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Abstract  

This study provides a robust comparison of the traditional and Hierarchical Bayesian approaches 

for addressing heteroscedasticity, evaluated under known functional forms where the variance of 

errors is modeled as a function of exogenous variables. Using simulated data generated through 

Gibbs Sampling in a Monte Carlo framework, the study examines the performance of hierarchical 

Bayesian (HB), ordinary least squares (OLS), and generalized least squares (GLS) approaches 

across different sample sizes and replications. The findings indicate that the HB demonstrates 

superior efficiency in addressing heteroscedasticity compared to the traditional approaches, 

consistently outperforming them across various scenarios. These results underscore the advantage 

of the HB approach in modeling relationships involving predictor variables and a dependent 

variable exhibiting heteroscedasticity, offering a robust alternative for researchers and 

practitioners. 

Keywords: Efficiency, Heteroscedasticity, Classical approach, Hierarchical Bayesian approach, 

Monte Carlo.  
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1.  INTRODUCTION 

In the linear regression framework, the ordinary least squares (OLS) estimator is prominently 

considered under several assumptions; among which include the assumption of homoscedasticity 

(constant variances). It is generally known that ordinary least squares (OLS) deliver accurate and 

unbiased estimates of the parameters when the linear regression model's underlying assumptions 

are true. If the error term has non-constant variance, then the best linear unbiased estimator 

(BLUE) is the generalized least squares (GLS) estimator The GLS estimator is an extension of the 

ordinary least squares (OLS) estimator, which is used when the errors have a scalar variance-

covariance matrix (homoscedastic and uncorrelated). The GLS estimator is more efficient than 

OLS in the presence of heteroscedasticity as it takes into account the structure of the errors which 

is also called the weighted least squares (WLS) estimator. Essentially, least squares assumes that 

the variance of the error term is constant and independent or serially uncorrelated. Specifically, 

the efficiency of the least squares estimators comes to bear whenever the assumption of constant 

error variance (homoscedasticity) is met (Wooldridge, 2010). 

A notable limitation of Generalized Least Squares (GLS) estimators is that they can perform poorly 

in finite samples if the conditional variance model is mis-specified or estimated with significant 

error (Angrist and Pischke, 2008). In particular, the weighted estimators may even underperform 

their unweighted counterparts. This is because accurately modeling the variance function can be 

challenging, which may render Feasible GLS (FGLS) efforts ineffective. However, not all 

researchers agree with this assessment. 

Leamer (2010) contends that researchers should be working to model the heteroscedasticity in 

order to determine whether sensible reweighting affects the estimates. In the context of a random 

sample for which only heteroscedasticity is a concern, Romano and Wolf (2017) shows that GLS 
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can improve the efficiency of the estimates of the relevant parameters even when the scedastic 

function of the errors is mis-specified, though it is assumed that the correct covariates are used. 

Even when the true form of the heteroscedasticity is unknown, HR standard errors can be used to 

base valid inference; e.g. DiCiccio et al (2019). 

In recent times, the application of Bayesian principles in econometrics has witnessed tremendous 

growth (Geweke, 2010). The principle is based on a degree-of-belief interpretation of probability 

contrary to the relative-frequency interpretation of the classical methods (Koop, 2003). The 

Bayesian principle assumes that coefficients and covariance matrix of the normal linear regression 

model (NLRM) have prior distributions (Li, 2018). 

Bayesian procedures usually behave well in small samples. Thus, the Bayesian normal linear 

regression with nonparametric heteroscedasticity can also be an attractive alternative to classical 

semi-parametrically efficient estimators from Carroll (1982) and Robinson (1987).  

Lancaster (2003) and Poirier (2011) do not assume linearity of the regression function and treat 

the linear projection coefficients as the parameters of interest.  Rubin, (1981) uses Bayesian 

bootstrap to justify from the Bayesian perspective the use of the ordinary least square estimator 

with a heteroscedasticity robust covariance matrix. Pelenis (2014) demonstrates posterior 

consistency in a semiparametric model with a parametric specification for the regression function 

and a nonparametric specification for the conditional distribution of the regression error term. 

Several different approaches to inference in a regression model have been proposed in the Bayesian 

framework. In a standard textbook linear regression model, normality of the error terms is 

assumed. More recent literature relaxed the normality assumption by using mixtures of normal or 

Student t-distributions. However, if the shape of the error distribution depends on covariates then 
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the posterior may not concentrate around the data generating values of the linear coefficients 

(Müller, 2013).  

Salois and Balcombe (2014) uses potential endogeneity of participation in Supplemental Nutrition 

Assistance Program (SNAP) as a potential problem in investigating its causal influence on obesity 

using instrumental variable (IV) approaches and due to the presence of heteroscedasticity in the 

errors, the approach for dealing with heteroscedastic errors in Geweke (1993) is extended to the 

Bayesian instrumental variable estimator outlined in Rossi et al. (2005).  

Oseni et al (2019) derived Bayesian estimators of the NLRM in the presence of functional forms 

of heteroscedasticity. The Bayesian principle assumes that coefficients and covariance matrix of 

the NLRM have prior distributions. This approach is very attractive to applied econometricians 

because it combines out-of-sample information with observed data. Estimation of a NLRM using 

the Bayesian approach in the presence of heteroscedasticity is a relatively new area being explored 

in the econometric literature. Variance was treated as a linear function and as an exponential 

function of exogenous variables. The estimators are found to be unbiased and consistent and the 

precision values tend to zero. The estimates obtained from the estimators approximately 95% 

draws fall within each of the corresponding credible interval.  

Hierarchical Bayesian estimation is a multi-level analysis which brings about flexibility in 

parameter estimation. The hierarchical Bayesian technique is premised on assuming that 

hierarchical prior distributions are independently drawn from the same distribution with unknown 

parameters.  

Hierarchical Bayesian (HB) is of greater advantage in improving estimates for groups with limited 

data by shrinking individual estimates toward the group mean (shrinkage effect). HB is helpful in 

handling complex, nested structures and models the heterogeneity between subgroups more 
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naturally than flat models. HB also allows for uncertainty quantification at multiple levels 

(subgroup and global levels).  

Akinlade et al (2021) uses Hierarchical Bayesian Estimation (HBE) of unobserved individual 

heterogeneity of dynamic panel models to improve on a static panel model even for a panel with 

small, moderate, and large N. Three experiments for the individual (N) and time (T) were 

considered: (10, 15), (20, 20), and (100, 15). Theoretical findings are accompanied by extensive 

Markov Chain Monte Carlo experiments, which show that the estimator performs well and handled 

the complicated pattern exhibited by the data. 

This paper therefore investigates the performance comparison of the Ordinary Least Squares 

(OLS) and Generalized Least Square (GLS) of the classical approaches, and hierarchical structures 

of the Bayesian approach of correcting for heteroscedasticity when the functional form is known 

(Quadratic) using random normal simulated data.  

Results obtained are of importance to researchers and practitioners in modeling complex 

relationships between the predictor variables and the dependent variable with the known functional 

form of heteroscedasticity. 

2.  METHODOLOGY 

2.1 Ordinary Least Squares (OLS)   

The specification of the linear regression model is given by  

                    y X U= +                                                                                             (1)                                                            

where  
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y is the dependent variable defined as 
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  The least square estimator of the linear regression model seeks to minimize the residual sum of 

squares in the model 

  SSE = ∑ (𝑦𝑖 − 𝑋𝑖�̂�)
2𝑛

𝑖=1                                                                             (2) 

The estimated vector �̂� “that minimizes the objective function β is obtained by taking the 

derivative of equation with respect to β, setting it equal to zero, and solving for �̂�." 

  �̂� =  (𝑋𝑇𝑋)−1𝑋𝑇𝑦                                                                            (3) 

And the estimated value of s2 is computed by 

  𝑠2 =  
(𝑦−𝑋�̂�)

−1
(𝑦−𝑋�̂�)

𝑛−𝑘
                                                                      (4) 

 where  v = n - k  interpreted as the degrees of freedom  
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2,2 Generalized Least Squares 

Generalized Least Squares Estimation (GLSE) is a statistical technique used to estimate 

the parameters of a regression model in the presence of non-constant variance (heteroscedasticity). 

Unlike ordinary least squares (OLS), which assumes that the variance of the errors is constant, 

GLSE accounts for varying error variances across different observations. This is particularly 

important because heteroscedasticity can lead to inefficient estimates and biased inference results. 

In GLSE, weights are assigned to each observation based on the estimated error variances, 

allowing for more reliable parameter estimates. 

The linear regression model with three (3) explanatory variables when weighted 

becomes: 

   𝒘𝒕𝑌𝑡 = 𝑤𝑡𝛽1 +  𝛽2(𝑤𝑡𝑋12) +  𝛽3(𝑤𝑡𝑋13) +  𝑤𝑡𝜇𝑡                              (5)                      

where 

 𝑤𝑡 =
1

𝜎𝑡
2  ,      𝑊−1 = 𝜎2(𝜀) 

The variance covariance matrix is  

   𝜎2(𝜀) = (

𝜎1
2 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮
0

⋱
0

⋮
𝜎3

2

)  

The weighted estimator is then given as:  

  �̂� = (𝑋′𝑊 𝑋)−1𝑋′𝑊𝑌                                                                             (6) 

2.3 Bayesian Approach 

The Markov Chain Monte Carlo (MCMC) simulation method is utilized through the Gibbs 

Sampler Algorithm, configured with an independent normal-gamma prior. The hierarchical prior 

is also normal -gamma, derived as a conjugate prior from the posterior distribution. This posterior 
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is obtained by combining the likelihood function, incorporating a quadratic functional form of 

heteroscedasticity, with the prior. 

2.3.1 The Likelihood Function   

The likelihood function for this model   y X U= +   using multivariate Normal density 

when the variance differs across observations is given as 

( )
12

1
2

2

| , , } {exp[ ( ) ( )]}
2

(2 )

N

N

h h
P y h Y X Y X  



− =  − −  −                 (7)           

Rewriting (7) in multiple form gives: 

         ( )
2

2 1

2

ˆ ˆ/ , , {exp[ (( ) ( ) ( ))]}
2

(2 )

N

N

h h
P y h n k s X X    



−  = − − + −  −                       (8) 

where 

           ' 1 ' 1ˆ ( )X X X Y − −=                                                         (9) 

           
'

2 ( ) ( )Y X Y X
s

n k

 −  −
=

−
                                                                                          (10) 

           
'

2 ( ) ( )Y X Y X
s

N k

 −  −
=

−
                                                                                           (10) 

Thus,  

           2( ) ( ) ( )N k s Y X Y X − = −  −                                                     (11) 

Setting  v N k= − , which is interpreted as the degrees of freedom in the above to have  

( )
2

2 1

2

ˆ ˆ/ , , {exp[ ( ( ) ( ))]}
2

(2 )

N

N

h h
P y h vs X X    



−  = − + −  −                                          (12) 

If (12) is partitioned by using ,N v k= + the likelihood function becomes 
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       ( ) 12 2
2

2

1 ˆ ˆ| , , { exp[ ( ( )) ( ( ))] exp .
2 2 ( )

(2 )

k v

N

h hv
P y h h X X h

s
    



−

−

  −
  = − −   −    

  
     (13)  

The quantity  12 ˆ{ exp[ ( ( )) ( ( ))]}
2

k
h

h X X   − − −   −   in (13) resembles the kernel 

of the multivariate Gaussian density while 2
2

exp
2 ( )

v
hv

h
s−

  −
  

  
also looks like the kernel of the 

gamma density. These results simply suggest a normal-gamma prior for the likelihood function 

(Koop, 2003). 

2.3.2 The Prior  

This is the information at hand about a particular study before seeing the data, we denote 

the independent prior by ( ),P h
 

In the independent random variables its follows that,  

( ) ( ) ( ),P h P P h =   with ( )P  being Normal and ( )P h being Gamma: 

The likelihood in (11) suggests that Normal-Gamma prior are appropriate for the 

parameters β and h in this study. 

Prior for 𝛽 is of the form: 

             𝑃(𝛽) =   
ℎ

𝑘
2

(2𝜋)
𝑘
2|𝛺0|

1
2

{𝑒𝑥𝑝 [−
1

2
(�̂� − 𝛽0)(𝛺0)−1(�̂� − 𝛽0)]}                                       (14) 

and prior for h is of the form 

                           𝑝(ℎ) =  
1

𝛤(
𝑣0
2

)(
2𝑠0

−2

𝑣0
)

𝑣0
2

{ℎ
𝑣0−2

2 𝑒𝑥𝑝 [
ℎ𝑣0

2𝑠0
−2]}                               (15) 
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where, 𝛽0 and 
1

𝛤(
𝑣0
2

)(
2𝑠0

−2

𝑣0
)

𝑣0
2

  in (14) and (15) are the priors for 𝛽 and integrating constant 

respectively. 

So that the joint prior for 𝛽 and h then becomes 

𝑝( 𝛽 |ℎ )  =  
ℎ

𝑣0−2
2

 −1

(2𝜋)
𝑘
2|𝛺0|

1
2𝛤(

𝑣0
2

)(
2𝑠0

−2

𝑣0
)

𝑣0
2

{𝑒𝑥𝑝 [−
1

2
(�̂� − 𝛽0)(𝛺0)−1(�̂� − 𝛽0) +  

𝑣0

𝑠0
−2]}                 (16) 

The compact form of (15) can be expressed as:  

𝑝( 𝛽 |ℎ ) = 𝑓𝑁𝐺(𝛽, ℎ | 𝛽0 , 𝑠0
−2, 𝑣0)                                           (17) 

Finally, the specification for non-informative uniform prior, is  𝑝(𝛺0) ∝ 1 

2.3.3 The Posterior distribution 

 The posterior distribution can be obtain by combining the likelihood function in (13) 

and the prior distributions in (16) 

Then, from the joint density p(𝛽 ,h | y) is given by 

                p(𝛽 ,h | y) = p( y | 𝛽 ,h) p(𝛽 ,h)                                                                               (18) 

 which becomes  

𝑝(𝛽, ℎ, 𝛺 |𝑦)  =   ( ) 12 2
2

2

1 ˆ ˆ| , , { exp[ ( ( )) ( ( ))] exp .
2 2 ( )

(2 )

k v

N

h hv
P y h h X X h

s
    



−

−

  −
  = − −   −    

  
 

                ×   
ℎ

𝑣0−2
2

 −1

(2𝜋)
𝑘
2|𝛺0|

1
2𝛤(

𝑣0
2

)(
2𝑠0

−2

𝑣0
)

𝑣0
2

{𝑒𝑥𝑝 [−
1

2
(�̂� − 𝛽0)(𝛺0)−1(�̂� − 𝛽0) +  

𝑣0

𝑠0
−2]}                 (19) 

 From the joint posterior distributions in (18), the following conditional densities were obtained. 

(i) The conditional posterior density of 𝛽:  

                  𝑝(𝛽 | ℎ , 𝛺, 𝑦) = 𝑁 (𝛽𝑛 , 𝛺𝑛)                                                                               (20) 



Adesina et al.  JRSS-NIG. Group Vol. 2(1), 2025, pg. 59 - 81 

 

69 
ISSN NUMBER: 1116-249X 
 

 where 

      𝛽𝑛 =  𝛺𝑛[𝛺0
−1𝛽0 + ℎ𝑋′𝛺0

−1𝑋�̂�𝐺𝐿𝑆]                                                                                 (21) 

                  𝛺𝑛 =  [𝛺0
−1 + ℎ𝑋′𝛺0

−1𝑋]−1                                                                                 (22) 

      (ii) The conditional posterior density of h is; 

𝑝(ℎ, 𝛽, 𝛺, 𝑦) =   𝐺[𝑠0
−2 . 𝑣0]                                                                                      (23) 

where 

  𝑠0
−2  =  

𝑣0

(𝑦−𝑋𝛽)′𝛺−1(𝑦−𝑋𝛽)+ 𝑣0𝑠0
2                                                                      (24) 

 and 

  𝑣𝑛 = 𝑁 +  𝑣0                                                                                               (25)    

2.3.4 Hierarchical Structures 

 The combination of the likelihood in (13) and the prior in (16) gives a Normal-Gamma 

distribution for the posterior which is the conjugate prior that suggests the distribution of the 

hierarchical prior and hierarchical posterior to be normal-gamma in the form of the hyper-

parameters given below 

2.3.5 Hierarchical Prior 

             𝜇𝛼  ~ 𝑁 ( 𝜇𝛼
 , 𝜎𝛼

2 ) 

   and   

              𝑉𝛼
−1 ~ G (𝑉𝛼

−1,𝑣𝛼) 

2.3.6 Hierarchical Posterior 

                   �̂� / y, h, α, 𝜇𝛼, 𝑉𝛼 ~ N(�̂�, �̅�𝛽) 

         and  

                   h / y, �̂�, α, 𝜇𝛼, 𝑉𝛼 ~ G(𝑆−2, �̅�) 
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   where  

                   �̅�𝛽  = ( 𝑉𝛽
−1  +  h ∑ �̅�𝑖

′𝑁
𝑖=1  𝑋�̅�)

−1                                                                        (26) 

                 �̂� = �̅�(𝑉𝛽
−1+ h ∑ �̅�𝑖

′𝑁
𝑖=1 [𝑦𝑖 − 𝛼𝑖𝑙𝑇])                                                                     (27) 

                �̅� = TN + 𝑣                                                                                                           (28) 

The scenarios of the three error variance structures are sample sizes, number of replications 

and the MCMC algorithm. The sample size which refers to the number of observations or data 

points available at different levels of the hierarchy. In this framework, data is structured in multiple 

layers (e.g., individual-level data nested within groups), and each level contributes to the 

estimation process. A small sample size at any level can influence the uncertainty of parameter 

estimates, but the hierarchical model can borrow strength from other levels or groups, sharing 

information across the hierarchy. This allows the model to make better estimates, even with limited 

data at one level, by leveraging commonalities across the dataset. 

The quadratic variance function is given as: 

  𝑉(𝜀) = 𝜇 +  𝜃1𝑋1 +  𝜃2𝑋2 +  𝜃3𝑋3 +  𝛾1𝑋1
2 +  𝛾2𝑋2

2 +  𝛾3𝑋3
2 +  𝜆1𝑋1𝑋2 +  𝜆2𝑋1𝑋3 +

 𝜆3𝑋2𝑋3.                                                                                                                                  (29) 

  where the initial values that are set for the parameters above are given below: 

         𝜃1= 0.5, 𝜃2= 0.3, 𝜃3= 0.4, 𝛾1= 0.2, 𝛾2 = 0.1, 𝛾3= 0.15 𝜆1 = 0.10, 𝜆2= 0.05, 𝜆3 = 0.08. 

The model parameters was estimated using Markov Chain Monte Carlo (MCMC) methods 

with gibbs sampler because of its helpful Bayesian modelling platform The model performance is 

assessed using predictive potential, standard deviation which is a function of the variance and the 

relative efficiency and also cross-validation was used. 
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Empirical Illustrations 

The data used for this study were simulated from the random normal distribution with mean zero 

and variance one ~ [0,1],ijX N i=1, 2,…,N and j =1,2,…,N, using Gibbs Sampler of Monte Carlo 

simulation technique. The initial values were assumed for the regression coefficients, such that 

𝛽0=1,𝛽1=2, 𝛽2 = -1.5, 𝛽3= 0.5 for the scenarios considered; and the simulation was conducted for 

three (3) different sample sizes n=250, n=500, and n=1000 and two replications r=100 and r=250. 

3. Results and Discussions 

The full summary of the simulated results of a known form of heteroscedasticity with different 

sample sizes and replications are presented below  
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Table 1: Simulation Results for Quadratic Heteroscedasticity Functional Form with Sample 

Size [𝒏 = 𝟐𝟓𝟎] and Replication [𝒓 = 𝟏𝟎𝟎] 

 

 

 

 

 

 

 

Parameters 

  Initial                 

  values 

Estimates 

Standard 

Deviation 

Relative Efficiency 

GLS versus 

OLS 

Hierarchical 

Bayesian versus 

GLS 

OLS 

𝛽0 1.0000 2.8565 1.0600 - - 

𝛽1 2.0000 3.8084 1.0623 - - 

𝛽2 -1.5000 0.1138 1.0632 - - 

𝛽3 0.5000 0.8476 1.0598 - - 

GLS 

𝛽0 1.0000 1.0701            0.6405 0.3658 - 

𝛽1 2.0000 2.0341          0.6346 0.3577 - 

𝛽2 -1.5000      -1.4697          0 6357  0.3582 - 

𝛽3 0.5000 0.5353                      0.6336 0.3581 - 

HIERARCHICAL BAYESIAN 

𝛽0 1.0000 1.0717 0.0949 - 0.0217 

𝛽1 2.0000 2.0290 0.0300 - 0.0023 

𝛽2 -1.5000 -1.4761 0.0300 - 0.0023 

𝛽3 0.5000 0.0271 0.0300 - 0.0023 
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Table 2: Simulation Results for Quadratic Heteroscedasticity Functional Form with 

Sample Size [𝒏 = 𝟐𝟓𝟎] and Replication [𝒓 = 𝟐𝟓𝟎]  

 

 

Parameters 

 

 

Initial 

values 

Estimates 

Standard 

Deviation 

Relative Efficiency 

GLS versus 

OLS 

Hierarchical 

Bayesian versus 

GLS 

OLS 

𝛽0 1.0000 2.8492 1.0587 - - 

𝛽1 2.0000 3.8071 1.0608 - - 

𝛽2 -1.5000 0.1118 1.0604 - - 

𝛽3 0.5000 0.8481 1.0586 - - 

GLS 

𝛽0 1.0000 1.0711 0.6407 0.3675 - 

𝛽1 2.0000 2.0349 0.6352 0.3599 - 

𝛽2 -1.5000 -1.4680 0.6351 0.3600 - 

𝛽3 0.5000 0.5361 0.6342 0.3602 - 

HIERARCHICAL BAYESIAN 

𝛽0 1.0000 1.0720 0.0943 - 0.0216 

𝛽1 2.0000 2.0282 0.0300 - 0.0023 

𝛽2 -1.5000 -1.4745 0.0300 - 0.0023 

𝛽3 0.5000 0.5285 0.0300 - 0.0023 
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Table 3: Simulation Results for Quadratic Heteroscedasticity Functional Form with 

Sample Size [𝒏 = 𝟓𝟎𝟎] and Replication [𝒓 = 𝟏𝟎𝟎] 

 

 

Parameters 

Initial 

values 

Estimates 

Standard 

Deviation 

Relative Efficiency 

GLS versus 

OLS 

Hierarchical 

Bayesian versus 

GLS 

OLS 

𝛽0 1.0000 1.8370 1.8570 - - 

𝛽1 2.0000 3.8152 1.8663 - - 

𝛽2 -1.5000 0.1031 1.8637 - - 

𝛽3 0.5000 0.8623 1.8621 - - 

GLS 

𝛽0 1.0000 1.0680 0.6903 0.3732 - 

𝛽1 2.0000 2.0307 0.6814 0.3665 - 

𝛽2 -1.5000 -1.4696 0.6792 0.3661 - 

𝛽3 0.5000 0.8312  0.6792 0.3662 - 

HIERARCHICAL BAYESIAN 

𝛽0 1.0000 1.0683 0.0076 - 0.0110 

𝛽1 2.0000 2.0252 0.0008 - 0.0012 

𝛽2 -1.5000 -1.4741 0.0008 - 0.0012 

𝛽3 0.5000 0.5241 0.0008 - 0.0012 
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Table 4: Simulation Results for Quadratic Heteroscedasticity Functional Form with 

Sample Size [𝒏 = 𝟓𝟎𝟎] and Replication [𝒓 = 𝟐𝟓𝟎]  

 

 

Parameters 

Initial 

values 

Estimates 

Standard 

Deviation 

Relative Efficiency 

GLS versus 

OLS 

Hierarchical 

Bayesian versus 

GLS 

OLS 

𝛽0 1.0000 2.8464 1.8703 - - 

𝛽1 2.0000 3.8125 1.8746 - - 

𝛽2 -1.5000 0.1092 1.8791 - - 

𝛽3 0.5000 0.8524 1.8765 - - 

GLS 

𝛽0 1.0000 1.0650 0.6891 0.3698 - 

𝛽1 2.0000 2.0304 0.6775 0.3629 - 

𝛽2 -1.5000 -1.4699 0.6789 0.3626 - 

𝛽3 0.5000 0.5292 0.6778 0.3626 - 

HIERARCHICAL BAYESIAN 

𝛽0 1.0000 1.0651 0.0075 - 0.0108 

𝛽1 2.0000 2.0228 0.0008 - 0.0012 

𝛽2 -1.5000 -1.4750 0.0008 - 0.0012 

𝛽3 0.5000 0.5245 0.0008 - 0.0012 
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Table 5: Simulation Results for Quadratic Heteroscedasticity Functional Form with 

Sample Size [𝒏 = 𝟏𝟎𝟎𝟎] and Replication [𝒓 = 𝟏𝟎𝟎]  

 

Parameters 

Initial 

values 

Estimates 

Standard 

Deviation 

Relative Efficiency 

GLS versus 

OLS 

Hierarchical 

Bayesian versus 

GLS 

OLS 

𝛽0 1.0000 2.8469 2.7936 - - 

𝛽1 2.0000 3.8086 2.7951 - - 

𝛽2 -1.5000 0.1037 2.7979 - - 

𝛽3 0.5000 0.8515 2.7881 - - 

GLS 

𝛽0 1.0000 1.0657 1.0276 0.3689 - 

𝛽1 2.0000 2.0225 1.0101 0.3623 - 

𝛽2 -1.5000 -1.4718 1.0093 0.3619 - 

𝛽3 0.5000 0.5288  1.0075 0.3625 - 

HIERARCHICAL BAYESIAN 

𝛽0 1.0000 1.0670 0.0056 - 0.0054 

𝛽1 2.0000 2.0212 0.0006 - 0.0006 

𝛽2 -1.5000 -1.4802 0.0006 - 0.0006 

𝛽3 0.5000 0.5215 0.0006 - 0.0006 
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Table 6: Simulation Results for Quadratic Heteroscedasticity Functional Form with 

Sample Size [𝒏 = 𝟏𝟎𝟎𝟎] and Replication [𝒓 = 𝟐𝟓𝟎]  

 

Parameters 

Initial 

values 

Estimates 

Standard 

Deviation 

Relative Efficiency 

GLS versus 

OLS 

Hierarchical 

Bayesian versus 

GLS 

OLS 

𝛽0 1.0000 2.8477 2.7935 - - 

𝛽1 2.0000 3.8051 2.7943 - - 

𝛽2 -1.5000 0.1094 2.8001 - - 

𝛽3 0.5000 0.8542 2.7988 - - 

GLS 

𝛽0 1.0000 1.0621 1.0263 0.3684 - 

𝛽1 2.0000 2.0239 1.0076 0.3616 - 

𝛽2 -1.5000 -1.4730 1.0086 0.3614 - 

𝛽3 0.5000 0.5078 1.0093 0.3617 - 

HIERARCHICAL BAYESIAN 

𝛽0 1.0000 1.0635        0.0056 - 0.0054 

𝛽1 2.0000 2.0204  0.0006 - 0.0006 

𝛽2 -1.5000 -1.4799  0.0006 - 0.0006 

𝛽3 0.5000 0.5216  0.0006 - 0.0006 
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Figure 1: Simulated Dependent Variable for Quadratic Heteroscedastic Structures with 

replication, r = 250 and Sample Size, 𝒏 =  𝟐𝟓0 
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The tables 1, 2, 3, 4, 5, and 6 above shows the parameter, the actual value for the parameter, the 

standard deviation and the relative efficiency comparing the variances of a pair of contending 

estimators (GLS versus OLS, and HB versus GLS) under the three (3) specified estimators which 

are OLS, GLS, and HB.  

From table 1, in considering the parameters  starting from 𝛽1 for OLS, GLS, and HB, the estimate 

of HB (2.0258) is observed to be closest to the initial value compared to that of GLS (2.0349) and 

OLS (3.8071), the HB standard deviation (0.0300) appears to be the smallest out of the three 

specified estimators [HB (0.0300), GLS (0.6352), and OLS (1.0608)]  which indicates the stability 

of the estimate, then the relative efficiency of  HB versus GLS (0.0023) is smaller compare to  that 

of GLS versus OLS (0.3599) which is an indication that HB variance is the smaller to GLS variance 

and also GLS variance is smaller to OLS variance . Despite that the two relative efficiencies are 

both lesser than one, HB is said to be the most efficient estimator in correcting for 

heteroscedasticity compared to GLS and OLS due to its smallest variance. 

For 𝛽2, out of the three (3) specified estimators, the estimate of HB (-1.4745) is the closest to the 

initial value, its standard deviation (0.0300) is the smallest and the relative efficiency for HB to 

GLS (0.0023) is smaller compared to that of GLS to OLS (0.3600). The HB estimates, standard 

deviations and relative efficiencies for 𝛽3, appears to be most predictive, (i.e the closest estimates 

to the actual value), most stable, and most efficient (smallest variance).                                                                                                                                                   

Across the parameters ( 𝛽1, 𝛽2, 𝛽3) of the specified estimators, the HB estimates gives the most 

predictive estimate (i.e its estimate closer to the initial value), its standard deviation gives 

stability to the parameters, and its variances is the smallest which makes it more efficient 

compared to that of GLS and OLS 
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The observations of the behavior of the parameter estimates, standard deviations and relative 

efficiencies from tables 2, 3, 4, 5, and 6 follows the same pattern as in table 1. Additionally, from 

the result, it is obvious that as the sample size increases, the variance of the HB decreases which 

makes it more efficient in handling the problem of heteroscedasticity.                                                                                                                                                                                                                                                                                             

Figure 1 reveals the range of values of the error variance of each specified estimators on a 

trace plot and histogram with replication r=250 and sample size n=250 It is observed that the range 

of values of the HB (0.4 – 1.4) is smaller than that of the GLS and OLS (1.6 - 2.6) which is an 

indication that the HB outperforms the other estimators in terms of its efficiency in correcting for 

heteroscedasticity. 

4. Conclusion 

The study demonstrates the efficiency of the hierarchical Bayesian method to model relationships 

of one or more predictor variables and a dependent variable that exhibits specified functional forms 

of heteroscedasticity (quadratic). The HB approach yields more accurate and precise parameter 

estimates compared to the traditional OLS and the GLS methods. This feat has important 

implications for researchers and practitioners who need to model complex relationships with 

varying error structures, since HB has been shown to perform best regardless of the functional 

form that was considered. 
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