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ABSTRACT 

A new stationary autoregressive process with the Garima marginal distribution is introduced in 

this paper. Properties of the model such as the distribution of the corresponding error term, 

conditional moments, time irreversibility, autocorrelation function, spectral density and run 

probabilities are extensively studied. A simulation study is carried out to compare the 

performance of the Yule-Walker, conditional least squares and Gaussian estimation procedures 

in estimating the parameters of the new model. The simulation results indicate that the Gaussian 

estimation technique is the best among the three methods. The fit of the model to German 

bilateral real exchange rate data is compared with fits of three existing AR(1) models namely, 

Gaussian, Exponential and Lindley AR(1) models using Akaike information criterion (AIC) and 

Bayesian information criterion (BIC). The proposed model is found to be the best for modeling 

the data among the fitted models since it corresponds to the smallest value of the AIC and BIC. 

Keywords: Autocorrelation function, Conditional moments, First-order autoregressive process, 

Garima distribution, Non-Gaussian marginal distribution, Time irreversibility. 

1. Introduction 

Observations made at discrete time points, especially regularly space time intervals and their 

analysis are of necessity in a variety of fields, including finance, medicine, education, agriculture 

and engineering. Collections of such observation are usually referred to as time series. The first-

order autoregressive [AR(1)] process has gained popularity among the probability models for 

time series analysis. It’s application cuts across fields like Regression Analysis (Durbin and 

Watson, 1950), meteorology, hydrology (Kendall and Dracup, 1991), agriculture (Rai and 

Satyananda, 2024), among others. The first known AR(1) process is the Gaussian AR(1) process 

introduced by Yule (1927). The normality assumption of the marginal distribution and the error 

term corresponding to the model is critical to the application of the process. 

Often, time series data with the AR(1) autocorrelation pattern possess characteristics, such as 

positive skewness and any of platykurticity and leptokurticity which make the assumption of the 

Gaussian marginal distribution unreasonable for the data. In order to circumvent the limitation of 

the Gaussian AR(1) process, researchers have cultivated interest in the introduction of AR(1) 

models with non-Gaussian marginal distributions. In particular, AR(1) processes with the 

exponential, gamma, inverse Gaussian, Uniform, normal-Laplace, Lindley and double Lindley 

marginal distributions were proposed by Gaver and Lewis (1980), Abraham and Balakrishna 
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(1999), Ristic and Popovic (2000), Jose et al. (2008), Popovic and Bakouch (2016) and Nitha 

and Krishnarani (2021) respectively. The Garima distribution of Shanker (2016) is one of the 

notable one-parameter continuous distributions.  

The probability density function (pdf) and cumulative distribution function (cdf) of a non-

negative continuous random variable X with Garima distribution are defined in (1) and (2) 

respectively as: 
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As a one-parameter distribution, the Garima distribution has been empirically established as 

being capable of outperforming one-parameter distributions such as the exponential, Lindley and 

Shanker distributions when they are fitted to some real life data sets (Shanker, 2016). In spite of 

this interesting property of the distribution, its performance when it is used as a marginal 

distribution to construct an AR(1) model have not been studied. Therefore, the principal 

intention of writing this scholarly work is to propose a new AR(1) process with the Garima 

marginal distribution.  

 

2. Methods 

Here, attention is given to the definition of the new process, its corresponding mathematical 

characteristics, and estimation of the method. 

2.1  Definition of the Garima First-Order Autoregressive GaAR(1) Process [GaAR(1)] 

Process and Distribution of its Related Innovation Sequence 

Consider the first-order stationary autoregressive process 

ttt eXX += −1  )1,0(      (3) 

Equation (3) is called the first-order stationary autoregressive process with Garima marginal 

distribution, denoted as GaAR(1) process if {Xt} is a stationary process having the Garima 

marginal distribution and }{ te  refers to a sequence of i.i.d random variables independent of ktX −  

for 1k . To derive the distribution of }{ te , we first of all determine the Laplace transform of the 

Garima distribution with parameter   [Ga( ) distribution]. The Laplace transform of the 

distribution is defined as 
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Additionally, =
→

)(lim 1 xg
x

.From the foregoing, it is clear that g(x) satisfies the assumption of 

the pdf of a continuous random variable. 

Theorem 1: Suppose the marginal distribution for the AR(1) process in Equation (3) is the 

Garima distribution with parameter  . The innovation sequence { te } has a distribution which is 

a mixture of the singular distribution and absolute continuous distributions defined by 
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is the Dirac delta function. 

Proof.  Since Xt is a stationary process, if we take into consideration the properties of the 

innovation sequence, then the Laplace transform (LT) of the sequence can be deduced from 

Equation (3) as  
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Applying Equations (4) and Equation (5), in Equation (7) gives 
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By partial fraction decomposition, we obtain  
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Hence, )(se  is a mixture of discrete component with probability  and Exponential( ), 

Gamma(2,  ) and Exponential 
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2.2  Conditional Moments 

Given the GaAR(1) process, the one-step ahead conditional mean is  
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 which is the unconditional mean of the GaAR(1) 

process. 
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Furthermore, the one-step ahead conditional variance is  
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variance of the GaAR(1) process. 

2.3  Conditional Laplace Transform, Joint Laplace Transform and Time Irreversibility 

Let )(
11/ s

ttkt xXX −−+ =  denote the conditional Laplace transform of the GaAR(1) process. Then  
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Applying Equation (8) in Equation 10, and simplifying the result, the following result is obtained 
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As →k , we have 
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The joint Laplace transform for the GaAR(1) model is given as  
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  is remarkably not symmetric with regard to 1s  and 2s . As consequence, GaAR(1) 

model is not time reversible. It is easy to verify that for the GaAR(1) model )0,0(/,1 tt XX −
  = 1. 

2.4  Autocorrelation and Spectral Density Functions for the Stationary GaAR(1) Process 

Let k  denote the autocovariance at lag k for the stationary GaAR(1) process. 

To derive an appropriate expression for k , we proceed as follows:  
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Symbolically, the autocorrelation at lag k for GaAR(1) process is  
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It can be pointed out that the autocorrelation function [acf] of Equation(13) mimics that of the 

Gaussian AR(1) process in terms of the exponential decay pattern. The spectral density 

corresponding to the derived acf has the form 
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2.5 Computation of Run Probabilities 

The derivation of the run probability for the GaAR(1) process is the basic task performed in this 

section. Theorem 1 suggests that the GaAR(1) process can be written in the form: 
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where, w.p stands for “with probability”.  

Hence, the probability of runs for the new process is 
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where F(.) represents the cdf of the Garima distribution and g(.) as defined in Lemma 1. Let  
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Substituting Equation (17) into Equation (16) gives the result 
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Run probabilities which correspond to various combinations of  = 0.5, 1, 3 and   = 0.1 to 0.8 

are contained in Table 1.  

 

Table 1: Run Probabilities for the GaAR(1) process based on the selected values of the 

associated parameters. 

   

  0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 

0.5 0.578 0.6527 0.7235 0.7893 0.8491 0.9012 0.944 0.9756 0.9943 

1 0.5768 0.6504 0.7201 0.7851 0.8442 0.8962 0.9396 0.9725 0.9931 

3 0.5749 0.6467 0.7149 0.7787 0.8372 0.8893 0.9337 0.9686 0.9916 

 

Table 1 reveals that if   is fixed, the run probability increases as the value of   increases, and 

by holding   constant and increasing the value of  , results in the decrease of the value of the 

probability. This implies that the proposed model is relatively more flexible than the well-known 

Gaussian AR (1) counterpart. 
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2.6  Estimation methods 

Three estimation procedures, namely, the Yule-Walker, conditional least squares and Gaussian 

estimation techniques have been adopted in this study for the purpose of estimating the new 

model parameters. They are extensively explained below.  

(a)  Yule-Walker method 

Let YŴ and YŴ  represent the Yule-Walker (YW) estimators of  and   respectively. Equating 

the theoretical autocorrelation at lag 1 to its sample counterparts gives 
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If we equate the process mean and the sample mean, then 
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Properties of the YW estimators for AR(1) processes are well-known and can be found in Stoica 

et al. (1989), Basu and Reinsel, (1992) and among others. 

(b)  Conditional least squares methodology 

The conditional least squares estimators of  and  , which are respectively denoted by CLŜ  

and CLŜ  are the estimators that minimize 
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Using Equation (23), we have 
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Applying Equation (23) and Equation (24) in Equation (22) yields 
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Replacing  in equation (24) by its CLS estimator CLŜ leads to the CLS estimator of   as  

)ˆ1)(1(

ˆ

ˆ

2

2

1

2

CLS

n

t

tCLS

n

t

t

CLS
n

XX






−−

−

=

−

=

−

=          (26) 

This implies that  
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Using Equation (27), we have 

  CLŜ = 
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(c) Gaussian Estimation Procedure 

Gaussian estimation due has recently been accepted as one of the approaches to estimating 

parameters of non-Gaussian AR (1) process. We commence our discussion of this method by 

considering the conditional likelihood function 
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where, )( 1xf  and )/( 1−tt xxf  are the marginal probability function of {
tX } and related 

conditional probability function. Suppose that )/( 111 −− ==
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In the case of the GaAR (1) process,  
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Gaussian estimates of   and   are determined by solving 0=
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Let GÊ  and GÊ  be the Gaussian estimators of   and   respectively. Under established 

regularity conditions, the asymptotic distribution of ( )),()ˆ,ˆ( −  GEGen  is bivariate 

normal with mean vector )0,0(   and covariance matrix 1)),(( −I , where 
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Consequently, the maximum likelihood estimator GÊ ),ˆ( = GEGE 


 of ),( = GE is 

consistent. 

3. Results and Discussion 

3.1  Simulation study on GaAR (1) process 

In this section, a simulation study is given due consideration for the purpose of comparing the 

Yule-walker (YW), conditional least squares (CLS) and Gaussian estimation (GE) methods of 

obtaining estimates of the GaAR (1) model.  
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This was done by simulating 1000 replicates of different samples of sizes n = 100, 250, 500 and 

1000 from GaAR (1) process for the parameter values (a) α = 0.5, ƛ= 0.5, and (b) α = 0.5, θ = 

1.0. The estimates obtained are presented in Tables 2. 

Table 2: GaAR (1) Simulation result 

  α = 0.5, ƛ= 0.5 α = 0.5, θ = 1.0 

Method   100 250 500 1000 100 250 500 1000 

YW ̂  0.4655 0.4883 0.4923 0.497 0.4737 0.4837 0.4902 0.4973 

Bias(̂ ) -0.0345 -0.0116 -0.0075 -0.003 -0.0263 -0.0163 -0.0098 -0.0027 

MSE(̂ ) 0.0067 0.0029 0.0015 0.0007 0.0076 0.0029 0.0016 0.0008 

̂  0.5153 0.5024 0.5038 0.5015 1.055 1.0092 1.003 1.0052 

Bias( ̂ ) 0.0153 0.0025 0.0038 0.0015 0.055 0.0092 0.0033 0.0052 

MSE( ̂ )  0.0078 0.0022 0.0013 0.0006 0.0334 0.0092 0.0047 0.0022 

CLS ̂  0.469 0.4908 0.4936 0.4975 0.4779 0.4853 0.4913 0.4978 

Bias(̂ ) -0.031 -0.0092 -0.0064 -0.0025 -0.0221 -0.0147 -0.0087 -0.0022 

MSE(̂ ) 0.0066 0.0029 0.0149 0.0007 0.0075 0.0028 0.0016 0.0008 

̂  0.506 0.4986 0.5019 0.5006 1.0367 1.0021 0.9995 1.0033 

Bias( ̂ ) 0.006 -0.0014 0.0019 0.0006 0.0367 0.0021 -0.0005 0.0033 

MSE( ̂ )  0.0071 0.0022 0.0334 0.0006 0.0307 0.0091 0.0046 0.0022 

GE ̂  0.4785 0.4958 0.4955 0.4988 0.4867 0.4899 0.4943 0.4989 

Bias(̂ ) -0.0215 -0.0042 -0.0045 -0.0117 -0.0133 -0.0101 -0.0057 -0.0011 

MSE(̂ ) 0.0052 0.0023 0.0013 0.0006 0.006 0.0024 0.0013 0.0007 

̂  0.5112 0.5037 0.5031 0.5019 1.049 1.011 1.007 1.0052 

Bias( ̂ ) 0.0112 0.0037 0.0031 0.0019 0.049 0.011 0.007 0.0052 

MSE( ̂ )  0.0061 0.0022 0.001 0.0005 0.0295 0.0088 0.0045 0.0019 

 

Results contained in Table 2 indicate that the average biases and mean squares decrease as the 

sample size increases. The GE seem to approach the parameter values faster as the sample size 

increases compared to other estimation methods, and the mean squared error pertaining to the 

GE method appeared to be the smallest in each case. Therefore, on balance, the GE method is the 

best for estimating the parameter of the GaAR (1) process. 

3.2  Application to real data 

The applicability of the proposed process is established by using German bilateral real exchange 

rate GBREX (Average exchange rate) data sourced from External Sector Statistics Central Bank 

of Nigeria Statistical Bulletin from January 2008 to December 2023 (http//:www.cbn.org.ng).  

We presented the descriptive statistics of the data on Table 3. The result shows that the Skewness 

and kurtosis of the data is 0.332 and -0.793 respectively, and therefore can be modeled using AR 

(1) processes having non-Gaussian marginal distribution.  
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Table 3: The descriptive statistics of the data 

Mean  Median  Stdev  Variance  Skewness  Kurtosis  Max  Min  

166.24 158.79 27.82 773.92 0.351 -0.687 226.52 117.69 

 

Furthermore, the ACF and PACF of the data were determined and the resultant ACF as seen in 

Figure 1 decays exponentially and the PACF cuts of after lag 1. Therefore, we modeled the data 

using the non-Gaussian stationary AR(1) processes. 

 

Figure 1: ACF and PACF of the GBREX data 

Next, the GE method was applied to estimate the parameter of the process. To ensure that the 

right model was fitted, we compared GaAR(1) process with the Gaussian AR(1) process, the 

exponential AR(1) process and the Lindley AR(1) process. Thus, the same data was used to fit 

The GaAR(1), EAR(1), LAR(1) and AR(1) processes, and the best selected using the negative 

log-likelihood, Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

values. The values used as presented on Table 4 convey that GaAR(1) model favourably 

competes with other models with all the model selection criteria lesser than others. Hence, we 

conclude that the GaAR(1) is better than others in modeling the data under consideration.  

Table 4: GaAR(1), EAR(1),  LAR(1) and AR(1) models with their AIC and BIC values 

Model     −  AIC BIC 

GaAR(1) 0.9930 0.0210 583.25 1170.50 1177.02 

EAR(1) 0.9934 0.0154 583.29 1170.57 1177.09 

LAR(1) 0.9983 -0.0111 583.67 1171.33 1177.85 

AR(1) 0.9668 --- 586.88 1179.76 1189.18 
 

Finally, the residual diagnostic performed show that the ACF and PACF of the residuals are 

within the limits as expected, and hence random (see Figure 2). 
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Figure 2: Residual ACF and PACF 

4.  Conclusion 

In this scholarly work, we have introduced a new stationary AR(1) model with the Garima 

distribution marginal. The constructed model possesses time irreversibility property. Its 

associated innovation distribution was established to be a mixture of the singular and absolute 

continuous distributions. Run probabilities corresponding to the model increase as the value of 

one of the model parameters increases while the other parameter is held constant. Comparison of 

the methods of estimating the parameters of the model via a simulation study and each of 

average bias and mean squared error reveals that the Gaussian estimation method is the best for 

estimating the parameters compared to the Yule-Walker and conditional least squares method. 

The GaAR(1) model competes favourably well for German  bilateral real exchange rate data 

(series) relative to the Gaussian AR(1), exponential AR(1) and Lindley AR(1) models. 
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