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ABSTRACT 

This study investigates some determinant of appropriate delay parameter of the transition 

variable in the smooth transition autoregressive (STAR) models, with emphasize on the model 

type and data characteristics through a refine method.  Daily share price data were sourced 

from the Nigerian Exchange Limited, covering 10 years (January 2, 2014 to December 29, 

2023), comprising 2,472 observations for each of the selected stocks: GTCO and STANBIC from 

the financial sector, and DANGCEM, BETAGLASS, and WAPCO from the industrial sector. The 

correlation matrix revealed significant associations among STANBIC, BETAGLASS, 

DANGCEM, GTCO and WAPCO stock indices. Linearity tests demonstrated that DANGCEM, 

GTCO, and STANBIC share returns exhibit nonlinear characteristic of financial time series 

(FTS), whereas WAPCO returns remain linear and the most suitable delay parameter for each 

nonlinear stock returns was determined. The Escribano-Jorda procedure was employed to select 

appropriate transition function. An asymmetric transition function was specified for DANGCEM 

and GTCO stock returns, while a symmetric transition function was identified for STANBIC and 

BETAGLASS stock returns. Consequently, asymmetric STAR models were fitted to DANGCEM 

and GTCO stock returns, and symmetric STAR models were fitted to BETAGLASS and STANBIC 

stock returns using delay lengths within the range ( 1 ≤ 𝑑 ≤ 𝑝 ). The results indicated that the 

APLSTAR, LSTAR, and SPLSTAR models with the initially chosen delay lengths were optimal for 

DANGCEM, GTCO, and BETAGLASS stock returns, respectively. However, for STANBIC stock 

returns, the optimal SPLSTAR model was associated with a delay length different from the 

initially selected delay parameter. This study concludes that while the delay parameter of the 

transition variable is typically determined from the characteristics of the FTS, STAR model type 

also significantly influences the selection of an appropriate delay parameter. The findings 

contribute to improving the precision and reliability of STAR model for modeling and 

forecasting financial time series. 
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I.0 Introduction  

Determining the most suitable delay parameter of the transition variable is important in modeling 

a financial time series (FTS) with a smooth transition autoregressive (STAR) model. The 

standard procedure for selecting the value of the delay parameter, d, is to estimate a threshold 

autoregressive (TAR) model for each potential value of d and choose d with the smallest value of 

the residual sum of squares (RSS). Also, one can select a delay parameter from the range of 

values 1 ≤ 𝑑 ≤ 𝑝 which leads to the smallest information selection criteria (Enders, 2015).  

Terasvirta (1994) opined that the lag length of a linear model is determined first, followed by the 

determination of d by varying it and choosing the value minimizing the p-value of the linearity 

test. The delay parameter is the delay length between regimes and a key component of the 

transition function. According to Effiong et al. (2024), the efficiency of STAR models varies 

from series to series and depends largely on the transition function. Consequently, researchers 

modified the transition functions of various STAR models either from symmetric to asymmetric 

and vice versa ensuring that the salient dynamics of financial time series (FTS) necessary to 

achieve optimal forecasts by a particular STAR model are modeled (Terasvirta, 1994; Anderson, 

1997; Liew et al., 2003; Lundberg et al., 2003; Siliverstovs, 2005; Dueker et al., 2007 

Shangodoyin et al., 2009; Ajmi and El-Montasser, 2012 and Yaya and Shittu, 2016). Each used a 

specified delay parameter (d) for a specific FTS to compare different STAR models. While some 

of the analysts who studied the dynamics of time series using STAR models also used specific 

delay parameters of the transition variable, 𝑦𝑡−𝑑 , 𝑑 ≤ 𝑝, where 𝑝 is the lag length of a linear 

model (Terasvirta and Anderson, 1992; Sarantis, 1999; Boero and Marrocu, 2002; Terasvirta et 

al., 2005; Baharumshah and Liew, 2006; Yoon, 2010 and Hsu and Chiang, 2011). Only Dijk et 

al. (2002) considered a twelve-month difference with three different delay parameters 
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(∆12𝑦𝑡−𝑑, 𝑑 = 1,2,3) as transition variable for modeling the US unemployment rate with logistic 

STAR (LSTAR) models and the LSTAR models with different delay parameters (𝑑 = 1, 2, 3) 

provide a comparable in-sample fit. Contrary to the known method of determining the delay 

parameter of the transition variable, and by evaluating the dynamics of stock returns and various 

STAR model specifications, this study investigates the role of the delay parameter in improving 

the precision of Smooth Transition Autoregressive (STAR) models applied to Nigerian stock 

indices, emphasizing the impact of model type and data characteristics on determining optimal 

delay lengths through a refine method.  

This paper is organized as follows: Section 2 is methodology, while Section 3 discusses the data 

analysis and results and Section 4 concludes. 

 

2.0 Methodology 

For the specification of STAR models, we employ the Escribano-Jorda procedure proposed by 

Escribano and Jorda (2001), while parameter estimation is carried out using the nonlinear least 

squares (NLS) method. Model evaluation metrics are applied to evaluate the adequacy and 

performance of the fitted STAR models. 

2.1 The Model 

2.1.1 Smooth transition autoregressive (STAR) models 

A two-regime STAR model for a univariate time series 𝑧𝑡, which is observed at 𝑡 = 1 − 𝑝, 1 −

(1 − 𝑝),… ,−1, 0,1, … , 𝑇 − 1, 𝑇  is given by 

𝑧𝑡 = 𝚷1
′𝒘𝒕(1 − H(𝑧𝑡−𝑑; γ, c)) + 𝚷𝟐

′𝒘𝒕H(𝑧𝑡−𝑑; γ, c) + 𝛆𝑡,                                                     (1)  

where  𝚷i = (πi,0, πi,1,⋯ , πi,p)
′ for 𝑖 = 1,2, 𝒘𝑡 = (1, 𝑧𝑡−1, … , 𝑧𝑡−𝑝)

′, γ is the scale parameter, c 

is the location parameter, ε𝑡 is a white noise process and H(𝑧𝑡−𝑑; γ, c) is a transition function that 
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is at least twice differentiable (Lundbergh et al., 2003). The most commonly used transition 

functions that give rise to different types of regime-switching behaviour are the following: 

The first-order logistic function (LSTR1) proposed by Terasvirta (1994) given by 

H(𝑧𝑡−𝑑; γ, c)  = (1 + exp[−γ(𝑧𝑡−𝑑 − c)])
−1, γ > 0.                                                               (2) 

and the STAR model (1) with (2) is called the logistic STAR (LSTAR) model.  

The second-order logistic (LSTR2) function is given by 

H(𝑧𝑡−𝑑; γ, c) = (1 + exp[−γ(𝑧𝑡−𝑑 − 𝑐1)(𝑧𝑡−𝑑 − 𝑐2)])
−1, 𝑐1 ≤ 𝑐2, γ > 0,                               (3) 

where 𝑐 = (𝑐1, 𝑐2)
′, as proposed by Jansen and Terasvirta (1996). 

The exponential function proposed by Terasvirta (1994) given by 

 H(𝑧𝑡−𝑑; γ, c)  = 1 − exp[−γ(𝑧𝑡−𝑑 − 𝑐)
2],   γ > 0.                                 (4) 

Model (1) with (4) is called the exponential STAR (ESTAR) model. 

The error logistic function proposed by Shangodoyin et al. (2009) given by 

𝐻(𝑧𝑡−𝑑; γ, c) = {1 + exp [−γ(𝑒𝑡(𝐴𝑅(𝑝)) − 𝑐]}
−1 ,                                                                  (5) 

Model (1) with (5) is called the error logistic smooth transition regression (ELSTR) model  

Yaya and Shittu (2016) proposed an absolute error logistic function given by 

H(zt−d;  γ, c) = {1 + exp [−γ/t−d/−c]}
−1 , c > 0                                                                   (6) 

Model (1) with (6) is called the absolute error logistic STAR (AELSTAR) model 

The Power Logistic (PL) Function proposed by Effiong et al. (2023) is given by 

H(zt−d; γ, c) = {1 + 0.5exp[−γ(zt−d
i − c)]}

−2 
, γ > 0,   i = 1,2,                                             (7) 

Model (1) with (7) is called the Power Logistic STAR (PLSTAR) model. 

(7) is called the asymmetric power logistic (APL) function when 𝑖 = 1 and the corresponding 

STAR is APLSTAR, while (7) is a symmetric power logistic (SPL) function when 𝑖 = 2 and the 

corresponding STAR model is the SPLSTAR model. 
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2.1.2 Specification of STAR model 

According to Terasvirta (1994), the Lag length (p) of the linear model is determined either by 

Akaike information criterion (AIC) or Bayesian information criterion (BIC) provided the 

estimated residuals of the selected linear model are free from serial correlation, followed by 

testing for the linearity of the conditional mean model, If linearity is rejected, d is determined 

from the range of values 1 ≤ 𝑑 ≤ 𝑃 considered appropriate.  

Escribano and Jorda procedure (EJP) is applied to specify the appropriate transition function 

based on the following two hypotheses within the auxiliary regression equation∶ 

 zt = Κ0
′wt + Κ1

′wtzt−d + Κ2
′wtzt−d

2 + Κ3
′wtzt−d

3 + Κ4
′wtzt−d

4 + ε𝑡                                         (8)  

H0L: Κ2 = Κ4 = 0 with an F-test (FL) 

 H0E: Κ1 = Κ3 = 0 with an F-test (FE)  

If the minimum p-value corresponds to FE, select LSTAR model. Otherwise, select the ESTAR 

model. 

2.1.3 Estimation of STAR model 

The parameters of the STAR model (1) can be estimated by nonlinear least squares (NLS) 

method. 

Let f(𝑤𝑡; Π1
′ , Π2

′ , γ, c) = Π1
′𝑤𝑡(1 − H(𝑧𝑡−𝑑: γ, c)) + Π1

′𝑤𝑡H(𝑧𝑡−𝑑: γ, c), then (1) becomes 

               𝑧𝑡 = f(𝑤𝑡; Ξ) + ε𝑡 ,                                                                                                       (9) 

where Ξ = (Π1
′ , Π2

′ , γ, c)  

            The parameters Ξ = (Π1
′ , Π2

′ , γ, c)can be estimated using NLS method as follows:         

  Ξ̂ = argmin
Ξ

QT(Ξ) = argmin
Ξ

∑ [𝑧𝑡 − f(𝑤𝑡; Ξ)]
2𝑇

𝑡=1 = argmin
Ξ

∑ ε𝑡
2𝑇

𝑡=1                                (10) 
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The nonlinear least squares estimate is the value of Ξ̂ that minimizes (10). 

If ε𝑡 are normally distributed, NLS is equivalent to maximum likelihood. Otherwise, the NLS 

estimates can be interpreted as quasi-maximum likelihood estimates. Under certain regularity 

conditions, White and Domowitz, (1984), Gallant (1987) and P¨otscher and Prucha (1997) 

showed that NLS estimates are consistent and asymptotically normal. Mathematically, 

√T(Ξ̂ − Ξ0)  → 𝑑𝑁(0, C)                                                                                                          (11) 

Where Ξ0 and → 𝑑 denote the true parameter values and convergence in distribution, 

respectively. The asymptotic covariance-matrix C of Ξ̂ can be estimated consistently as 

ÂT
−1B̂T

−1ÂT
−1, where �̂�𝑇 is the Hessian evaluated at Ξ̂. 

�̂�𝑇 =
1

𝑇
∑ ∇2qt(Ξ̂)
𝑇
𝑡=1 =

1

𝑇
∑ (∇F(𝑤𝑡; Ξ̂)∇F(𝑤𝑡; Ξ̂)

𝑇
𝑡=1 −∇2F(𝑤𝑡; Ξ̂)𝜀�̂�)                                  (12) 

Where qt(Ξ̂) = [zt − f(wt; Ξ̂)]
2
,  

 ∇F(𝑤𝑡; Ξ̂) =
∂F(𝑤𝑡;Ξ̂)

∂Ξ
 and 

B̂T ==
1

𝑇
∑ 𝛻qt(Ξ̂)𝛻qt(Ξ̂)

′
=
1

𝑇
∑ 𝜀�̂�

2(∇F(𝑤𝑡; Ξ̂)∇F(𝑤𝑡; Ξ̂)
𝑇

𝑡=1
𝑇
𝑡=1                                           (13) 

Where B̂T is the outer product of the gradient. 

2.1.4 Estimation of Linear Model by Least Squares Method 

Estimating the parameters of the AR(p) model 

𝑍𝑡 = 𝜇 + 𝜋1𝑍𝑡−1 +⋯+ 𝜋𝑝𝑍𝑡−𝑝 + 𝑒𝑡                                                                                     (14) 

Ordinary least squares (OLS) estimates are obtained by rewriting (14) as 

𝑍𝑡 − 𝜇 = 𝜋1(𝑍𝑡−1 − 𝜇) + ⋯+ 𝜋𝑝(𝑍𝑡−𝑝 − 𝜇) + 𝑒𝑡                                                                 (15) 

and treating it as a regression model to estimate 𝜋1, ⋯ , 𝜋𝑝 and 𝜇. Letting 𝑡 = 𝑝 + 1, 𝑝 + 2,⋯ , 𝑛 

in (15), we have 

𝑍𝑝+1 − 𝜇 = 𝜋1(𝑍𝑝 − 𝜇) + ⋯+ 𝜋𝑝(𝑍1 − 𝜇) + 𝑒𝑝+1  
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𝑍𝑝+2 − 𝜇 = 𝜋1(𝑍𝑝+1 − 𝜇) +⋯+ 𝜋𝑝(𝑍2 − 𝜇) + 𝑒𝑝+2                                                           (16) 

     ⋮                                         ⋮                     ⋮                                  

𝑍𝑛 − 𝜇 = 𝜋1(𝑍𝑛−1 − 𝜇) + ⋯+ 𝜋𝑝(𝑍𝑛−𝑝 − 𝜇) + 𝑒𝑛  

OLS estimates are the values of �̂�, �̂�1, ⋯ , �̂�𝑝 that minimize the conditional sum of squares given 

by 

𝑆𝑐 = ∑ �̂�𝑡
2 = ∑ {𝑍𝑡 − �̂� − �̂�1(𝑍𝑡−1 − �̂�) − ⋯− �̂�𝑝(𝑍𝑡−𝑝 − �̂�)}

2
𝑛

𝑡=𝑝+1

𝑛

𝑡=𝑝+1

                            (17) 

 

 

2.1.5 Evaluation measures  

Relative forecast performance is used as a model selection criterion or as an alternative or 

complement to an in-sample comparison of different models (Dijk et al., 2002). The ratio of the 

root mean square error (RMSE) of the nonlinear model to that of the corresponding benchmark 

AR model will provide the relative performance of the two models. The RMSE of the in-sample 

forecast is the square root of the mean square error (MSE). The standard error of the residuals of 

the competing models will be used to choose the best among them. . 

2.2 Data 

Five Nigerian stock indices are considered. Share prices of GTCO and STANBIC from the 

financial sector and share prices of DANGCEM, BETAGLASS, and WAPCO from the industrial 

sector each comprising 2,472 observations spanning from January 2, 2014 to December 29, 

2023, were obtained from Nigerian Exchange Limited. 

3.0 Results and Discussion 

3.1 Preliminary Analysis 

STANBIC stock index is positively correlated with BETAGLASS, DANDCEM, and GTCO 

stock indices, but negatively correlated with WAPCO stock index based on the correlation 
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matrix. Hence, the STANBIC stock index has interaction with BETAGLASS, WAPCO, 

DANDCEM, and GTCO stock indices. Correlation matric also reveals a negative relationship 

between the BETAGLASS stock index and the WAPCO stock index (Figure 1). 

 

(

  
 

DANGCEM GTCO STANBIC WAPCO BETAGLAS  
                    1.0000 0.3790 0.5765 −0.1289 −0.0055  DANGCEM

                        1.0000 0.7100 −0.1687     0.4228   GTCO
                                            1.0000 −0.5235    0.5192 STANBIC
                                                            1.0000  −0.6827 WAPCO   

                                                                                   1.0000 BETAGLAS)

  
 

 

Figure 1. Correlation Matrix of selected Nigerian stock indices 

 

Time series plots reveal decelerated growth in the share prices of DANDCEM, GTCO, 

STANBIC and WAPCO between 2014 and 2016, except BETAGLASS stock index which 

experienced accelerated growth between 2014 and 2015, but sudden fall in 2016  (Figures 2, 3, 4 

and 5). 
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Figure 2: Time series plot of DANGCEM stock index 

 

Figure 3: Time series plot of GTCO stock index 
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Figure 4: Time series plot of STANBIC stock index 

 

 

 

Figure 5: Time series plot of WAPCO stock index 
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Figure 6: Time series plot of BETAGLASS stock index 

Based on Table 1, the Augmented Dickey Fuller tests reveal the presence of unit root in the five 

selected stock indices, but their return series are stationary.  

Table 1: Augmented Dickey-Fuller tests 

Nigerian stock 

index 

Dickey Fuller Statistic 

( Original series) 

Lag 

order 

Dickey Fuller Statistic 

Logarithmic series Return series 

GTCO -2.4515 

(0.3872) 

15 -2.5662 

(0.3386) 

-15.9 

(<0.01) 

DANGCEM -2.4594 

(0.3838) 

15 -2.5726, 

(0.3359) 

-15.683 

(<0.01) 

STANBIC -2.477 

(0.3764) 

15 -2.0878 

(0.5411) 

-15.466 

(<0.01) 

WAPCO -2.252 

(0.4716) 

15 -1.7269, 

(0.694) 

-14.76, 

(<0.01) 

BETAGLASS -2.486 

(0.373) 
15 -2.595 

(0.326) 

-14.783 

(<0.01) 

Where the values in the parentheses are p-values of Ljung-Box statistic 

 

Akaike information criterion (AIC) was applied to identify ARIMA(4,1,0), ARIMA(3,1,0), 

ARIMA(2,1,0)  and ARIMA(2,1,0) models for modeling DANGCEM stock returns (DSR), 

GTCO stock returns (GSR), WAPCO stock returns (WSR) and STANBIC stock returns, 
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respectively, while Schwarz Bayesian information criterion (BIC)  was used to identify 

ARIMA(2,1,0) model for modeling BETAGLASS stock returns (BSR) as shown in Table 2. 

Table 2: Selection of lag length of linear models 

Lags AIC BIC 

DANGCEM GTCO STANBIC WAPCO BETAGLASS 

1 5.769350 1.938049 -4.626324 3.225303 -5.130259 

2 5.769325 1.935509 -4.627136* 3.213153* -5.130612* 

3 5.769209 1.935249* -4.627074 3.213692 -5.128225 

4 5.768368* 1.935262 -4.626355 3.213314 -5.125956 

5 5.768871 1.935781 -4.626148 3.214117 -5.124151 

6 5.768943 1.936136 -4.625352 3.214903 -5.120760 

The asterisks above indicate the best (minimized) values of the respective information 

criteria, AIC = Akaike information criterion and BIC = Bayesian information criterion. 

 

Table 3: Estimation of parameters of linear models 

Nigerian stock 

index 

Model Parameter Estimate Ljung-Box 

Statistic 

𝝈𝛆𝒕 

 

 

 

 

DANGCEM 

 

 

 

 

ARIMA 

(4,1,0) 

𝜋1 0.029535 

(0.07423) 

 

 

 

0.00074302 

(0.9783) 

 

 

 

0.02135 

 

𝜋2 -0.011327    

(0.49374) 

𝜋3 -0.022315   

(0.17779) 

𝜋4 -0.033440   

(0.04341) 

 

 

GTCO 

 

 

ARIMA 

(3,1,0) 

𝜋1 0.0970506 

(4.363e-09) 

 

 

0.0038825 

(0.9503) 

 

 

0.02391 

 
𝜋2 -0.0058603 

(0.724261) 

 

𝜋3 

-0.0556463 

(0.0007631) 

 

STANBIC 

ARIMA 

(2,1,0) 
𝜋1 0.016408   

 (0.321047) 

0.00086177 

(0.9766) 

 

3.06369 

 

 𝜋2 -0.048281   

(0.003499) 

 

WAPCO 

 

ARIMA 

(2,1,0) 

𝜋1 -0.5676 

(9.63e-196) 

265.434 

(0.1902) 

0.03313 

 

𝜋2 -0.3261 

(5.86e-066) 

 

BETAGLASS 

 

ARIMA 

(2,1,0) 

𝜋1 0.027236 

(0.000) 

 

0.0014947 

(0.9692 

 

 

3.27 

 𝜋2 0.025474 

(0.003) 
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where the values in the parentheses are p-values of estimated parameters and  

𝝈𝜺𝒕 is the standard error of the residuals. 

The five specified linear models were estimated and based on Table 3, the p-values of Ljung-Box 

statistic reveal that the residuals of the estimated models are free from serial correlation.  

Tests of linearity against the alternative STAR type nonlinearity based on the five selected stock 

returns were carried out. According to Table 4, there is evidence of nonlinearity in the BSR, 

DSR, GSR and STANBIC stock returns at 5% level of significance, while for WSR, linear model 

is not rejected at 5% level of significance. Hence, WSR is a linear FTS and is modeled with 

ARIMA (2, 1, 0) model; BSR, DSR, GSR and STANBIC stock returns are classified as 

nonlinear FTS and are modeled with STAR models.   

To determine whether the class or type of STAR model is a determining factor of appropriate 

delay parameter of the transition variable.  We first determined a delay parameter within the 

range of values 1 ≤ 𝑑 ≤ 𝑝 with the smallest value of the residual sum of squares for each stock 

return and based on Table 4, the delay parameters for BSR, DSR, GSR and STANBIC stock 

returns are 2, 2, 1 and 2, respectively.  

Table 4:  Linearity Test 

Nigerian stock 

index 

F- Statistic for 

Null hypothesis 

of linearity  

Residual sum of squares (RSS) of the Delay 

parameter (d) 

1 2 3 4 

DANGCEM 7.8179 

(<0.001) 

4557.7828 45359.5409 45386.4523 45361.1632 

GTCO 3.3731 

(0.0092) 

985.3175 986.3200 988.8851 - 

STANBIC 24.0271 

(0.0072) 

2100.0888 2094.4873 

 

- - 

BETAGLASS 8.657488 

(<0.001) 

2345.3747 2342.5337 - - 

WAPCO 0.430583 

(0.7311) 

- - - - 

The values in the parentheses are p-values of F- Statistics. 
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Escribano-Jorda procedure was adopted to specify appropriate transition function and its 

corresponding STAR model. From Table 5, First-order logistic function (asymmetric transition 

function) was specified for DSR and GSR since p-value = 0.1025 > p-value= (< 0.001) and p-

value= 0.0003 > p-value= 0.0002, respectively, while exponential function (symmetric 

transition function) was identified for STANBIC stock returns and BSR since p-value=

0.1427 < p-value= 0.5571 and p-value= 0.0022 < p-value= 0.0652, respectively.  

Consequently, asymmetric STAR models were fitted to DANGCEM and GTCO stock returns, 

while symmetric STAR models were fitted to BSR and STANBIC stock returns with different 

delay lengths to determine the best delay parameter at the evaluation stage based on the 

efficiency of the model.  

Table 5: Escribano-Jorda Tests 

Nigerian stock index F- Statistic Transition 

function H0L H0E 

DANGCEM 2.668256 

(0.1025) 

11.64640 

(<0.0001) 

First-order logistic 

function 

GTCO 6.2076 

(0.0003) 

8.7702 

(0.0002) 

First-order logistic 

function 

STANBIC 1.9483 

(0.1427) 

0.3448 

(0.5571) 

Exponential 

function 

BETAGLASS 4.890444 

(0.0022) 

2.409339 

(0.0652) 

Exponential 

function 

The values in the parentheses are p-values of F- Statistics, while  𝑯𝟎𝑳 and 𝑯𝟎𝑬 are null 

hypotheses. 

 

In accordance with Table 6, two asymmetric STAR (ELSTR and APLSTAR) models fitted to 

DSR have the smallest standard error of residual and AIC when 𝑑 = 2 similar to the specified 

delay parameter, while LSTAR model has the lowest standard error of residual and AIC when 

𝑑 = 4 completely different from the initial choice of delay parameter (𝑑 = 2) for DSR. Yet the 

best model for modeling DSR is APLSTAR model with = 2. 
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Table 6: Evaluation of asymmetric STAR models fitted to DANGCEM stock returns for 

𝟏 ≤ 𝒅 ≤ 𝟒 

Model Delay Parameter Ljung-Box Statistic 𝝈𝛆𝒕 AIC 

 

 

 

LSTAR 

1 0.038819 

(0.8438) 

4.495 55070 

2 0.021161 

(0.8843) 

4.50 55110 

3 - - - 

4 0.046528 

(0.8292) 

4.48 54950 

 

 

 

 

ELSTR 

1 6.3122 

(0.01199) 

2.169 10853.3 

2 5.1402 

(0.12338) 

2.167 10849.31 

3 2.0053 

(0.1567) 

2.174 10865.19 

4 - - - 

 

 

 

APLSTAR 

1 4.4057 

(0.03582) 

2.167 10847.96 

2 1.4376 

(0.2305) 

2.163 10839.96 

3 0.018308 

(0.8924) 

2.174 10864.4 

4 - - - 

The values in the parentheses are p-values of Ljung-Box statistics 

Based on Table 7, LSTAR and ELSTR models are very efficient when 𝑑 = 1, the same delay 

length specified for modeling GTCO stock returns.  APLSTAR model is efficient when d=3 

completely different from the specified 𝑑 = 1. The best model for modeling GSR is LSTAR 

model with 𝑑 = 1. 

Table 7: Evaluation of symmetric STAR models fitted to GTCO stock returns for 

𝟏 ≤ 𝒅 ≤ 𝟑 

Model Delay Parameter Ljung-Box Statistic 𝝈𝛆𝒕 AIC 

 

 

LSTAR 

1 0.0020976 

(0.9635) 

2.3770 6337 

2 0.0034241 

(0.9533) 

2.3787 6342 

3 - - - 

 

 

ELSTR 

1 0.021508 

(0.8834) 

2.396 11344.68 

2 0.8746 

(0.3497) 

2.406 11365.91 
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3 0.12993 

(0.7185) 

2.398 11349.01 

 

 

APLSTAR 

 

1 2.9195 

(0.08751) 

2.404 11361.16 

2 3.9695 

(0.04633) 

2.409 11371.41 

3 0.37672 

(0.5394) 

2.401 11356.51 

The values in the parentheses are p-values of Ljung-Box statistics 

 

According to Table 8, ESTAR and AELSTAR (symmetric STAR) models fitted to STANBIC 

stock returns have the smallest standard error of residuals and AIC value when 𝑑 = 2, similar to 

the initial delay length specified for modeling STANBIC stock returns, whereas  SPLSTAR has 

the lowest standard error of residuals and AIC value when 𝑑 = 1 completely different from the 

delay parameter specified  (𝑑 = 2) for modeling STANBIC stock returns. SPLSTAR model with 

𝑑 = 1 is the best model for modeling STANBIC stock returns.   

Table 8: Evaluation of symmetric STAR models fitted to STANBIC stock returns for 

𝟏 ≤ 𝒅 ≤ 𝟐 

Model Delay Parameter Ljung-Box Statistic 𝝈𝛆𝒕 AIC 

 

ESTAR 

1 0.012211 

(0.912) 

3.373 13035.47 

2 0.73869 

(0.3901) 

3.369 13030.58 

 

AELSTAR 

1 0.69662 

(0.4039) 

3.346 13001.41 

 

2 0.56555 

(0.452) 

3.336 12986.76 

 

 

SPLSTAR 

1 0.86039 

(0.3536) 

3.317 12953.56 

2 0.86039 

(0.3536) 

3.368 13029.49 

The values in the parentheses are p-values of Ljung-Box statistics 

 

From Table 9, the three symmetric STAR model fitted to BSR have the smallest standard error 

of residuals and AIC value when 𝑑 = 2, the value of the delay length specified for modeling 

BSR. But the most efficient STAR model is SPLSTAR model with 𝑑 = 2.  In view of the 
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foregoing results, the type of STAR model is very important in the determination of delay 

parameter of the transition variable in a STAR model. 

 

Table 9: Evaluation of symmetric STAR models fitted to BETAGLASS stock returns for 

𝟏 ≤ 𝒅 ≤ 𝟐 

Model Delay Parameter Ljung-Box Statistic 𝝈𝛆𝒕 AIC 

 

ESTAR 

1 - - - 

2 0.010244 

(0.9194) 

3.4 13075.73 

 

AELSTAR 

1 - - - 

2 0.011699 

(0.9139) 

3.399 13078.76 

 

 

SPLSTAR 

1 0.000565 

(0.981) 

3.404 13081.81 

2 0.71487 

(0.3978) 

3.398 13073.8 

The values in the parentheses are p-values of Ljung-Box statistics 

 

3.2 Discussion of findings 

BETAGLASS, GTCO, STANBIC, DANGCEM, and WAPCO are the five Nigerian stock 

indices obtained from Nigerian Exchange Limited for analyses. STANBIC stock index is 

associated with the BETAGLASS, DANDCEM, GTCO, and WAPCO stock indices, while the 

BETAGLASS index is related to the WAPCO stock index. Time series plots reveal decelerated 

growth among the series between 2014 and 2016, except BETAGLASS stock index which 

experienced a sudden rise between 2014 and 2015. ADF tests indicate the presence of unit roots 

in the five selected stock indices, while their return series are stationary. 

Linearity tests revealed that BSR, DSR, GSR, and STANBIC share returns are nonlinear FTS, 

while WSR is a linear FTS. The suitable delay parameters were initially determined for BSR, 

DSR, GSR, and STANBIC share returns using known approach commonly applied by time 

series analysts (Terasvirta, 1994; Liew et al., 2003; Siliverstovs, 2005; Dueker et al., 2007; 
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Shangodoyin et al., 2009; Yaya and Shittu, 2016; Ajmi and El-Montasser, 2012, Effiong et al., 

2023 and Effiong et al.. 2024) 

Escribano-Jorda procedure specified first-order logistic function (asymmetric transition function) 

for DSR and GSR, while exponential function (symmetric transition function) was identified for 

BSR and STANBIC stock returns. Consequently, asymmetric STAR models were fitted to DSR 

and GSR, and symmetric STAR models were fitted to BSR and STANBIC stock returns with the 

delay lengths within the range 1 ≤ 𝑑 ≤ 𝑝 to investigate the role of STAR model type in the 

determination of appropriate delay parameter of the transition variable. Indeed, APLSTAR, 

LSTAR, and SPLSTAR models with initially chosen delay lengths are optimal for modeling 

DSR, GSR, and BSR, respectively. However, SPLSTAR model with a delay length completely 

different from the initially chosen delay length is optimal for modeling STANBIC stock returns. 

Hence, although the delay parameter of the transition variable is usually based on the 

characteristics of the FTS, the type of STAR model also influences the choice of the appropriate 

delay parameter. 

4.0 Conclusion 

This study concludes that, although the delay parameter of the transition variable is generally 

determined based on the characteristics of the financial time series (FTS), the type of STAR 

model chosen also plays a critical role in selecting an appropriate delay parameter. These 

findings enhance the accuracy and reliability of STAR model applications in financial time series 

analysis. 
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