
)                                                                                      (15) 

𝜇3 = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽

∞

𝑚,𝑛,𝑝=0

 𝐵 (
3

𝛼
, 𝛽𝑝 + 1 −

3

𝛼
)                                                                                      (16) 

𝜇4 = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽

∞

𝑚,𝑛,𝑝=0

 𝐵 (
4

𝛼
, 𝛽𝑝 + 1 −

4

𝛼
)                                                                                      (17) 

4.3 Measure of Skewness and Kurtosis  

Skewness and kurtosis of the EGBXII distribution denoted by 𝛽1 and 𝛽2 respectively are 

expressed in form of 𝜇2, 𝜇3 and 𝜇4 as follows: 

𝛽1 =
(𝜇3)

2

(𝜇2)3
=

(∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽
∞
𝑚,𝑛,𝑝=0  𝐵 (

3
𝛼 , 𝛽𝑝 + 1 −

3
𝛼))

2

(∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽
∞
𝑚,𝑛,𝑝=0  𝐵 (

2
𝛼 , 𝛽𝑝 + 1 −

2
𝛼))

3                                                             (18) 

and  

𝛽1 =
𝜇4
(𝜇2)2

=
∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽
∞
𝑚,𝑛,𝑝=0  𝐵 (

4
𝛼 , 𝛽𝑝 + 1 −

4
𝛼)

(∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽
∞
𝑚,𝑛,𝑝=0  𝐵 (

2
𝛼 , 𝛽𝑝 + 1 −

2
𝛼))

2                                                             (19) 

4.4 Probability Weighted Moment 

The probability weighted moment of a random variable 𝑥 is expressed as: 

𝑀𝑟,𝑠,𝑡 = 𝐸 [𝑋
𝑟(𝐹(𝑋)𝑠(1 − 𝐹(𝑥))

𝑡
]                                                                                                      (20) 

For the EGBXII distribution, the Probability Weighted Moment is given by: 
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𝑀𝑟,𝑠,𝑡 = ∑ Ψ𝑚,𝑛,𝑝𝜃𝜆𝛽

∞

𝑚,𝑛,𝑝=0

 𝐵 (
1

𝛼
, 𝛽𝑝 + 𝛽 + 1 −

1

𝛼
)                                                                         (21) 

5. Parameter Estimation 

5.1 Maximum Likelihood Estimation 

The unknown parameters of the EGBXII distribution were estimated using the method of 

maximum likelihood. The sample log-likelihood function of the EGBXII model is given as 

follows: 

ℓ = 𝑛 log(𝛼) + 𝑛 log(𝛽) + 𝑛 log(𝜆) + 𝑛 log(𝜃) + (𝛼 + 1) log(𝑥) − (𝛽 − 1)∑log(1 + 𝑥𝛼)

𝑛

𝑖=1

 

+(𝜆 − 1)∑log [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]

𝑛

𝑖=1

+ (𝜃 − 1)∑log {1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝑛

𝑖=1

 (22) 

Differentiating equation (22) with respect to 𝛼 gives: 

𝜕ℓ

𝜕𝛼
=
𝑛

𝛼
+ log(𝑥) − (𝛽 + 1) ∑

𝑥𝛼 log(𝑥)

(1 + 𝑥𝛼)
− 𝛽(𝜆 − 1)∑𝑥𝛼 log(𝑥)(1 + 𝑥𝛼)𝛽−1

𝑛

𝑖=1

𝑛

𝑖=1

 

[1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)] + (𝜃 − 1)∑

𝜆𝛽𝑥𝛼 log(𝑥)(1 + 𝑥𝛼)𝛽−1 [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

{1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝑛

𝑖=1

    (23) 

Differentiating equation (22) with respect to 𝛽 gives: 

𝜕ℓ

𝜕𝛽
=
𝑛

𝛽
+∑log(1 + 𝑥𝛼) − (𝜆 − 1)∑

(1 + 𝑥𝛼)−𝛽 log(1 + 𝑥𝛼)

[1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]

𝑛

𝑖=1

𝑛

𝑖=1

 

+(𝜃 − 1)∑
𝜆(1 + 𝑥𝛼)−𝛽 log(1 + 𝑥𝛼) [1 − (1 −

1
(1 + 𝑥𝛼)𝛽

)]
𝜆−1

{1 − [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝑛

𝑖=1

     (24) 

Differentiating equation (22) with respect to 𝜆 gives: 

𝜕ℓ

𝜕𝜆
=
𝑛

𝜆
+∑log [1 − (1 −

1

(1 + 𝑥𝛼)𝛽
)]

𝑛

𝑖=1

+ (𝜃 − 1)∑[1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]
𝜆𝑛

𝑖=1

 



Bashiru et al.  JRSS-NIG. Group Vol. 1(2), 2024, pg. 1 - 18 

10 
ISSN NUMBER: 1116-249X 

× log [1 − (1 −
1

(1 + 𝑥𝛼)𝛽
)]                           (25) 

 

Differentiating equation (22) with respect to 𝛽 gives: 

𝜕ℓ

𝜕𝛽
=
𝑛

𝜃
+∑log {1 − [1 − (1 −

1

(1 + 𝑥𝛼)𝛽
)]
𝜆

}

𝑛

𝑖=1

                                                                            (26) 

The solution to Equation (23) to (26) gives the maximum likelihood estimates of the parameters 

𝛼, 𝛽, 𝜆 and 𝜃 respectively.  

6. Monte Carlo Simulation 

A Monte Carlo simulation was conducted to evaluate the consistency of the parameter estimates 

for the proposed EGBXII distribution across different sample sizes. The simulation tested four 

distinct sets of parameter values. The first set used initial parameter values of 𝛼  = 1, 𝛽 = 1, 𝜆 = 

1, and 𝜃 = 1. The second set of parameters used 𝛼 = 0.5, 𝛽 = 0.3, 𝜆 = 0.8, and 𝜃 = 0.7. The third 

set used 𝛼 = 1.2, 𝛽 = 1.2, 𝜆 = 1.2, and 𝜃 = 1.2, while the fourth set employed 𝛼 = 0.9, 𝛽 = 0.9, 𝜆 

= 0.9, and 𝜃 = 0.9. 

The simulation study followed these steps: 

(i) Generate N = 2000 samples with sizes n = 20, 50, 70, 100 and 150 

(ii) Compute the maximum likelihood estimates for the model. 

(iii) Calculate the root mean square errors (RMSE) and biases. 
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Table 1. Simulation results with varying values for the four parameters. 

N Properties α=1 β =1 λ=1 θ =1 α=0.5 β =0.3 λ=0.8 θ =0.7 

20 Mean 1.0509 1.0272 1.1038 1.1554 0.6010 0.3340 0.7438 0.9316 

 Bias 0.0509 0.0272 0.1038 0.1554 0.1010 0.0340 -0.0562 0.2316 

 RMSE 0.3407 0.2769 0.2626 0.3829 0.3190 0.1961 0.2291 0.4084 

50 Mean 1.0134 1.0035 1.0806 1.1008 0.5383 0.3051 0.7649 0.8694 

 Bias 0.0134 0.0035 0.0806 0.1008 0.0383 0.0051 -0.0351 0.1694 

 RMSE 0.2461 0.2241 0.2216 0.3010 0.1876 0.1457 0.1671 0.2867 

70 Mean 1.0118 0.9981 1.0674 1.0809 0.5254 0.2943 0.7757 0.8568 

 Bias 0.0118 -0.0019 0.0674 0.0809 0.0254 -0.0057 -0.0243 0.1568 

 RMSE 0.2245 0.2156 0.1916 0.2853 0.1545 0.1265 0.1387 0.2525 

100 Mean 1.0008 0.9971 1.0637 1.0680 0.5145 0.2873 0.7834 0.8494 

 Bias 0.0008 -0.0029 0.0637 0.0680 0.0145 -0.0127 -0.0166 0.1494 

 RMSE 0.1849 0.1943 0.1634 0.2458 0.1275 0.1099 0.1204 0.2223 

150 Mean 1.0012 0.9955 1.0484 1.0486 0.5068 0.2817 0.7881 0.8429 

 Bias 0.0012 -0.0045 0.0484 0.0486 0.0068 -0.0183 -0.0119 0.1429 

 RMSE 0.1675 0.1663 0.1611 0.2107 0.1049 0.0961 0.1010 0.1994 

 

Table 2. Simulation results with varying values for the four parameters. 

N Properties 𝜶 = 𝟏. 𝟐 𝜷 = 𝟏. 𝟐 𝝀 = 𝟏. 𝟐 𝜽 = 𝟏. 𝟐 𝜶 = 𝟎. 𝟗 𝜷 = 𝟎. 𝟗 𝝀 = 𝟎. 𝟗 𝜽 = 𝟎. 𝟗 

20 Mean 1.2709 1.3037 1.2186 1.3713 0.9496 0.9351 0.9953 1.0418 

 Bias 0.0709 0.1037 0.0186 0.1713 0.0496 0.0351 0.0953 0.1418 

 RMSE 0.4045 0.2978 0.3121 0.4545 0.3464 0.2696 0.2671 0.3640 

50 Mean 1.2216 1.2769 1.1943 1.3150 0.9159 0.9103 0.9703 0.9856 

 Bias 0.0216 0.0769 -0.0057 0.1150 0.0159 0.0103 0.0703 0.0856 

 RMSE 0.2786 0.2359 0.2577 0.3752 0.2402 0.2244 0.2175 0.2855 

70 Mean 1.2094 1.2740 1.1878 1.3090 0.9097 0.9051 0.9613 0.9727 

 Bias 0.0094 0.0740 -0.0122 0.1090 0.0097 0.0051 0.0613 0.0727 

 RMSE 0.2507 0.2200 0.2414 0.3581 0.2158 0.2104 0.1944 0.2605 

100 Mean 1.2087 1.2558 1.1858 1.2830 0.9041 0.9017 0.9535 0.9612 

 Bias 0.0087 0.0558 -0.0142 0.0830 0.0041 0.0017 0.0535 0.0612 

 RMSE 0.2179 0.1940 0.2171 0.3162 0.1871 0.1887 0.1741 0.2339 

150 Mean 1.2027 1.2485 1.1831 1.2693 0.9014 0.8974 0.9466 0.9500 

 Bias 0.0027 0.0485 -0.0169 0.0693 0.0014 -0.0026 0.0466 0.0500 

 RMSE 0.1858 0.1760 0.1861 0.2748 0.1649 0.1684 0.1590 0.2091 
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Table 1 and Table 2 presents the results of Monte Carlo simulation carried out to assess the 

consistency of the parameter estimates. It can be observed that, as sample size increases from 20 

to 150 across both tables, there is a consistent decrease in bias and Root Mean Square Error 

(RMSE), indicating more accurate and precise parameter estimates with larger samples.  

7. Applications 

In this section, we illustrate the flexibility and importance of the EGBXII distribution empirically 

by two real data applications.  The comparison will be made with other existing models which 

are Burr XII distribution, Sine Burr XII distribution by Isa et al. (2022), Transmuted Burr XII 

distribution by Maurya et al. (2017) and Marshal Olkin Gompertz distribution by Eghwerido et 

al. (2021). 

The first dataset, discussed by Lawless (1982), represents the number of million revolutions 

before failure for each of the 23 ball bearings in life tests. The data are as follows: 

17.88, 28.92, 33.0, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96, 54.12, 55.56, 67.8, 68.44, 68.88, 84.12, 

93.12, 98.64, 105.12, 105.84, 105.84, 127.92, 128.04, 173.4 

Table 3: Parameters Estimates and Goodness of Fit Test of the Measures of number of million 

revolutions before failure of ball bearings in the life tests data set 

MODE

L 

MLE -LL AIC BIC CAIC HQIC KS P value 

EGBXII 𝛼 =2.4998 

𝛽 =0.0014 

𝜆 = 483.74 

𝜃 = 1098.4 

116.7136 

 

241.4271 

 

245.9691 

 

243.6493 

 

242.5694 

 

0.1270 

 

0.8515 

 

BXII 𝛼 = 3.7146 

𝛽 = 0.0645 

151.7362 

 

307.4724 

 

309.7434 

 

308.0724 

 

308.0435 

 

0.5101 

 

< 0.05 

SBXII 𝛼 = 3.8565 

𝛽 = 0.0360 

150.2546 

 

304.5092 

 

306.7802 

 

305.1092 

 

305.0804 

 

0.5092 

 

  

< 0.05 

TBXII 𝛼 = 0.0026 

𝛽 = 60.889 

𝜃 = 0.4713 

153.0819 

 

312.1637 

 

315.5702 

 

313.4269 

 

313.0204 

 

313.

0204 

 

< 0.05 

 

Results from Table 3 show that the EGBXII model has the lowest values for AIC, BIC, CAIC, 

HQIC, and KS, indicating it provides the best fit among the analyzed models. This is further 
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supported by a high KS p-value of 0.8515, suggesting a strong fit to the data. The EGBXII model 

incorporates four parameters, enabling it to effectively capture the behaviour of the dataset 

compared to competing models with fewer parameters. The EGBXII model's superior 

performance underscores its effectiveness in modeling failure times in reliability studies, such as 

the ball bearings dataset. This result holds significant value for industries focused on 

manufacturing and quality control, as accurate modeling of component failure times aids in 

predicting maintenance schedules, optimizing resource allocation, and reducing operational 

costs.  

 

 
Figure 5: Fitted pdfs of EGBXII, BXII, SBXII and TBXII distributions on number of million 

revolutions before failure for each of the 23 ball bearings in the life tests data set  

 

The fitted PDF plots of the EGBXII, BXII, SBXII, and TBXII distributions for the number of 

million revolutions before failure of the 23 ball bearings in the life tests dataset, as shown in 

Figure 5, demonstrate that the EGBXII model fits the dataset more closely than the competing 

models. This observation is consistent with the findings in Table 3, which indicate that the 

EGBXII model provides a superior fit.  

The second dataset, developed by Reiser et al. (1989), contains minimum monthly water flows 

(m³/s) of the Piracicaba River in São Paulo state, Brazil. The dataset for May is: 
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29.19, 8.49, 7.37, 82.93, 44.18, 13.82, 22.28, 28.06, 6.84, 12.14, 153.78, 17.04, 13.47, 15.43, 

30.36, 6.91, 22.12, 35.45, 44.66, 95.81, 6.18, 10.00, 58.39, 24.05, 17.03, 38.65, 47.17, 27.99, 

11.84, 9.60, 6.72, 13.74, 14.60, 9.65, 10.39, 60.14, 15.51, 14.69, 16.44. 

Table 4: Parameters Estimates and Goodness of Fit Test of the minimum monthly water flows 

(m³/s) of the Piracicaba River in São Paulo 

MODEL MLE -LL AIC BIC CAIC HQIC KS P value 

EGBXII 𝛼 =5.3644 

𝛽 =0.0071 

𝜆 = 40.89 

𝜃 = 57.29 

160.8133 

 

329.6266 

 

336.2808 

 

330.803 

 

332.0141 

 

0.078 

 

0.9568 

 

BXII 𝛼 =6.1882 

𝛽 =0.0540 

198.4440 

 

400.8881 

 

404.2152 

 

401.2214 

 

402.0818 

 

0.4558 

 

< 0.05 

SBXII 𝛼 = 5.4670 

𝛽 =0.0352  

196.1202 

 

396.2404 

 

399.5675 

 

396.5737 

 

397.4341 

 

0.4483 

 

< 0.05 

MOG 𝛽 = 0.0005 

𝛼 =1.6𝑒-05 

𝜆 = 0.0422 

169.1366 

 

344.2732 

 

349.2639 

 

344.9589 

 

346.0638 

 

0.1749 

 

0.1630 

 

Results from Table 4 show that the EGBXII model has the lowest values for AIC, BIC, CAIC, 

HQIC, and KS, indicating it provides the best fit among the competing models for the minimum 

monthly water flows (𝑚3/𝑠) dataset. This conclusion is further supported by a high KS p-value 

of 0.9568, suggesting a strong fit to the data. The EGBXII model incorporates four parameters, 

which allows it to capture the data's behavior more effectively than the competing models with 

fewer parameters. The model's ability to provide a superior fit to minimum flow levels carries 

significant practical implications for ecosystem management, optimizing industrial water usage, 

and supporting regional planning efforts, especially in regions prone to drought or water 

shortages 
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Figure 6: Fitted pdfs of EGBXII, BXII, SBXII and MOG distributions on minimum monthly 

water flows (𝒎𝟑/𝒔) data set 

The fitted PDF plots of the EGBXII, BXII, SBXII, and MOG distributions for the minimum 

monthly water flows (m³/s) dataset, as shown in Figure 6, demonstrate that the EGBXII model 

fits the dataset more closely than the competing models. This observation is consistent with the 

results in Table 4, which confirm the superior performance of the EGBXII model.  

8. Conclusion 

This study successfully introduced the Exponentiated Generalized Burr XII (EGBXII) 

distribution, a novel four-parameter distribution created by compounding the classical Burr XII 

distribution with the Exponentiated Generalized family. The proposed EGBXII distribution 

exhibits significant flexibility, effectively accommodating a diverse range of hazard rate patterns, 

including both increasing and decreasing trends. This adaptability is crucial for accurately 

modeling real-world phenomena, as many datasets display non-monotonic behavior in their 

hazard rates.  Key properties such as moments, the moment generating function, skewness, and 



Bashiru et al.  JRSS-NIG. Group Vol. 1(2), 2024, pg. 1 - 18 

16 
ISSN NUMBER: 1116-249X 

kurtosis were derived. The maximum likelihood approach was used for parameter estimation, 

and a simulation study was conducted to explore the behavior of these parameters. The 

simulation results indicate that the model demonstrates consistency, as both the bias and root 

mean square error (RMSE) decrease with increasing sample sizes. Application to two real-world 

datasets revealed that the Exponentiated Generalized Burr XII distribution outperformed other 

existing distributions, confirming its effectiveness in fitting complex datasets. This advancement 

has provided a valuable new tool for statistical modeling, enhancing accuracy and reliability in 

various applications. Future research should explore other classical methods for estimating the 

parameters of the model, such as the method of moments, least squares estimation, or Bayesian 

approaches. Additionally, the EGBXII distribution can be applied to datasets from other fields 

beyond those considered in this study, broadening its potential applications. However, despite 

the promising performance of the EGBXII distribution, a notable limitation is its inherent 

positive skewness. This characteristic may hinder its ability to provide an adequate fit for 

datasets that exhibit left-skewed behaviour, limiting its flexibility in certain applications. 
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