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Abstract 

Climate change is impacted by multiple variables, and modeling the joint impact of climatic 

variables is of paramount interest; hence, this study presents a unique method that uses the logical 

operator to map bivariate data series to the univariate sequence. Each of the bivariate random 

variables can take only categorical values. The logical “AND” and “OR” were used for mapping 

these sequences and, subsequently, the Markov chain analysis. The method was applied to climatic 

variables (Rainfall and Temperature) to obtain favourable and unfavourable climate conditions for 

the growth of the yam crop. The Markov chain analysis indicates that the sequence of state for the 

yam crop is ergodic and thus, the favourable and unfavourable climatic conditions has a stable 

distribution. The logical “AND” has a low probability of favorability of 0.36 compared to the 

logical “OR”, 0/75. The climate change impact (CCI) revealed that climate change adversely 

affects the growth of the yam crop.  The mean recurrent time for favourable climate gave an insight 

into how to adapt to avoid losses. The study recommends that farmers invest more in the crop in 

question, considering climate change adaptation (CCA). This is because there is high climatic 

favorability during this period. 
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INTRODUCTION 

Statistical models are essential in evaluating climate change and giving insight into adapting, as 

these changes are widely considered as multipliers of existing threats to food security. Such models 

are typically used in analyzing the likelihood and severity of weather extremes (Wineman and 

Crawford, 2017).  

Crop growth models are frequently utilized to examine how climate change affects agriculture and 

to aid in formulating adaptation strategies, despite the inherent complexity of both agricultural 
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systems and climate change (Asseng et al., 2015; Carr et al., 2022). As the global climate 

undergoes rapid transformation, agricultural systems must adapt to ensure their sustainability. 

Assessments of the impacts of climate change are anticipated to be thorough, as they are crucial 

for determining the necessary adaptations (Falloon et al., 2014). 

Many researchers are interested in quantifying, controlling, or adapting to climate change due to 

its rapidity. Nevertheless, most of these studies primarily focus on examining the effects of a single 

climatic variable, such as temperature or rainfall, on crop growth. Among them are Ayinde et al. 

(2011), on co-integration modeling, Aondoakaa (2012), Emaziye (2015), Mijinyawa and 

Akpenpuun (2015), Zakari et al. (2017), Olajire et al (2018), Uger (2018) and Ibrahim (2020) all 

on Multiple Regression model. 

Markov chain models have been employed to analyze the variations in climatic parameters over 

time. Yoo et al. (2016) assessed the impact of climate change on rainfall using a two-state Markov 

chain model, while Raheem et al. (2015) employed a three-state Markov chain to investigate the 

patterns and distribution of daily rainfall in Uyo metropolis, Nigeria. The distribution pattern of 

rainfall was explored by Yusuf et al. (2016), Makokha et al. (2016), Reis et al. (2017), Nuga and 

Adekola (2018), and Agada et al. (2018), who applied the Kruskal-Wallis procedure, linear trend 

analysis, and the Markov chain model. 

It is worthy of note that a multiplicity of climatic variables do impact climate change, therefore 

accurate modeling of multivariate climatic variables would allow for better decision-making that 

minimizes exposure to climate risk so as to take advantage of a favourable climate for cropping, 

among other human activities. 

According to Cong and Brady, (2012) and Mesbahzadeh et al., (2019), the variables relevant to 

the study of climate are rainfall and temperature, as they significantly affect crop growth  

The Markov chain model generally assesses how climate change influences the short-term and 

long-term patterns of each climate parameter based on the climatic needs of specific crops (Adah 

and Agada, 2019). As a result, it offers a modeling strategy that is appropriate for a univariate 

setup categorized into various states. Conversely, logical operators present a systematic approach 

to combine different states of each climate variable, leading to the realization of climatic conditions 

required for crop growth.  
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Typically, the studies mentioned earlier have focused on the effects of climate change in univariate 

contexts. Cong and Brady (2012) and Mesbahzadeh et al. (2019) conducted a copular analysis to 

examine the relationship between rainfall and temperature. Nevertheless, their approach is 

appropriate for continuous random variables rather than for categorical random variables. 

This study therefore, focuses on the impact of climate change on crop growth. This is to be 

achieved by using indicator function for discretization, then, the logical operators “AND” and 

“OR” in order to obtain the proposed climatic condition for the growth of crops. 

MATERIALS AND   METHODS 

Discretization  

Consider the indicator function, often referred to as the function that maps elements of the subset 

to “one”, 1 and all other elements to “zero”, 0 (Taboga, 2021). 

Given the probability space (ῼ,F,P), A ∈  𝐹. The indicator function for the  random variable, A, 

1𝐴(ꞷ): ῼ → R  is defined in Equation (1): 

                                                         𝐼𝐴(ꞷ), {
1     if  ꞷ ∈  𝐴                
0    if   ꞷ ∉  𝐴                 

                                                          (1)       

where,   𝐴 is a set or a condition and  ꞷ is an element in the domain. 

From the above definition, it can easily be seen that 𝐼𝐴(ꞷ), is a  discrete random 

variable with support 

𝑅𝐼𝐴(ꞷ)(ꞷ) = {0,1} 

Connectivity of 𝑰𝑨(ꞷ) and 𝑰𝑩(ꞷ) 

Indicator functions can be combine using logical operators to provide new indicator functions  

Theorem 1: Suppose 𝐼𝐴(ꞷ) and 𝐼𝐵(ꞷ) are two indicator functions, then there exist an indicator 

function 𝐼𝐶(ꞷ), such that 𝐼𝐶(ꞷ) = 𝐼𝐴∩𝐵(ꞷ) = 𝐼𝐴(ꞷ). 𝐼𝐵(ꞷ) and 𝐼𝐶(ꞷ) = 𝐼𝐴∪𝐵(ꞷ) =

max (𝐼𝐴(ꞷ), 𝐼𝐵(ꞷ)).  

Proof: The Boolean function has one or more input values and yields a result based on these input 

values: [{0,1} * {0,1} → {0,1}] (Cori and Lascar,2002, Conradie and Goranko, 2015).  
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Model Specification  

In this study. 𝐼𝐴(ꞷ)  and 𝐼𝐵(ꞷ) are the indicator functions of rainfall and temperature respectively 

and 𝐼𝐶(ꞷ), the climatic condition necessary for the growth of crops. 

Thus,  𝐼𝐶(ꞷ)  = Ck: [C0, C1, C2, … Cn] is  a sequence of climatic random variable for the growth of 

crops indexed  by time, k. 

 

Markov Chain Model Specified 

Suppose the stochastic process  { Ck, k ≥  0} takes values in the  state space  S, then 

(i)  𝑃(𝐶0 = 𝑖) = 𝜋𝑖,   i S  ,   is called the initial distribution 

(ii) 𝑃(𝐶𝑘+1 =  𝑖𝑘+1 | 𝐶0 =  𝑖0, 𝐶1 =  𝑖1, … , 𝐶𝑘 =  𝑖𝑘) = 𝑃(𝐶𝑘+1 =  𝑗 | 𝐶𝑘 =  𝑖𝑘)  0k 

 and 0 1 k+1, ,..., ,ki i i i S  .                   (2)                                             

So the stochastic process  { Ck, k ≥  0}  is a  Markov Chain with initial distribution  𝜋 = { 𝜋𝑖, ∈ S} 

and the transition probability matrix 𝑃 =  (𝑝𝑖𝑗, 𝑖, 𝑗 ∈ 𝑆) 

The Equation 2 is the Markov property, which means that the behavior of the chain in the next 

time increment depends only on the current state of the chain, which also shows that the probability 

of a future event will only depends on the probability of the previous event instead of the whole 

system evolution, an indication that Markov chains are memoryless process (Breen, 2018). 

A homogenous Markov chain (HMC) is such that, 0,k  , ,i j S   the probability  

                                               𝑃(𝐶𝑘+1 =  𝑗 | 𝐶𝑘 =  𝑖) =  𝑝𝑖𝑗                                                                      (3)                                                                                            

is independent of k. Thus, the probability in each case depends on the time difference and not on 

the points in time. The one step time homogenous Markov chain is given by: 

𝑷 = [

𝑝11  … 𝑝1𝑠

⋮ ⋮ ⋮
𝑝𝑠1 … 𝑝𝑠𝑠

] 

The matrix is stochastic (that is, nonnegative and all rows sum to one) since for all i: 

                                         ∑ 𝑃𝑖𝑗 =𝑛
𝑗=1  ∑ 𝑃(𝐶1 = 𝑠𝑗|𝐶0 = 𝑠𝑖)                                                         (4)𝑛

𝑗=1                                              

𝑃(𝐶1 ∈ 𝑆|𝐶0 =   𝑠𝑖) =   𝑠𝑖) = 1;   𝑃𝑖𝑗 ≥ 0 

The two state transition probability matrix is: 

𝑃𝑖𝑗 = [
𝑝00 𝑝01

𝑝10 𝑝11
]   
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The transition probability diagram in figure 1 has all states connected in both directions, this makes 

the chain irreducible. 

where 𝑃𝑖𝑗 is the probability of transiting from state  𝑖 𝑡𝑜 𝑗, 𝑖 = 0,1 𝑎𝑛𝑑 𝑗 = 0,1. Here, 0 represent 

unfavourable state while 1 favourable state. The maximum likelihood estimators of �̂�𝑖𝑗  are given 

by:  

                                                       �̂�𝑖𝑗 =  
𝑓𝑖𝑗

∑ 𝑓𝑖𝑗𝑗=0,1   
=  

𝑓𝑖𝑗

𝑓𝑖.
                                                                   (5) 

𝑓𝑖𝑗 represent the number of  𝑗 period preceded  by  𝑖 period. Hence estimates of the probability that 

the climatic state is unfavourable (0) and favourable (1) can be obtained respectively as 

                                                       𝑃0̂ =  
𝑓0

∑ 𝑓𝑖𝑖=0,1
 𝑎𝑛𝑑   𝑃1̂ =  

𝑓1

∑ 𝑓𝑖𝑖=0,1
                                                 (6) 

Dependency of Transitions  

The pattern of states, ‘unfavourable’ and ‘favourable’ conditions for crop growth can be analyzed 

statistically to determine whether the sequence of observations adheres to a chain dependent 

process. The subsequent events may exhibit characteristics of Markov chain models if they are 

depended, as noted by Mohamad et al. (2017) and Samsuddin and Ismail (2019). In cases where 

consecutive events are independent, the statistic α is defined by                                         

       𝛼 = 2 ∑  𝑓𝑖𝑗ln (
𝑝𝑖𝑗

𝑝𝑗
) , 𝛼 ∼ χ2

(r−1)(c−1)                                                                                          (7) 𝑆
𝑖,𝑗    

Markov chain Stationary distribution  

The stationary distribution of a Markov chain illustrates how the chain behaves as time approaches 

infinity, representing the long-term likelihood of being in each state and offering insights into the 

system's steady-state condition. 



Adav et al.  JRSS-NIG. Group Vol. 2(1), 2025, pg. 99 - 117 

 

104 
ISSN NUMBER: 1116-249X 
 

Definition 1: The distribution 𝜋 is referred to as stationary or invariant distribution, if ,j S   

                                                                  ∑ 𝜋(𝑖) 𝑃𝑖𝑗𝑖∈𝑆 =  𝜋(𝑗)                                                                  (8) 

which can be written in a compact form using matrix notation as  

                                                                        𝜋 = 𝜋P                                                                                  (9)                                                      

The vector π, consisting of non-negative components, serves as a stationary distribution for a 

Markov chain characterized by transition matrix P. Once a row in a Markov chain attains a 

stationary distribution, it will consistently retain this distribution in all subsequent iterations of the 

process (Neamat, 2023). 

 

 

 

Suppose the Markov chain  { 𝐶𝑛, 𝑛 ≥  0} has a  limiting distribution 𝛿,  then for an arbitrary  initial 

distribution  𝜋 𝑜𝑛 𝑆, lim
𝑛→∞

𝜋𝑃𝑛 = 𝛿. Conversely, 

 

                                              lim
𝑛→∞

𝜋𝑃𝑛 = (𝜋 lim
𝑛→∞

𝑃𝑛−1 ) 𝑃 = 𝛿𝑃                                                        (10)        

       

Thus 𝛿 = 𝛿𝑃,  so 𝛿 is a unique stationary distribution. This distribution is nonzero everywhere on 

𝑆 (Valenzuela,2022) 

 

Theorem 1: (Fundamental Limit Theorem). Consider an irreducible and aperiodic Markov chain 

represented by C0, C1, C2, … Cn, which has a stationary distribution denoted as π (·). Assume that 

C0 follows the distribution  π0, an arbitrary initial distribution. Then, we have lim
n→∞

 πn(i) =

π(i). for every state i.  

For any irreducible ergodic Markov chain, the limit lim
n→∞

  Pij
(𝑛)exists and does not depend on i. 

   Furthermore, 

                                                            lim
n→∞

  Pij
(𝑛) =  πj > 0                                                                     (11)  

 where the  πj  uniquely satisfy the following steady-state equations 

 

                                               πj =  ∑ πiPij 

𝑀

𝑖=1

 𝑓𝑜𝑟  𝑗 = 0,1,2, … , 𝑁                                                       (12) 
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1

1
N

j

j


=

=  

πj  = (π0 , π1 , π2 , . . , πN ) 

 The 𝜋𝑗  is  referred to as the Markov chain’s steady-state probabilities.  For a  Markov chain with 

a two state, state space, S= {0,1}, 

𝑃 = (
1 − 𝑝01 𝑝01

𝑝10 1 − 𝑝10
) 

𝑝01 and 𝑝10 are real numbers in the interval [0,1] 

The n-step transition probabilities,  𝑃𝑛 is: 

  𝑃𝑛 =
1

𝑝01+ 𝑝10
(

𝑝10 +  𝑝01 (1 − 𝑝01 − 𝑝10)𝑛 𝑝01 −  𝑝01 (1 − 𝑝01 − 𝑝10)𝑛

𝑝10 −  𝑝10 (1 − 𝑝10 − 𝑝01)𝑛 𝑝01 +  𝑝10 (1 − 𝑝10 − 𝑝01)𝑛) 

                               lim
n→∞

 𝑃𝑛 =
1

𝑝01+ 𝑝10
(

1 − 𝑝01 𝑝01

𝑝10 1 − 𝑝10
)                                                           (13)     

We observe that both rows are identical, which means that the final state is independent of the 

initial state. Hence, the equilibrium distribution is represented by the vector: 

                                       (π0 , π1 ) = (
𝑝01

𝑝01 +  𝑝10
,

𝑝10

𝑝01 +  𝑝10
)                                                         (14) 

 

where π0  and π1 are the long run or steady state chance of climate unfavourability and 

favourability respectively. 

Irreducibility 

For certain Markov chains, it is crucial that no matter which state the chain begins in, there is a 

non-zero probability that it will reach every other state within a finite amount of time. 

 

Let {𝐶𝑘, k ≥  0 }  represent a Markov chain with a discrete set of states S. We say that i leads to j 

(denoted as 𝑖 → 𝑗) if there exists some k ≥ 0 such that 𝑃𝑛
𝑖𝑗 > 0. We say that i communicates with 

j (denoted as 𝑖 → 𝑗 if both 𝑖 → 𝑗 and 𝑗 → 𝑖 hold true. 
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Suppose Let {𝐶𝑘, k ≥  0} represent a Markov chain with a discrete state space. The chain {𝐶𝑘, k ≥

 0} is considered irreducible if for every pair of states i and j in S, it holds that i is reachable from 

j and vice versa, implying that any state can be accessed from any other state.    

 

Aperiodicity 

An irreducible, positive recurrent Markov chain might fail to converge because of its periodic 

properties, which can lead to the chain oscillating among different subsets instead of distributing 

evenly across the entire state space over time. 

 

 Suppose {𝐶𝑘, k ≥  0}  has a state space S  and 𝑗 ∈ S  and is a Markov chain. Then,  

(i) The period d(j) 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠  d(j) = 𝑔. 𝑐. 𝑑{n ≥  1: 𝑃𝑛
𝑗𝑗 > 0} Here 

g.c.d is the  greatest common divisor. 

(ii) If d(j) = 1, then j is an aperiodic state. A Markov chain is aperiodic if all the states are 

aperiodic. 

 

Mean First Passage Times 

The short time behavior of the Markov chain is analyzed through the concept of first passage times, 

which are also referred to as hitting times. When the chain begins in state i, it might go back to its 

initial state an infinite number of times with a probability of one, or it may return only a limited 

number of times, ultimately drifting away and never coming back. 

 

Suppose {𝐶𝑘, k ≥  0}  has a discrete  state space S and  𝑗 ∈ 𝑆  and is  a Markov chain.  The first 

passage time to state j is defined by 

                                               𝑇𝑗 = min{k ≥ 1 | 𝐶𝑘 = j}                                                                          (15) 

When 𝐶0 = j, the time  𝑇𝑗 is referred to as the first return time (Zhang, 2020), which is the count 

of transitions taken by the process to move from state i to state j for the first occasion. This is 

referred to as the first passage time when transitioning from state 𝑖 to state j. When j is equal to 𝑖, 

this first passage time represents the number of transitions required for the process to return to its 

original state 𝑖. In this situation, the first passage time is known as the recurrence (return) time for 

state 𝑖. 
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Let the probability from state i to j for the first time be represented by  𝑓𝑖𝑗:   

  𝑓𝑖𝑗 = P(𝑇𝐽 < ∞ | 𝐶0 = 𝑖), then 

(i) state j is recurrent if  𝑓𝑗𝑗 = 1, 

(ii) state j is transient if  𝑓𝑗𝑗 < 1, 

if all states are recurrent, the Markov chain too is recurrent. The expected time of return for state j 

is  

 𝑢𝑗 = E(𝑇𝐽 | 𝐶0 = j) 

Suppose the chain is initially in state i  and conditioned on the state of the Markov chain after one 

time-step, then the mean first passage times,  𝑚𝑖𝑗 in terms of the transition matrix P  for a Markov 

chain is given by  

Consider the scenario where the chain starts in state i, and given the state of the Markov chain after 

one time-step, the mean first passage times also known as the expected time of return denoted as 

 𝑚𝑖𝑗, can be expressed in terms of the transition matrix P for a Markov chain. 

 𝑚𝑖𝑗 =  𝑝𝑖𝑗 + ∑  𝑝𝑖𝑘( 𝑚𝑘𝑗 + 1)

𝑘≠𝑗

 

                                                              𝑚𝑖𝑗 = ∑  𝑝𝑖𝑘𝑚𝑘𝑗 + 1𝑘≠𝑗                                                             (16)                                                                         

Let the matrix of the mean first passage times be represented by M,  Z represent the fundamental 

matrix,   𝑍𝑑𝑔 denote the diagonal matrix of  Z  and zero elsewhere. Let E be an s × s  matrix of all 

ones.  𝐷𝑑𝑔 is diagonal matrix with the jth entry 
1

 𝑎𝑗
(Collins,1975).Then Equation 16 can be rewritten 

so that M is the sole solution to the matrix equation 

                                                                𝑀 = (𝐼 − 𝑍 + 𝐸𝑍𝑑𝑔)𝐷                                                             (17) 

𝑤ℎ𝑒𝑟𝑒 𝑍 = (𝐼 − (𝑃 − 𝐴))−1 

I is an identity matrix 

P is the regular matrix 

A is the limiting matrix of P. 

Assume state j is recurrent, then state j is: 

(i) positive  recurrent if  𝑢𝑗 < ∞ 

(ii) null  recurrent if  𝑢𝑗 = ∞ 



Adav et al.  JRSS-NIG. Group Vol. 2(1), 2025, pg. 99 - 117 

 

108 
ISSN NUMBER: 1116-249X 
 

A Markov chain is considered positive recurrent if and only if each individual state exhibits 

positive recurrence. A key condition for the convergence of a Markov chain is that the state is 

positive recurrent. 

Mixing Time of a Markov Chain 

The mixing time 𝑡𝑚𝑖𝑥 of the Markov chain is the number of time steps required for the chain to be 

within  a fixed threshold, 𝜀 of its stationary distribution, within a total variation distance(𝑑𝑇𝑉). 

When the chain is ergodic, its mixing time is the number of steps required to converge to its 

stationary distribution within a constant precision. 

 

                           𝑡𝑚𝑖𝑥(𝜀) ≔ min {∈ Ꞑ: max
𝑥⊆𝑆

 𝑑𝑇𝑉  |𝜎𝑥𝑃𝑛 −  𝜋| < 𝜀},   for all 𝑥 ∈ 𝑆      (18) 

 

It is often common to define the standard mixing times as  

 𝑡𝑚𝑖𝑥 ≔  𝑡𝑚𝑖𝑥(𝜀)    (Hsu et al., 2019) 

 

Climate Change Impact and Adaptation Model 

Climate Change Impact (CCI) is modeled as the long run percentage unfavourability of climate 

for crop growth. Crop growth is impacted by climate negatively if CCI is above 50% (Agada et 

al., 2019).  For a two-state Markov chain, the long run steady state of the chain is obtained by 

solving the equation;  

                                                                        Π =  ΠP                                                                                (19) 

 

where  𝜋 = 𝜋0, 𝜋1 is the steady state probability vector and P is the matrix of transition probability.  

The computational formula for Climate Change Impact (CCI) is given as: 

  

                                                                      CCI =  𝜋0 ∗ 100%                                                               (20) 

 

Climate Change Adaptation (CCA) is modeled as the mean return time (period) of favourable 

climate for crop growth. For a two-state Markov chain of order one, the mean return time (MRT) 

for each state is computed as the reciprocal of the steady state chances. 

Mathematically we have  
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                                                                           MRT = (
1

 π0 
,

1

  π1 
)                                                           (21)  

where  
1

π0 
 is the mean return time for climate unfavourability   and   

1

π1 
 is the mean return time for 

climate favourability.   

Hence Climate Change Adaptation (CCA) can be inferred from 
1

π1 
 as the number of time period 

after which farmers can invest more in the crop in question. This is because there is high climatic 

favourability during this period and less in 
1

π0 
(time period), a state with a low MRT corresponds 

to a common, frequently visited event or condition and a high MRT indicates a rare event that 

takes longer to recur. 

 

Case Study: Application 

Daily data on  rainfall (mm) and temperature (℃) for Makurdi, Nigeria were obtained from 

National Aeronautics and Space Administration (NASA) (Modern Era Retrospective Analysis 

Version 2 (MERRA-2)) for the period of thirty-seven (37) years (1984-2022).This study 

considered the yam crop, hence the annual rainfall and temperature were obtained from the daily 

data. The annual rainfall and temperature requirements for the growth of yam is 1035mm-1500mm 

and 25℃ - 30℃ respectively (Agada et al, 2019). The annual rainfall and temperate amount were 

discretized using Equation 1. 

RESULTS AND DISCUSSION 

Table 1: Dependency Test of Sequence of Chains 

 

 

 

The Markov chain property test to check whether or not the sequence of successive states of 

climatic condition for the growth of crops are independent of each other can be seen on table 1. 

The values of the test statistic for the growth of yam using the logical “AND” and logical “OR” is 

5.7328 and 5.8552 respectively. Since the associated p-value is less than 0.05, (p<0.05), the null 

hypothesis that the sequence of successive transitions is independent is rejected.   In other words, 

Logical 𝛼 P-value 

AND 5.7328 0.0167 

OR 5.8552 0.0155 
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the state of climate for the growth of crop is dependent on the previous state, and thus have the 

Markov chain property. 

 

Matrix of Transition Probabilities for the logical “AND” 

         𝐹′                   𝐹  

𝐹′

𝐹
  (

0.625 0.375
0.66666667, 0.33333333

) 

 

The matrix of transition probabilities of logical “AND” shows the transition probabilities estimates 

for the yam crop growth. For the logical “AND”, the yam crop has a probability of 0.625(63%) of 

an unfavourable period succeeding unfavourable period, a favourable period succeeding 

unfavourable period with probability 0.375 (39%), an unfavourable period succeeding a favourable 

period with probability 0.666 (67%) and favourable period succeeding favourable period to be 

0.8703 (87%). The likelihood of a favourable period succeeding a favourable period is not high 

and very low for the yam crop, indicating an adverse effect of climate change on the study crop. 

The findings corroborate Emaziye (2015) and Agada et al (2019) findings but contradict the 

conclusions of Ibrahim (2018), whose study shows an increase in rainfall and, hence, an increase 

in the yield of yam.   

 

Matrix of Transition Probabilities for the logical “OR” 

              𝐹′              𝐹     

𝐹′

𝐹
  (

0.3 0.7
0.23076923 0.76923077

) 

 

The sequence of climatic conditions for the growth of the yam crop for the logical “OR” has a 30% 

chance of unfavourable period following unfavourable period, 70% chance of an unfavourable to 

favourable period, 23% chance of a favourable to unfavourable period and a 77% of chance of 

favourable to favourable period. This indicates the climatic condition for the growth of the crop is 

more "sticky" in state 1 than state 0, as P(1→1)>P(0→0). 

 



Adav et al.  JRSS-NIG. Group Vol. 2(1), 2025, pg. 99 - 117 

 

111 
ISSN NUMBER: 1116-249X 
 

Table 2: Stationary Distributions 

 

 

 

 

𝐹′is unfavourable and F is favourable  

 

The long-term stationary distribution of climatic conditions for yam crop growth is presented in 

Table 2. In the long run, the climatic conditions necessary for yam growth in Makurdi will consist 

of 64% unfavourable and 36% favourable conditions. This steady-state transition probability 

matrix for yam crop growth in Makurdi indicates the following: regardless of whether the initial 

state is favourable or unfavourable, the likelihood that the climate will be favourable for yam 

growth in the near future is 0.36 (36%), while there is a 0.64 (64%) probability that the climate 

will be unfavourable in the same time frame. It was noted that the complete transition matrix 

reflects a greater likelihood of unfavourable probabilities; this suggests that no matter what state 

the chain starts in, it is more probable that the next state will be unfavourable. This signals that, in 

the long term, the climatic conditions for the crops analyzed in this research are not likely to be 

conducive to growth. If no actions are taken, this could result in decreased production. 

Furthermore, it indicates that the yam crop is susceptible to climate change. These findings align 

with the results from Agada et al. (2019) and Konduri et al. (2020). The logical “OR” shows a 

0.2479 probability of remaining in an unfavourable state and a 0.7521 probability of being in a 

favourable state in the long term. The “AND” decreases the probability of favorability, while the 

“OR” increases it due to its more inclusive nature. 

Table 3: Mean First Passage Time(MFPT) 

Logical  𝐹′  to F  F to 𝐹′   

AND 2.67 1.50 

OR 1.43 4.33 

𝐹′is unfavourable and F is favourable  

The mean first passage time(MFPT) in Table 3 quantifies how long the climatic requirement for 

the growth of the yam crop tends to stay in one state before transitioning to the other. The expected 

Logical   π𝐹′    π𝐹   

AND 0.64 0.36 

OR 0.24793388 0.75206612 
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number of years it takes the climate to be unfavourable before transitioning to a favourable state 

is 2.67 years, and it takes about one and a half years to transition from a favourable state to an 

unfavourable one. For the logical “OR”, the expected number of years for the climatic system to 

transition from the unfavourable to the favourable state is 1.43 years and about 4 years to transition 

from the favourable to the unfavourable state. 

 

Table 4: Mean Return Time 

Logical  𝐹′  to 𝐹′ F to F 

AND 1.56 2.78 

OR 4 1.33 

𝐹′is unfavourable and F is favourable  

 

Table 4 illustrates the mean return time (MRT) associated with yam growth. It is evident that the 

anticipated time until the climatic conditions become favourable, assuming that the process 

commenced when conditions were already favourable, is approximately one and a half years. 

Conversely, the expected duration until the climatic conditions turn unfavourable, given that the 

process initiated under unfavourable conditions, is around 2.78 years. The climatic conditions 

required for yam growth, when considering the logical “OR,” indicate an average transition period 

of about 4 years from an unfavourable to another unfavourable state and around 1.33 years to 

revert to a favourable state, assuming the process began in a favourable state. 

 

Table 5: Climate Change Impact/ Adaptation 

Logical  CCI CCA 

AND 64% 2.78 years 

OR 23% 1.33years 

 

Table 5 shows how climate change has impacted the yam crop and how to adapt to avoid losses. 

For the logical “AND,” climate has impacted the yam crop by 64%; this indicates that climate has 

affected the crop negatively. This finding aligns with the research conducted by Agada et al. in 

2019. Farmers have the opportunity to invest in yam cultivation every three years, as the average 

return period for favourable conditions is 2.78 years. The yam crop is affected by approximately 
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23% due to the logical “OR.” However, climate change has less than a 50% effect on the climatic 

conditions for yam growth; thus, farmers can still capitalize on the favourable period and make 

investments in the crop every one and a half years. 

  

Table 6: Mixing Time 

Logical  No of Steps 

AND 3 

OR 4 

 

The mixing time for the yam crop is at the time, t=3 for the logical “AND”, t=4 for the logical 

“OR”. The sequence of favourable and unfavourable state is ergodic Markov chain since the chain 

is irreducible and aperiodic. This implies that the time it takes the sequence of climatic states for 

the growth of yam crop to reach its stationary distribution is two years and three years for the 

logical “”AND the logical “OR” respectively 

 

Figure 2: Mixing Time for the logical “AND” 

 

 

  

Figure 3: Mixing Time for the logical “OR” 

 



Adav et al.  JRSS-NIG. Group Vol. 2(1), 2025, pg. 99 - 117 

 

114 
ISSN NUMBER: 1116-249X 
 

Figures 2 and 3 show the relationship between total variation distance and mixing time. The blue 

line in Figure 2 shows how the total variation distance decreases over time (t), indicating the 

convergence of the Markov chain's distribution to the stationary distribution. It starts at 0.015 

(maximum difference) and approaches 0 as the chain mixes with a threshold of about 0.001; it can 

be observed that at time t=1 the chain is far from the stationary distribution and gets closer to the 

stationary distribution as the total variation distance decreases. Figure 3 shows the maximum 

difference is about 0.05 with a threshold of 0.001 at time, t= 1, and a mixing time of t=3. This 

implies that the time it takes the yam crop to be close to its threshold, of the stationary distribution 

is 3 years. 

CONCLUSION  

Two sequences of rainfall and temperature provide the necessary climatic conditions for crop 

growth. The climatic sequence exhibits the Markov Property, offering a dependable approach for 

analyzing and forecasting time series data that demonstrate Markov dependency (see table 1). All 

identified states are communicating, aperiodic, and ergodic, thus exhibiting limiting distributions. 

The analysis of the first-order Markov chain demonstrates that the climatic sequence related to 

yam growth tends to be more likely unfavourable, indicating the need to develop effective 

strategies to mitigate the impact of climate change and support food sustainability. This study 

indicates that Makurdi, Nigeria faces unfavourable yam yields annually, with favourable yields 

occurring approximately every three years. Based on these findings, it is advised that farmers in 

Makurdi should reduce their investment in yam during periods of unfavourable conditions and 

increase it during favourable times. 
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