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  Abstract         

This study examines the relationship between males' life expectancy at birth (LEM) and poverty 

(POV), particularly the unilateral relationship from the predictor POV to the dependent LEM. To 

enhance the robustness of parameter estimations, the Naira-Dollar exchange rate (EXR) was 

included as a control variable alongside POV. Yearly time series data collected on LEM, POV, 

and EXR spanning 1981 to 2023 was used in our study. Moreover, to determine the possible 

presence of short and long-run relationships among these three series, we used the Autoregressive 

Distributed-Lag (ARDL) model for examining these series. Basic pre-test results of ARDL such 

as first difference stationary conditions (I(1)s) and lag selection criteria jointly selected the 

ARDL(1, 3, 2) model as the optimal model for examining the series. Moreover, diagnostic 

checking on the model’s residual showed that it is non-autocorrelated and non-spurious (R2 

(0.999367=) < Durbin-Watson (=2.404865)). The findings established that changes in EXR and 

POV have an immediate lag on life expectancy, with EXR fluctuations having complex short and 

long-term effects and POV having significant delayed negative effects. Further findings revealed 

that the Error Correction Term (ECT) has the correct sign (-0.061242) which indicates a 6.1% 

adjustment rate back to the long-run equilibrium per period. 

Keywords: Life expectancy; Poverty; Short-run Relationship; Long-run Relationship; 

Autoregressive Distributed-Lag Model.  

1.0 Introduction            

Life expectancy is a crucial measure of a population's general health and well-being (Muszyńska-

Spielauer et al, 2022; Evans & Soliman, 2019). This is because, given the current rates of death, it 

summarizes the typical lifespan that an individual may anticipate. As such, it is impacted by a 
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broad range of socioeconomic variables, such as living conditions, healthcare and educational 

access, and income levels (Kennedy et al, 1998; Lantz et al, 1998). Among these, poverty is one 

of the most important determinants, frequently associated with poor health and a shorter life 

expectancy (Clarke & Erreygers, 2020; Peters et al, 2008). The complex relationship between 

poverty and life expectancy has attracted a lot of interest from researchers and policymakers since 

it is essential to comprehend this dynamic to develop solutions that will promote public health and 

lessen inequality.        

Lack of access to opportunities and necessary resources is a hallmark of poverty, which can 

seriously impair people's capacity to lead healthy lives and, as a result, raise death rates and shorten 

life expectancies (Garmany et al, 2021). On the other hand, longer life expectancies allow for a 

more productive workforce and lessen the financial burden of illness, which can have an impact 

on poverty levels (see Cervellati & Sunde, 2005). This reciprocal link emphasizes how important 

it is to do a thorough analysis that takes into consideration how poverty and life expectancy interact 

dynamically throughout time. Moreover, Life expectancy and poverty can also be indirectly 

impacted by the exchange rate (EXR), another macroeconomic determinant. Exchange rate swings 

are a major factor in determining a nation's economic stability since they can affect employment 

rates, inflation, and the cost of necessities. These factors all have an impact on poverty and health 

consequences. As a result, taking the exchange rate into account when doing the research offers a 

more comprehensive understanding of the variables influencing life expectancy and the dynamics 

of poverty. To analyze these relationships, this study employs the Autoregressive Distributed-Lag 

(ARDL) model, a robust econometric technique suited for exploring both short term and long-term 

dynamics among time series variables, irrespective of whether they are stationary at level {I(0)}, 

first difference {I(1)}, or a mixture of both (see Pesaran et al, 2001; Garba et al, 2023). The ARDL 

approach is particularly advantageous for this study as it allows for the examination of the potential 

cointegration among life expectancy, poverty, and exchange rate, offering insights into how these 

variables interact over time. Furthermore, through the use of the ARDL model, this study seeks to 

provide a detailed understanding of the relationships between life expectancy and poverty by 

evaluating both the short and long-term effects. By examining these correlations within the 

framework of a developing nation, the research adds to the wider conversation on how 

macroeconomic variables impact socioeconomic advancement and public health. The results 

should help guide more successful initiatives to raise life expectancy and reduce poverty by 
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educating policymakers about the intricate relationships among life expectancy, poverty, and 

exchange rates. In conclusion, taking into consideration the influence of exchange rate changes, 

this study explores the dynamics of life expectancy and poverty within the context of the ARDL 

approach. The study aims to reveal the complex relationships between these important factors 

through this approach, offering important information for creating economic and health policies 

that improve population well-being.  

Previous studies have focused on public health indicators like life expectancy, or health-growth 

(i.e. life expectancy-economic growth) nexus. For instance, Aje et al (2024) applied the 

Autoregressive Integrated Moving Average (ARIMA) model to show that the life expectancy of 

Nigerian males is expected to increase slightly by 0.64% from 2021 through 2030. Çığşar et al 

(2024) model the life expectancy of males and females in Türkiye, Singapore, Norway, and China 

to show that the Constant Share Growth (CSG) model is more suitable than the logistic growth 

model for estimating life expectancy for overall data and for each gender. Using the endogenous 

growth theoretical approach and fully modified ordinary least squares (OLS) method, Lawanson 

& Umar (2021) showed that health contributes positively to economic growth and also mitigates 

the adverse effect of poverty on economic growth in Nigeria. They also discovered that the 

minimum threshold of life expectancy of 64.4 years is a health improvement annual benchmark 

whereas the current annual average of 47.8 years is fundamental. Foreman et al (2018) developed 

a three-component model of cause-specific mortality to forecast life expectancy, years of life lost, 

and all-cause and cause-specific mortality for cross countries. Their findings showed that global 

life expectancy to increase by 4·4 years for men and 4·4 years for women by 2040, but based on 

better and worse health scenarios, trajectories could range from a gain of 7·8 years to a non-

significant loss of 0·4 years for men, and an increase of 7·2 years to essentially no change 0·1 

years for women. Also, Cao et al (2020) employed Multiple Linear Regression and Autoregressive 

Integrated Moving Average (ARIMA) models to examine life expectancy, healthy life expectancy, 

and Gap series for 195 countries. They projected that life expectancy and healthy life expectancy 

are likely to increase in most countries and regions while Gap is also expected to expand. 

Furthermore, Olshansky (2005) examined the effect of obesity on the life expectancy of the U.S. 

population by calculating the reduction in the rates of death that would occur if everyone who is 

currently obese were to lose enough weight to obtain an “optimal” BMI, which they defined as a 

BMI of 24. Their findings indicated a steady rise in life expectancy during the past two centuries 
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may soon end. Through a review study, Seifarth (2012) highlighted biological mechanisms that may 

underlie the sexual dimorphism in life expectancy. They discovered that despite the noted gaps in 

sex equality, higher body fat percentages, and lower physical activity levels globally at all ages, a 

sex-based gap in life expectancy exists in nearly every country for which data exist. However, 

Chetty (2016) used mortality data to estimate race- and ethnicity-adjusted life expectancy at 40 

years of age by household income percentile, sex, and geographic area, and to evaluate factors 

associated with differences in life expectancy. They found that higher income was associated with 

greater longevity and differences in life expectancy across income groups increased over time. In 

a work, Mathers (2015) employed trend analysis to show that life expectancy at age 60 years has 

increased in recent decades in high-income countries. Woolf & Schoomaker (2019) reviewed the 

relationships between life expectancy and mortality rates in the United States between 1959 and 

2017. They discovered that the United States life expectancy increased for most of the past 60 

years, but the rate of increase slowed over time and life expectancy decreased after 2014. Torri & 

Vaupel (2012) examined forecasting life expectancy in an international context for some countries 

using the ARIMA model, discrete geometric Brownian motion, and discrete model of geometric 

mean-reverting processes. Levantesi et al. (2022) applied simultaneous forecasting and functional 

clustering techniques to forecast the multivariate time series of life expectancy at birth of the 

female populations in some developed and developing countries of the world. They found out that 

the evolution of developed countries follows a homogeneous pattern and supports the persisting 

homogeneity within the high longevity cluster over time. Pascariu et al. (2018) applied the Double-

Gap model to forecast the life expectancy at age 0 and the remaining life expectancy at age 65 for 

some developed countries. His findings established that the model should be considered as a 

promising available forecasting tool. Using the Li-Lee model, Van Baal et. al. (2016) showed that 

life expectancy (LE) is likely to increase for all educational groups whereas LE between 

educational groups will widen. Bennett et al. (2015) examined the future of life expectancy and 

life expectancy inequalities in England and Wales using Bayesian Spatiotemporal Forecasting 

techniques. Their findings showed that life expectancy will reach or surpass 81·4 years for men 

and reach or surpass 84·5 years for women in every district by 2030. Furthermore, Nigri et al. 

(2021) employed a long short-term memory approach to forecast life expectancy and disparity in 

Australia, Italy, Japan, Sweden, and the USA. Their predictions were found to be coherent with 

historical trends and biologically reasonable providing a more accurate portrait of the future life 
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expectancy and lifespan disparity. Levantesi et al. (2022) investigated clustering-based 

simultaneous forecasting of life expectancy time series through long-term short-term memory 

neural networks in forty-one (41) countries. Their results showed that the evolution of developed 

countries follows a homogeneous pattern and supports the persisting homogeneity within the high 

longevity cluster over time. Rabbi et al. (2018) studied mortality and life expectancy forecasts for 

nine comparatively high mortality Central and Eastern European (CEE) countries using seven 

different variants of the Lee-Carter method and the Bayesian Hierarchical Model. Their results 

revealed that the use of the probabilistic forecasting technique from the Bayesian framework 

resulted in a better forecast than some of the extrapolative methods but also produced a wider 

prediction interval for several countries. Kontis et al. (2017) utilized the Bayesian ensemble model 

to study the future of life expectancy in 35 industrialized countries. Their findings established that 

life expectancy is projected to increase in all 35 countries with a probability of at least 65% for 

women and 85% for men. Levantesi et al. (2023) examined the multi-country clustering-based 

forecasting of healthy life expectancy using multivariate forecasting techniques. Their findings 

established that the predictive analysis in a multi-population perspective to obtain more accurate 

information by exploiting the similarities between countries that have shown similar trends. 

Bergeron-Boucher et al. (2019) investigated the impact of the choice of life table statistics using 

extrapolative methods. The results show that forecasting based on death rates and probabilities of 

death leads to more pessimistic forecasts than using survival probabilities, life table deaths, and 

life expectancy when applying existing models based on linear extrapolation of (transformed) 

indicators. To the best of our knowledge, no previous studies have examined the relationship 

between life expectancy and poverty (POV) in Nigeria. This study addresses a gap in the literature 

by examining the relationship between males' life expectancy at birth (LEM) and poverty (POV), 

focusing specifically on the directional influence of poverty as a predictor of life expectancy. 

2.0 Materials and Methods    

Annual time series datasets covering 1981 to 2023 were obtained on the Life expectancy of males 

at birth (LEM), Poverty (POV), and exchange rates. These datasets were collected from the World 

Bank Data (2022). Here, the LEM-POV dynamics are explored using EXR as another control 

variable.  For empirical estimation, the model is first stated as equation (1):   

LEMt = f(POVt, EXRt)                     (1)       
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Re-writing equation (1) yields the following Time Series Regression (TSR) equation denoted as 

equation (2):     

LEMt = β0 + β1POVt + β2ERXt + ɛt       (2)   

Where: LEMt= LEM at current time t, POVt= POV at current time t, EXRt= EXR at current time t,  

ɛt represent the error term expected to be Normally Independently and Identically Distributed 

(NIID) with a mean of zero and constant variance {i.e. ɛt~NIID (0,𝛿2)},β0, β1, and β2 represent 

the regression coefficients or parameters to be estimated.    

2.1 Autoregressive Distributed-Lag (ARDL) model        

The ARDL developed by Pesaran et al (2001) is desirable when the order of integrations of time 

series variables in a study is either a difference stationary series of order one {I(1)s} or a mixture 

of level stationary series {I(0)s} and I(1)s. In the ARDL framework, the I(1)s are the only variables 

that can be assumed as the dependent variables whereas the I(0)s cannot. The I(0)s are mainly 

proxied as the independent variables.  

Based on equation (2), an ARDL specification is given by:   

∆LEMt = α0 + ∑ α1i∆LEMt−i
n
i=1 + ∑ α2i∆POVt−i

n
i=1 + ∑ α3i∆EXRt−i

n
i=1 + ∂1∆LEMt−1 +

∂2POVt−1 + ∂3EXRt−1 + ɛit                                                                 (3)       

Also, from equation (3), the Error Correction Model (ECM) is of the form: 

∆LEMt = α0 + ∑ α1i∆LEMt−i
n
i=1 + ∑ α2i∆POVt−i

n
i=1 + ∑ α3i∆EXRt−i

n
i=1 + ∂1∆LEMt−1 +

∂2POVt−1 + ∂3EXRt−1 + ɤ1𝑖𝐸𝐶𝑀𝑡−1 + ɛit                                                               (4) 

Where:  α0 is the constant term, α1i to α3i represent the short-run coefficients, ECM denotes the 

error correction term and ɛ𝑡~𝑁(0, 𝛿2) is the white noise error term. The four basic steps in the 

ARDL modelling are itemized as follows: 

Step 1: Unit root analyses      

It is essential to ascertain the variables' order of integration before estimating the ARDL model. 

The variables in the ARDL model can be any combination of I(0) and I(1) and 𝐼(0) and I(1), but 

none of them should be integrated of order 2, that is, I(2). In this study, the ADF tests developed 

by Dickey & Fuller (1979) have been used to check for the true order of integration of the series. 
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The null is that the individual series has a unit root. Moreover, the ADF tests the LEM, POV, and 

EXR series individually by including trend and drift in each test equation as follows  

𝛥𝐿𝐸𝑀𝑡 = 𝛽1 + 𝛽2𝑡 + 𝜕𝐿𝐸𝑀𝑡−1 + 𝑢𝑡       (5)  

𝛥𝑃𝑂𝑉𝑡 = 𝛽1 + 𝛽2𝑡 + 𝜕𝑃𝑂𝑉𝑡−1 + 𝑢𝑡       (6)  

𝛥𝐸𝐸𝑋𝑅𝑡 = 𝛽1 + 𝛽2𝑡 + 𝜕𝐸𝐸𝑋𝑅𝑡−1 + 𝑢𝑡      (7) 

Where: 𝐿𝐸𝑀𝑡, 𝑃𝑂𝑉𝑡, and 𝐸𝐸𝑋𝑅𝑡 are random walks at current period t, 𝛽1= constant term, 𝛽2= 

trend or time, 𝜕 = ⍴ − 1, 𝑢𝑡= white noise error term, 𝐿𝐸𝑀𝑡−1, 𝑃𝑂𝑉𝑡−1 and 𝐸𝐸𝑅𝑡−1 are lagged one 

term of the LEM, POV and EXR variables. If 𝜕 = 0, then ⍴ = 1; which means a time series has a 

unit root.  

Step 2: Optimal lag selection for the best ARDL model  

Here, the lags can be selected using any of the selection criteria such as the Akaike Information 

Criteria (AIC), Bayesian Information Criteria (BIC), and Hann-Quinn Information Criteria (HQC). 

According to Burnham and Anderson (2004), the AIC, BIC, and HQC can be computed using the 

following mathematical relations:   

AIC(p) = nln (
σ̂εt

2

n
) + 2p        (8) 

Where: n is the number of effective observations used to fit the model, p is the number of 

parameters in the model, �̂�𝜺𝒕
𝟐 is sum of sample squared residuals.   

Of all these selection criteria, AIC is the widely used criterion in the literature when it comes to 

the ARDL (p, q) model (Liew, 2004). 

Step 3: Model estimation    

The chosen ARDL (p, q) model will then be estimated based on the number of appropriate lags 

selected in step 2 above. The estimation procedures will be discussed on a general basis in terms 

of Y (the dependent variable) and X (vectors of independent variables). In terms of Y and X, 

equation (3) can be re-specify as  

Yt = α0 + ∑ αi
p
i=1 Yt−i + ∑ βj

q
j=0 Xt−j + ℇt                            (9)      



Aje et al.  JRSS-NIG. Group Vol. 1(2), 2024, pg. 165 - 185 

 

172 
 

Where Yt is the dependent variable at current time t, Xt represents the independent variables at 

time t, αi, and βj are parameters to be estimated, p and q denote the number of lags for Y and X, 

ℇt still the same as defined above under (3). According to Kripfganz & Schneider (2023), the 

Ordinary Least Squares (OLS) can be used to estimate the parameters in (9). For easy estimation, 

we re-write (9) in vector form as 

𝑌 = 𝑍𝜃 + ℇ                    (10)   

Where 𝑌 = (𝑌𝑝+1, 𝑌𝑝+2, … , 𝑌𝑇)𝑇 is a (𝑇 − 𝑝) × 1 vector of observations for the dependent variable 

after excluding the initial p observations, 𝑋 = (𝑋𝑝+1, 𝑋𝑝+2, … , 𝑋𝑇)𝑇 is a (𝑇 − 𝑝) × (𝑞 + 1) matrix 

containing lagged values of X up to lag q, Z is the matrix including both lagged values of Y (for 

the AR terms) and X (for the distributed lag terms), 𝜃 = (𝛼0, 𝛼1, … , 𝛼𝑝, 𝛽0, … , 𝛽𝑞)𝑇 is a (𝑝 + 𝑞 +

1) × 1 vector of parameters, ℇ = (ℇ𝑝+1, … , ℇ𝑇)𝑇  

Coefficients of the vector of parameters 𝜃 are obtained by the OLS estimator 𝜃 which minimizes 

the sum of squared residuals as follows:  

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃(𝑌 − 𝑍𝜃)𝑇(𝑌 − 𝑍𝜃)               (11) 

Equation (11) can be reduced to the usual OLS estimator given by 

𝜃 = (𝑍𝑇𝑍)−1𝑍𝑇𝑌               (12)     

It should be noted that 𝑍𝑇𝑍 must be invertible for the regression parameters to be estimable in 

equation (12). Moreover, for the cointegrated series, the ARDL (p, q) model can be re-specify in 

the Error Correction Model (ECM) as follows  

∆𝑌𝑡 = ϒ(𝑌𝑡−1 − 𝜕𝑋𝑡−1) + ∑ Ø𝑖∆𝑌𝑡−𝑖
𝑝−1
𝑖=1 + ∑ 𝜑𝑗∆𝑋𝑡−𝑗

𝑞−1
𝑗−1 + ℇ𝑡       (13)  

Where ϒ represents the speed of adjustment, 𝜕 is the long-run relationship between Y and X. Ø𝑖 

and 𝜑𝑗 are short-run dynamic coefficients.   

Step 4: Bound testing     

After the model estimation, the next step is to test whether there is a long-run relationship 

(cointegration) between the dependent and independent variables. The ARDL bounds test is based 

on the F-statistic for the null hypothesis that there is no long-run relationship. If the calculated F-
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statistic is above the upper bound, reject the null hypothesis (there is a long-run relationship). 

Moreover, if the F-statistic is below the lower bound, do not reject the null (no long-run 

relationship). Lastly, if the F-statistic falls between the bounds, the result is inconclusive. 

3.0 Results and Discussion 

This section presents the results of the Seasonal Autoregressive Distributed Lag (ARDL) model 

fitted to the Life expectancy at birth for males (LEM), Poverty (POV), and Exchange Rates (EXR) 

series as discussed in the methodology section.     

Table 1: Descriptive Statistics for the macroeconomic time series  

Vars N Mean Sd Min Max Skew Kurtosis 

LEM 39 4.73E+00 3.12E+00 4.44E+01 5.35E+01 0.75 -1.09 

POV 39 2.39E+13 3.44E+13 1.62E+10 1.16E+14 1.33 0.42 

EXR 39 9.41E+01 9.28E+01 6.20E-01 3.07E+02 0.78 -0.29 

 

Table 1 provides descriptive statistics for LEM, POV, and EXR series. For LEM, the average value 

is 4.73, while the standard deviation is 3.12. Moreover, these statistics suggest considerable 

variability. The series has a minimum of 44.4 and a maximum of 53.5. It displays light tails 

(kurtosis of -1.09) and a right-skewed distribution (skewness of 0.75). For the POV series, the 

average value is 23.9 trillion, and the standard deviation is 34.4 trillion, indicating a great degree 

of variability. The range is 16.2 billion to 116 trillion. The series has very low tails (kurtosis of 

0.42) and a high right skewness (skewness of 1.33). In the case of EXR, the standard deviation is 

92.8 and the average exchange rate is 94.1, suggesting a moderate degree of variability. It has a 

range of 0.62 to 307. With a skewness of 0.78 and a kurtosis of -0.29, the distribution is right-

skewed and has somewhat lighter tails. 
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Figure 1: Correlation plot for the LEM, POV, and EXR series   

To show the strength of these associations, the heatmap in Figure 1 employs various colors of blue. 

A higher positive association is found with darker blue hues. The fact that all pair-wise correlations 

are nearly equal to one suggests that all series have extremely robust positive associations.  

Table 2: Correlation matrix for the series    

  LEM POV EXR 

LEM 1   

POV 0.96044 1  

EXR 0.92669 0.91538 1 

 

The macroeconomic time series exhibits a high positive association, as indicated by the correlation 

matrix in Table 2. The Life Expectancy of Males (LEM) exhibits a strong positive correlation of 

0.92669 with the Exchange Rate (EXR) and 0.96044 with Poverty (POV). Furthermore, there is a 

strong positive correlation (0.91538) between POV and EXR. Strong linear relationships between 

the series are indicated by this.  



Aje et al.  JRSS-NIG. Group Vol. 1(2), 2024, pg. 165 - 185 

 

175 
 

 

Figure 2: Time series plots for LEM, POV, and EXR series at levels  

The time series plot in Figure 2 represents the time series plots for the LEM, POV, and EXR series 

at the level form. Based on these visualizations, LEM, POV, and EXR exhibit various trends 

(upward and downward); which are indications of non-stationarity in each of the series. To 

correctly determine the order of integration of these series, each of the series was subjected to unit 

root analyses using the Augmented Dickey-Fuller (ADF) and Elliot-Rothenberg-Stock (ERS) 

tests.  
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Figure 3: Time series plots of LEM, POV, and EXR series after the first difference  

Figure 3 is the time series plots of the LEM, POV, and EXR series after their first differences.  As 

shown in the time series plots, all the series exhibit zero mean and constant variance patterns except 

for some periods of late 2019 and early 2020 which indicates the coronavirus periods. In other 

words, they are time-invariant which means that they can now be modelled using any appropriate 

multivariate time series models depending on whether they are cointegrated or not.  

 

 

 

 

 

 



Aje et al.  JRSS-NIG. Group Vol. 1(2), 2024, pg. 165 - 185 

 

177 
 

Table 3: Results of ADF tests for LEM, POV, and EXR series  

ADF at Level 

Variable ADF-statistic Critical values P-value Order of Integration 

LEM -0.9675 -3.5208 0.9378 NA 

POV -0.3622 -3.5208 0.9859 NA 

EXR 5.12775 -1.9489 1.0000 NA 

ADF after the first difference 

LEM -4.5914 -3.5236 0.0036*** I(1) 

POV -6.3585 -3.5236 0.0000*** I(1) 

EXR -3.6371 -1.9491 0.0006*** I(1) 

 

The results of the stationarity tests in Table 3 further confirmed that truly all the series are 

difference stationary processes of order one {I(1)s}. This is evident in their p-values which are 

greater than the chosen level of significance (α= 0.05). The next thing is optimal lag selection for 

the series for which Table 4 presents the results of the selection criteria for selecting the best orders 

p and for the ARDL (p, q) model.    

Table 4: Selection criteria for selecting the best ARDL (p, q) models 

  LEM POV EXR AIC 

1 1 3 2 -53.080*** 

2 1 4 2 -51.325 

3 2 3 2 -51.257 

4 1 3 3 -51.129 

5 3 3 2 -50.863 

6 2 4 2 -50.276 

7 3 3 3 -49.762 

8 2 3 3 -49.522 

9 3 2 2 -49.493 

10 1 2 2 -48.404 

11 2 2 2 -47.809 

12 3 4 3 -47.725 

13 4 4 4 -44.147 

14 1 2 1 -34.518 

15 1 1 1 -20.410 
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Based on the results of optimal lag selection in Table 4, ARDL (1, 3, 2) has been selected as the 

best model by the selection criterion Akaike Information Criteria (AIC) since it reported the least 

value of AIC among all other possible orders.   

Table 5: Selected model: ARDL(1,3,2)  

     
     Variable Coefficient Std. Error t-Statistic Prob.* 

     
     LEM(-1) 0.938758 0.038918 24.12122 0.0000*** 

POV 2.76E-14 6.55E-15 4.209853 0.0002*** 

POV(-1) 3.48E-15 8.08E-15 0.430632 0.6697 

POV(-2) -2.36E-14 8.24E-15 -2.869109 0.0073*** 

POV(-3) -1.60E-14 6.87E-15 -2.325570 0.0268** 

EXR 0.003387 0.001163 2.912248 0.0066*** 

EXR(-1) -0.004204 0.001593 -2.639103 0.0129** 

EXR(-2) 0.005377 0.001179 4.561874 0.0001*** 

C 2.696144 1.741435 1.548232 0.1317 

     
     R-squared 0.999367     Mean dependent var 48.34528 

Adjusted R-squared 0.999204     S.D. dependent var 3.906657 

S.E. of regression 0.110251     Akaike info criterion -1.377002 

Sum squared resid 0.376816     Schwarz criterion -0.997004 

Log likelihood 36.54003     Hannan-Quinn criter. -1.239606 

F-statistic 6117.063     Durbin-Watson stat 2.404865 

Prob(F-statistic) 0.000000    

           

Significant dynamics between the Life Expectancy of Males (LEM), Poverty (POV), and 

Exchange Rate (EXR) are revealed by the ARDL(1,3,2) model estimates in Table 5. The highly 

significant positive coefficient of 0.938758 (p < 0.001) for the lag of life expectancy (LEM(-1)) 

shows that life expectancy values in the past have a significant impact on current values.  

A direct positive correlation between life expectancy and the current point of view is suggested by 

the positive and significant coefficient (2.76E-14, p = 0.0002). With POV(-2) and POV(-3) having 

significant negative coefficients (-2.36E-14, p = 0.0073 and -1.60E-14, p = 0.0268, respectively), 
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the impact turns negative after two and three periods, suggesting a delayed negative influence of 

poverty on life expectancy. Life expectancy is positively and significantly impacted by the current 

Exchange Rate (EXR) value (0.003387, p = 0.0066). Exchange rate fluctuations, however, appear 

to have both short- and long-term effects. The first lag, EXR(-1), has a negative impact (-0.004204, 

p = 0.0129), whereas the second lag, EXR(-2), has a significant positive effect (0.005377, p = 

0.0001) on life expectancy. The model diagnostics demonstrate good performance, and the 

constant term is not significant. With an R-squared of 0.999367, the model nearly fully accounts 

for the variation in life expectancy. The model is very significant overall, according to the F-

statistic of 6117.063 (p = 0.000000), yet the Durbin-Watson statistic of 2.404865 indicates that 

there is no significant autocorrelation in the residuals. 

Table 6: Error correction estimates from ARDL(1,3,2) model    

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     COINTEQ* -0.061242 0.006261 -9.781885 0.0000*** 

D(POV) 2.76E-14 4.85E-15 5.683624 0.0000*** 

D(POV(-1)) 3.96E-14 4.64E-15 8.535619 0.0000*** 

D(POV(-2)) 1.60E-14 5.47E-15 2.922776 0.0061*** 

D(EXR) 0.003387 0.001003 3.377565 0.0018*** 

D(EXR(-1)) -0.005377 0.001011 -5.319190 0.0000*** 

     
     R-squared 0.864154     Mean dependent var 0.282450 

Adjusted R-squared 0.844177     S.D. dependent var 0.266691 

S.E. of regression 0.105275     Akaike info criterion -1.527002 

Sum squared resid 0.376816     Schwarz criterion -1.273670 

Log-likelihood 36.54003     Hannan-Quinn criter. -1.435405 

F-statistic 43.25668     Durbin-Watson stat 2.404865 

Prob(F-statistic) 0.000000    

     
     *   p-values are incompatible with t-Bounds distribution. 
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Table 6 displays the error correction estimates obtained from the ARDL (1, 3, 2) model, which 

shows the rate at which the system regains equilibrium following a brief perturbation. With a p-

value of 0.0000, the coefficient of the error correction term (COINTEQ*) is -0.061242. This 

implies that the present era corrects about 6.12% of the previous period's disequilibrium, indicating 

a gradual systemic adjustment toward long-run equilibrium.  

Life expectancy is positively impacted by short-term increases in poverty, as seen by the positive 

and highly significant coefficient (2.76E-14, p = 0.0000) for the first difference of poverty 

(D(POV)). Additionally, the lag-first differences, D(POV(-1)) and D(POV(-2)) show positive and 

significant coefficients (3.96E-14, p = 0.0000 and 1.60E-14, p = 0.0061, respectively), indicating 

that the short-term benefits of earlier rises in poverty are still being felt.  

The Exchange Rate (EXR) exhibits a correlated positive effect on life expectancy (D(EXR)) of 

0.003387, p = 0.0018, and a correlated negative impact (-0.005377, p = 0.0000) on life expectancy 

for the lagged difference (D(EXR(-1))). This suggests that while a one-period lag causes the impact 

to turn negative, exchange rate hikes initially have a favorable effect in the short run.  

With an adjusted R-squared of 0.844177 and an R-squared of 0.864154, the model's diagnostic 

statistics point to a strong fit, explaining approximately 86.4% of the variation in life expectancy. 

The Durbin-Watson statistic is 2.404865, and the standard error of the regression is 0.105275, 

indicating that there are no significant problems with autocorrelation in the residuals. The model 

as a whole is extremely significant, as indicated by the F-statistic of 43.25668 (p = 0.000000).  

While the negative and significant error correction term indicates a rather slow adjustment process 

toward long-run equilibrium, these results highlight the short-term dynamics between life 

expectancy, poverty, and exchange rates.    

Table 7: Bound tests   

    
    
Test Statistic Value 

    
    
F-statistic 21.810614 
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Table 8: Bounds critical values  

       
       

 10% 5% 1% 

       
       
Sample Size I(0) I(1) I(0) I(1) I(0) I(1) 

       
       

35  2.845  3.623  3.478  4.335  4.948  6.028 

40  2.835  3.585  3.435  4.260  4.770  5.855 

Asymptotic  2.630  3.350  3.100  3.870  4.130  5.000 

       
       
* I(0) and I(1) are respectively the stationary and non-stationary bounds.  

  

The Bound test results in Table 7 show an F-statistic of 21.810614, which exceeds the upper bound 

critical value of 6.028 in Table 8 at the 1% significance level. This strongly indicates the presence 

of a long-run relationship between the variables in the ARDL model. 

4.0 Summary of Findings  

The dynamic interactions between the Life Expectancy of Males (LEM), Poverty (POV), and 

Exchange Rate (EXR) are revealed through the ARDL analysis, providing significant insights. 

LEM exhibits moderate variability with an average of 4.73 and a right-skewed distribution, while 

POV shows high variability and a strong positive skew. EXR also displays considerable variation. 

Strong positive relationships among LEM, POV, and EXR are highlighted in the correlation 

analysis.   

Non-stationarity is confirmed in all three variables through time series analysis, with stationarity 

achieved after differencing. The ARDL (1, 3, 2) model, which best fits the data, indicates that 

lagged LEM positively influences current LEM, while POV has a short-term positive effect but a 

negative long-term impact. Additionally, EXR initially boosts LEM but has complex short-term 

effects, with both negative and positive impacts depending on the lag. The error correction term 

indicates a slow adjustment to equilibrium, and the model diagnostics confirm its robustness. 

The Bound test supports cointegration, suggesting a stable long-term relationship between the 

variables. Overall, the findings emphasize the importance of addressing poverty and exchange rate 

stability in shaping life expectancy outcomes over time. 

5.0 Conclusion and Recommendations   

This work presents detailed empirical investigations of life expectancy-poverty dynamics in 

Nigeria using the Autoregressive Distributed-Lag (ARDL) model. This work contributes 

significantly to the literature on life expectancy by examining both short and long-run impacts of 
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poverty and exchange rates on life expectancy. Our findings show that changes in exchange rates 

and poverty have an immediate lag on life expectancy, with exchange rate fluctuations having 

complex short and long-term effects and poverty having significant delayed negative effects. 

To enhance public health and economic resilience, policymakers should prioritize addressing 

poverty and maintaining a stable exchange rate, as these factors can have a significant positive 

impact on life expectancy in the long term.  
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