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Abstract:

Multicollinearity poses a significant challenge to the accuracy and reliability of Poisson
regression models, leading to inflated variance and biased estimates. This study proposes a novel
estimation approach, leveraging a modified version of the Liu estimator, to mitigate the adverse
effects of multicollinearity in Poisson regression models. A comprehensive simulation study is
conducted to evaluate the performance of the proposed estimator against traditional estimators,
including the Maximum Likelihood Estimator (MLE), Ridge Regression Estimator (RRE), Liu
Regression Estimator (RRE) and Modified Ridge Type Regression Estimator (MRTE). The
results demonstrate the superior performance of the proposed estimator both in theoretical and
simulation approach, particularly in simulation approach scenarios characterized by large sample
sizes, from small to large number of explanatory variables and different levels of
multicollinearity. Also, a biasing parameter k of the median version also accounted for the
smallest mean square error (MSE), under different experimental design used in the study. The
findings of this study contribute to the ongoing discussion on multicollinearity in Poisson
regression models and provide a valuable estimation approach for researchers and practitioners
dealing with multicollinearity count data.

Keywords: multicollinearity, Poisson regression, Maximum Likelihood estimator, simulation

study.
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INTRODUCTION

The Poisson regression model (PRM) is a vital statistical tool for analyzing count data
across various disciplines. It is particularly useful for examining relationships between
explanatory variables and response variables representing rare events or non-negative integer
counts. The PRM's significance lies in its ability to accommodate data with distinct
characteristics, such as event occurrence distributions. This makes it a fundamental component in
epidemiology, ecology, economics, and numerous scientific disciplines.
The PRM is widely used for estimating multiplicative model parameters and is employed using
the maximum likelihood estimation (MLE) method. However, in multiple regression modeling,
interpreting individual parameter estimates becomes challenging when explanatory variables are
highly correlated—a phenomenon known as multicollinearity.
Multicollinearity poses a significant challenge when estimating unknown regression coefficients,
particularly in PRM. Mansson and Shukur (2011) highlighted the sensitivity of MLE to
multicollinearity, emphasizing the need to address this concern.
To address multicollinearity, Ridge regression (RR) analysis is commonly used. RR involves
adding a positive value k to the variance-covariance matrix. Various techniques have been
proposed for estimating Kk, including those by Alkhamisi et al. (2006), Alkhamisi and Shukur
(2008), and others. Mansson and Shukur (2011) introduced the Poisson ridge regression
estimator (PRRE) method, demonstrating its superiority to MLE in Poisson regression analysis.
Another approach is the Liu estimator (LE) (1993), which has been extended to propose the
Poisson Liu regression (PLE) method. Amin et al. (2021) introduced the adjusted Liu estimator
for Poisson regression (PALE), which has proven effective in addressing multicollinearity

challenges. Recent studies like Amin et al. (2020), Kibra et al. (2015), Rashad and Algamal,
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(2019) have also worked on Poisson regression model, Asar and Genc (2018), Cetinkaya and
Kagiranlar (2019) suggested new two-parameter estimators, demonstrating their superiority to
one-parameter estimators. The objective of this article is introducing a new two parameter biased
estimator and some of its biased parameter k for the Poisson model. Additionally, the maximum
likelihood, Ridge, Liu, and Kibra- Lukman estimators were compared with the proposed
estimator.

METHODOLOGY

The PRM was used to analyze data, which consist of counts. In this model, the response variable,
denoted as Yi, follows a Poisson distribution. The Poisson distribution is characterized by its

probability density function, which is expressed as follows:

f(yi)=—exp(;ﬁi)”iy,

y, =0,12,... 1)
Where x4 >0 forall i=1, 2, ..., n, and the expected value and variance of y, are equal to z . The
expression of g is represented using the canonical log link function and a linear combination of
the explanatory variables. This can be written as, where x;, represents the ith row of the data

matrix X. The data matrix X has dimension nx(p+1), where n represents the number of

observations and p the number of explanatory variable. The vector £ has dimensions of (p + 1) x
1 and contains the coefficients for the linear combination.
The maximum likelihood method is a widely recognized technique for estimating model

parameters in the PRM. The log-likelihood function for the PRM is provided below.
((B)=2 [ yixp—exp(xp)-log(y;")] 2)
i=1

The PMLE is determined by calculating the first derivative of Equation (2) and equating
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it to zero. This process can be expressed as follows:

S(ﬂ)=%/;;y)=g[yi —exp(x.8) ¥ ®3)

Where it is given that Equation (3) presents a nonlinear relationship with respect to £. To
overcome this nonlinearity, the iteratively weighted least squares (IWLS) algorithm can be
employed. This algorithm allows for the estimation of the PMLE values for the Poisson

regression parameters as follows:

,éPMLE :(‘] )_1 XTV\7§’ 4)

(v ~4)

Where J = X"WX,$§is an n — dimensional vector with the ith element  § =log a+—--=,

and W =diag [/}i]. The MLE follows a normal distribution, with a covariance matrix that is

equal to the inverse of the second derivative, which is given by

; a [
COV(ﬂPMLE):{_E[aﬂjaﬂ}]:l =J

(%)
The mean square error can calculated as follows:
. P 1
MSE (ﬂPMLE ) :Z_
=4 (6)

Where A is the ith eigen value of the matrix J

Poisson Ridge Regression Estimator (PRRE)
In response to the multicollinearity issues in generalized linear models (GLMs), Segerstedt
(1992) introduced, inspired by Hoerl and Kennard (1970), the RR estimator. Multicollinearity

arises when explanatory variables in the PRM are correlated, which causes problems with MLE.
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To address this, Manson and Shukur (2011) proposed the RR estimator for the PRM, thus
offering a solution to the multicollinearity challenges. The formulation and characterization of

the PRRE are as follows:

ﬁPRRE = (‘J +kl )71 ‘]ﬂAPMLE (7)
k > 0 is the biasing parameter, | is a p X p identity matrix and the optimal value of k is defined as:

= ®

k:
o

where &’ is the ith component of o, =Q’#, Q is the matrix whose columns are the eigenvectors
of J.

Poisson Liu Estimator (PLE)

Mansson et al. (2011) introduced an alternative estimator known as the PLE to address

multicollinearity more effectively than the previously mentioned PRRE. The PLE is defined by

the following equation:

Pore =(3+1) (3 +dI) Bopye, 0<d <1 (9)

where d according to [9] may be estimated by the following formula:

' (10)
Poisson Kibra Lukman Estimator (PLE)
Following Kibra and Lukman (2020), a new estimator for the Poisson regression model known

as PKLE in addressing the effect of multicollinearity was introduced and is defined as follows:

ﬁPKLE :(J+k| )71(‘]+k|)ﬁPMLE’ k>0 (11)

169
ISSN NUMBER: 1116-249X



Albert et al. JRSS-NIG. Group Vol. 2(1), 2025, pg. 165 - 185

where k according to Kibra and Lukman may be estimated by the following formula:

2
Badawaire et al (2023), suggested a two parameter biased estimator to handle the problem of

multicollinearity when dealing with linear regression models and the estimator is defined as:

B =(Z+1) 7 (Z+d1)(Z+K1) " (Z—KI) By (13)

Where Z= XX, k>0 and 0<d <1, and k and d are both biasing parameters.

The above estimator proposed by Badawaire et al (2023) will be introduce into the Poisson

regression model and its expressed below as:

Boomopr = (3 +1) (3 +d1)(3 +k1) (3 =KI) Bopue (14)
Where J = X"WX , where k and d are the estimated biasing parameters for pprop1.

Bowne = () XV (15)
The Canonical Form of PPROP1 Estimator.

The Poisson regression model's canonical form is defined as follows, based on the general form
provided in equation (15):

where =Q"# and Q'X'WXQ=A=diag(4,4,,....4,) where A, 4,,..,4, >0 are said to be

the ordered eigenvalues of XWX and Q is the matrix whose columns are the eigenvectors of
XWX
Canonical form of some of the already existing estimators are as follows:

. 1 ~ L
OpyLE :(A) Q' XW2 (16)

) 1A
Cppre = (A+ ki ) Allpy e (17)
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Qe =(A+1) 7 (A+dl) Gy e

(18)

Qe = (A+KL) (A=Kl ) Gy (19)
Therefore, the following is the canonical form of the PPROP1 estimator as expressed below:
Gopropn = (A+1) " (A+d1)(A+KI) " (A=K ) Goppie 20)
Determination of the Mean Square Error (MSE) for the PPROP1Estimator
The MSE of the PML estimator can be expressed below as:

n A oA
MSE(f)=E(6-0)" (6-0) ,
= tr(cov(0)) + bias(d)" bias(6) . (21)
Hence, for the purpose of practicality, equation () can be re expressed as:

p

MSE (& = : (22)

( PMLE) ;%
MSE (Gopee ) Zp: 4 Zp: e/ (23)

a — i + i
TR (A +K) T (4 k)
P (ﬂ, +d )2 P a?
MSE (@p e )= ————+(d -1)? ' (24)
b (4 —k)2 P 4k%a?

MSE (& = ' + ' (25)

( PKLE) ;ﬂ,‘(ﬂiﬁ-k)z ;(/,11+k)2

Following the works of by Badawaire et al (2023) [11], the MSE of the estimator (PPROP1) can

be expressed as

MSE (& = _p L(’?’k?

k (d +1))2 o (26)
+ k)2 '

ppropl)

A +d) ]Jri{((zku—d)ﬂ,,

(A+1) (4
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Theoretical Comparison of the proposed PPROP1 with some other Estimators using the

MSEM Criterion.

In this section, the property of the newly proposed estimator ,B is discussed. For the newly

ppropl
developed estimator will be compared with some existing estimators. The needed lemmas is

presented below for the convenience of theoretical comparison.

Lemma: Suppose that «; = M,y,i=12be the two competing estimators of &z . Assume that
| =Cov(&,)-Cov(d,)>0, then,  MSEM (&,)-MSEM(&,)>0if and only if
v'z(l +vlv1')sl, where v, denotes the bias of &; , according to Trenkler and Toutenburg (1990).

The mean square error matrix (MSEM) of an estimator /3 is defined as
MSEM (3) = Cov( 3 )+ bias| ﬁ)(bias( ﬂ))
Where COV(B) is the dispersion matrix and bias(,[f) = E(,@)—,B

The bias and dispersion matrix of ¢ ., can be computed as follows:

propl

Bias (@,pp: ) = | (A+1) " (A+dl) (A+KI )" (A=KI)=1 | 27)

COV( s ) =(A+1) " (A+dl) (A+KI) " (A=KI)A™(A+L) " (A+dl) (A+kI) " (A—kI)(28

)

The MSEM and MSE in terms of eigenvalues are defined respectively as

MSEM (dppropl) = Cov(dppmpl) + Bias(dppmpl) Bias(dppmpl)

(AL (A+dl) (A+k) T (A=KDAT(A+D) T (A+dl) (A+K) (A=K )+
[(ar1)t (Asan) (A+k ) (A=K =1 aa] (A+1)7 (A+dl) (A+K )l(A_ku)_q(zg)
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MSE (& g1 ) =t (MSEM ()|

MSE(dppropl)ZI: (4 - )Zgﬂ,ﬂr 2) ]+i{((2k+l_d)i‘ +k(d +1))2 y

Z(A+1) (A4 + = (A1) (A+k)

Comparison of &, and dp,.¢

Gome =(A) QTXW2 with MSEM (drpyc )= A"
Theorem 1. &, is better than &, . if

o ((A+1)* (A+dl) (A+k )—1(A_k|)_|)'[(A-l_(A+1)—2(A+d|)2(A+k| )2 (A=K ))]

((A+D) 7 (A+dl) (A+k) " (A=K)=T)a<1

Proof

The difference of the dispersion is

COV(@nye )~ COV(@pppn ) = QA7 = A7 (A+1) (A1 (AKI ) (A=K ) )QT

Q' (30)

It is observed that (A‘l -AH(A +1)72 (A+dl )2 (A+KkI )72 (A—kI )2) is positive definite since for

O<d<landk>0, 4(4 +1)2(ﬂ,I +k)2 — 4 (4 —k)z(ﬂbI +d)”>0. Hence, by lemma the proof is

completed.

Theorem 2: @, is better than Qppee if

ppropl

a‘((A+1)1(A+d|)(A+k|)l(A—kl)—l)[Jl+((A+k) o ((A+k)* - )T

((A+2)" (A+dr) (A+k) ™ (A=KI)=1)a <1
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3= Q(A(A+K)T = AT (A+1) 7 (A+dI) (A+k) (A=K ) )QT
Proof
The difference of the dispersion is

COV (e ) ~ COV (@) =Q(A(A+K) " = A7 (A+1)7 (A+dl ) (A+KI ) (A=K |Q

ppropl

Q' (31)

e A
“ G A (A k)

It is observed that (A(A+k)’2—A‘l(A+1)’2(A+dI)2(A+k| ) *(A—KI )z)will be positive

definite if and only if 42(4 +1)" (4 —k)" (4 +d)*>0.For 0 <d <1 and k > 0, by lemma 3

the proof is completed.

Theorem 3. &, is better than &,  if

o ((A+1)* (A+al) (A+k|)1(A—k|)—l)[J2+((A+1)l(A+d)—I)aa'((A+1)1(A+d)—l)r

((A+2)" (A+dl) (A+k) (A=k)=1)a <1
J, =Q(A-1(A+d)2 (A+2) " =AM (A+2) " (A+dl) (A+k) " (A—KI )2)QT

Proof

The difference of the dispersion is

7| Q (32)

A (A+d) (A+2) " = A(A+L) " (A+dl) (A+Kl) " (A—KI)* will be positive definite if and

only if (4 + k)2 —(4 - k)2 >0 for k>0 and 0 <d < 1. Hence, by lemma the proof is completed.

|
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Theorem 4: ., is better than &, if

-1

& ((A+1)" (A+al) (A+k|)l(A—kI)—I)‘[J3+((A+k)1(A—k)—|)aa'((A+k)1(A—k)—l)}
((A+2)" (A+ar) (A+k) " (A=KI)=1)a <1

3, =Q(A (A=K (A k) - A (A (e (aa) -k )

Proof

The difference of the dispersion is
COV (@ )~ COV( s ) = Q(A’l (A=) (A+K) = A (A+D) " (A+dl) (A+KI ) * (A—KI ) )QT

(A=K (A-KF(4+a) |
A(A+K) A4 (A +1) (A +K)

= Qdiag Q' (33)

A (A=K) (A+K) "= A (A+1)*(A+dI) (A+KI) " (A—KI ) will be positive definite if and
only if (4 +1)° —(4 +d)* >0 fork>0and 0 < d < 1. Hence, by lemma the proof is completed.

Theorem 5: &, is better than o ¢ if

o ((A+1) (A+dl) (A+K )1(A-k|)-|)'[a4+((A+1)1(A_(k+d))_|)aa'((A+1)1(A_(k+d))-|)r
((A+2) (A+dl) (Aska ) (A=K1)=T)ar<1

J, :Q(Al(A—(k+d))2 (A+2) " = A (A+D)° (A+dl) (A+kl ) (A—kI )2)QT

Proof

The difference of the dispersion is

COV (G ) = COV( @ preps ) = Q(Al(A—(k +d)) (A +1)‘2 ~A(A+L) 7 (A+dl ) (A+K) P (A—KI )Z)QT

(A-(c+d)) (k) (4+0)" |
AA+D A (A4 +1) (4 +Kk)

= Qdiag

! i=1
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A‘l(A—(ker))2 (A+1)_2—A‘1(A+1)_2 (A+d|)2 (A+kl )_2 (A—k )2 will be positive definite
if and only if (4 +k)(4—(k+d))—(4+d)(4-k)>0 for k >0 and 0 < d < 1. Hence, by

lemma the proof is completed.

Selection of biasing parameters k and d for &,

MSE (a(k,d)) = E|(@(k,d)- ) ((k,d)- )]
g(k,d)= MSE(&(k,d)) = tr[MSEM (&(k,d))]

zgﬂ,+d ]*Z{( (2k+1-d) 4

G | & Gy G

k(d +1)) ,

0 |

Considering d to be fixed, an optimal value of k is the value that minimizes MSE (dppmpl) .

Then, by differentiating g(k, d) w.r.t. k and equating to 0, we have

— A (4 +d)+(d-1) Ao
(A +d)+ A4 (24 +d +1)a?

(34)

However, k depends on the unknown ¢;. For practical purposes, it will be replaced by its
unbiased estimator &; . Hence, this will be obtained

o Al+d)+(d-D A

(4 +d)+4 (24 +d +1)é}

Equation (34) returns the biasing parameter for the PKL estimator when d =1, which is defined
as follows:

A
1+2167

k=
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Following the works of Kibra (2003), Lukman and Ayinde (2017) and Oladapo et al (2022 and
2024). Hence, applying all these their concepts the below shrinkage parameters are examined for

the proposed estimator and they are defined as follows:

K, = Minimum A (A +d)+(d-1) A 35
MIN (4 +d)+4 (24 +d +1)&} (35)

C Med (A+d)+(d-2) A
kMED_Medlan(Mer) A (A4 )& (36)

Simulation Experiment
Simulation Design. Since a theoretical comparison among the estimators is not sufficient, as

simulation experiment has been carried out in this section. We generate the response variable of

the PRM from the Poisson distribution Po(z) where g =exp(xf3), i=12,..,n

ﬂ:(ﬁo,,ﬁl,ﬂz,...,ﬁp )’, such that x. is the ith row of the design matrix X and following Kibra

(2003), Oladapo et al (2023), Owolabi et al (2022) , the X is generated as follows :

1

X; =(1- rho? )Zz +rhoz =12 .,nj=12.,p. (37)

ipr1y ! i
where rho ( pz) is the correlation between the explanatory variables. The values of p are chosen
to be 0.8, 0.9, 0.95 and 0.99. The mean function is obtained for p =2, 4, 10 and 12 regressors,
respectively. The slope coefficients chosen so that ZE’,BJZ =land g =p,=...= B, for sample

sizes 200,400,600,800 and 1000. Simulation experiment conducted through R programming

language Oladapo et al (2023).

1 1000

The estimated MSE is calculated as: MSE(f )_mz(ﬂ -p) (ﬂ -5) (38)
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,Bi* represents the vector of estimated values for the Ith simulation experiment of one of the

four/five estimators (PMLE, PRRE, PLE, PKLE and PMTPLE), and the estimator with the
lowest MSE is considered the most suitable.
Table 1. Simulated MSE when p =2

SAMPLE

SIZE RHO PMLE PRRE PLE PK-LE PPROP1 | PPROP1IME | PPROP1IMN
0.8 2.40098 | 0.01618 | 0.18414 | 0.01602 | 0.18414 0.01583 0.01617

200 0.9 2.77271 | 0.02271 | 0.18148 | 0.02246 | 0.18148 0.02159 0.02313
0.95 2.74107 | 0.03364 | 0.18690 | 0.03309 | 0.18690 0.02916 0.03685
0.99 2.79101 | 0.11691 | 0.23218 | 0.11350 | 0.23218 0.13843 0.02996
0.8 2.20795 | 0.00816 | 0.16068 | 0.00812 | 0.16068 0.00811 0.00814

400 0.9 2.44408 | 0.01081 | 0.15717 | 0.01073 | 0.15717 0.01062 0.01081
0.95 2.48999 | 0.01651 | 0.16178 | 0.01632 | 0.16178 0.01570 0.01673
0.99 2.57354 | 0.06014 | 0.18359 | 0.05873 | 0.18359 0.03301 0.01000
0.8 2.55743 | 0.00502 | 0.14160 | 0.00500 | 0.14160 0.00499 0.00501

600 0.9 2.52855 | 0.00661 | 0.14176 | 0.00658 | 0.14176 0.00654 0.00661
0.95 2.52227 | 0.01007 | 0.13648 | 0.00999 | 0.13648 0.00981 0.01012
0.99 2.53780 | 0.03856 | 0.15466 | 0.03777 | 0.15466 0.02872 0.05193
0.8 2.51524 | 0.00319 | 0.13218 | 0.00319 | 0.13218 0.00318 0.00319

300 0.9 2.46778 | 0.00453 | 0.12925 | 0.00451 | 0.12925 0.00450 0.00452
0.95 2.47343 | 0.00657 | 0.12944 | 0.00653 | 0.12944 0.00647 0.00658
0.99 2.49409 | 0.02419 | 0.13328 | 0.02377 | 0.13328 0.02116 0.02609
0.8 2.66917 | 0.00265 | 0.13990 | 0.00265 | 0.13990 0.00264 0.00265

1000 0.9 2.39265 | 0.00338 | 0.13986 | 0.00338 | 0.13986 0.00337 0.00338
0.95 2.42517 | 0.00481 | 0.14008 | 0.00479 | 0.14008 0.00476 0.00481
0.99 2.46446 | 0.01913 | 0.13174 | 0.01885 | 0.13174 0.01746 0.02003
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SAMPLE

SIZE RHO PMLE PRRE PLE PK-LE PPROP1 | PPROP1IME | PPROP1IMN

0.8 2.3036 0.0206 | 0.1096 0.0201 0.1096 0.0198 0.0205

200 0.9 2.2428 0.0285 | 0.1098 0.0278 0.1098 0.0269 0.0287

0.95 2.1942 0.0442 | 0.1134 0.0425 0.1134 0.0397 0.0458

0.99 2.4006 0.1603 | 0.1743 0.1464 0.1743 0.0740 0.2825

0.8 2.2951 0.0083 | 0.0829 0.0082 0.0829 0.0082 0.0083

400 0.9 2.2870 0.0109 | 0.0761 0.0108 0.0761 0.0107 0.0108

0.95 2.2662 0.0160 | 0.0716 0.0157 0.0716 0.0154 0.0159

0.99 2.2677 0.0568 | 0.0984 0.0538 0.0984 0.0463 0.0637

0.8 2.2737 0.0046 | 0.0718 0.0045 0.0718 0.0045 0.0045

600 0.9 2.0692 0.0058 | 0.0708 0.0057 0.0708 0.0057 0.0057

0.95 2.2535 0.0087 | 0.0690 0.0086 0.0690 0.0085 0.0087

0.99 2.2589 0.0354 | 0.0917 0.0341 0.0917 0.0320 0.0365

0.8 2.2043 0.0046 | 0.1026 0.0045 0.1026 0.0045 0.0046

300 0.9 2.2855 0.0061 | 0.0805 0.0061 0.0805 0.0061 0.0061

0.95 2.2403 0.0094 | 0.0644 0.0093 0.0644 0.0092 0.0094

0.99 2.2307 0.0384 | 0.0931 0.0370 0.0931 0.0346 0.0397

0.8 2.2302 0.0035 | 0.0882 0.0035 0.0882 0.0035 0.0035

1000 0.9 1.9485 0.0047 | 0.0771 0.0046 0.0771 0.0046 0.0047

0.95 2.2216 0.0073 | 0.0800 0.0072 0.0800 0.0072 0.0073

0.99 2.2722 0.0279 | 0.0929 0.0271 0.0929 0.0260 0.0283
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Table 3. Simulated MSE when p = 10
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SASl\l/;;LE RHO PMLE PRRE PLE PK-LE PMRTE PPROP1 | PPROPIME | PPROP1IMN
0.8 2.13949 | 0.015119 | 0.045769 | 0.014653 | 0.045785 | 0.045769 0.014426 0.014907

200 0.9 | 2.138529 | 0.017158 | 0.038454 | 0.016627 | 0.038454 | 0.038454 0.016309 0.016971
0.95 | 2.121092 | 0.026051 | 0.049048 | 0.025001 | 0.049048 | 0.049048 0.02414 0.025946

0.99 | 2.212768 | 0.100435 | 0.090595 | 0.090416 | 0.090595 | 0.090595 0.070737 0.115384

0.8 | 2.206066 | 0.010111 | 0.053834 | 0.009937 | 0.053834 | 0.053834 0.00985 0.010029

400 0.9 | 2.038978 | 0.012236 | 0.044147 | 0.011991 | 0.044147 | 0.044147 0.011853 0.012134
0.95 | 2.116642 | 0.018617 | 0.040071 | 0.018073 | 0.040071 | 0.040071 0.01768 0.018484

0.99 | 2.188965 | 0.073314 | 0.08201 | 0.067736 | 0.081995 | 0.08201 0.058616 0.078773

0.8 | 2.175397 | 0.003987 | 0.021625 | 0.003954 | 0.021625 | 0.021625 0.003943 0.003965

600 0.9 | 2.118993 | 0.004183 | 0.021302 | 0.004149 | 0.021302 | 0.021302 0.004138 0.004159
0.95 | 2.070442 | 0.005601 | 0.017897 | 0.005544 | 0.017904 | 0.017897 0.005525 0.005564

0.99 | 2.077489 | 0.019723 | 0.029623 | 0.019121 | 0.029623 | 0.029623 0.018677 0.019593

0.8 | 2.055321 | 0.002245 | 0.02346 | 0.002231 | 0.02346 | 0.02346 0.002229 0.002234

300 0.9 | 2.114642 | 0.002438 | 0.017364 | 0.002424 | 0.017364 | 0.017364 0.00242 0.002427
0.95 | 2.037324 | 0.00343 | 0.018644 | 0.003402 | 0.018644 | 0.018644 0.003395 0.00341

0.99 | 2.041198 | 0.012816 | 0.023556 | 0.012484 | 0.023556 | 0.023556 0.01229 0.012686

0.8 | 2.071076 | 0.002555 | 0.036873 | 0.002539 | 0.036873 | 0.036873 0.002535 0.002542

1000 0.9 | 2.107265 | 0.002755 | 0.021554 | 0.00274 | 0.021554 | 0.021554 0.002737 0.002744
0.95 | 2.076337 | 0.003829 | 0.025042 | 0.003801 | 0.025042 | 0.025042 0.003793 0.003809

0.99 | 2.078004 | 0.014191 | 0.030891 | 0.013857 | 0.030891 | 0.030891 0.013655 0.014066
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SAMPLE SIZE | RHO PMLE PRRE PLE PK-LE PPROP1 PPROP1ME | PPROP1MN
0.8 | 2.126719 | 0.037689 | 0.088617 | 0.035803 | 0.08861699 0.034026 0.037943

200 0.9 | 2.067244 | 0.052175 | 0.081729 | 0.048897 | 0.08172946 0.045061 0.053521
0.95 | 2.164192 | 0.085013 | 0.096701 | 0.077723 | 0.09670147 0.065685 0.093079

0.99 | 2.336534 | 0.349346 | 0.177611 | 0.29002 | 0.17761148 0.083956 0.463425

0.8 | 2.115778 | 0.005877 | 0.028905 | 0.005793 | 0.02890531 0.005767 0.005821

400 0.9 | 2.107341 | 0.006098 | 0.020245 | 0.006014 | 0.02024496 0.005985 0.006043
0.95 | 1.99668 | 0.00838 | 0.023342 | 0.008235 | 0.02334203 0.008171 0.008301

0.99 | 2.090661 | 0.029224 | 0.043479 | 0.027847 | 0.04347948 0.026626 0.029212

0.8 | 2.092972 | 0.00233 | 0.018864 | 0.002314 | 0.01886448 0.002311 0.002318

600 0.9 | 2.036135 | 0.002039 | 0.014668 | 0.002028 | 0.01466849 0.002026 0.00203
0.95 | 2.045756 | 0.002613 | 0.012262 | 0.002598 | 0.0122615 0.002594 0.002601

0.99 | 2.072688 | 0.008659 | 0.021311 | 0.008515 | 0.02131098 0.00845 0.008582

0.8 | 2.064028 | 0.002268 | 0.027079 | 0.002255 | 0.02707853 0.002252 0.002257

300 0.9 | 2.086612 | 0.002172 | 0.019705 | 0.002162 | 0.0197054 0.00216 0.002164
0.95 | 2.064971 | 0.002796 | 0.016087 | 0.00278 0.016087 0.002776 0.002784

0.99 | 2.067259 | 0.010061 | 0.022382 | 0.009876 | 0.02238226 0.009784 0.00997

0.8 | 2.043705 | 0.001218 | 0.016006 | 0.001214 | 0.01600647 0.001213 0.001215

1000 0.9 | 2.039252 | 0.001112 | 0.014395 | 0.001108 | 0.01439503 0.001108 0.001109
0.95 | 2.042817 | 0.00145 | 0.013499 | 0.001445 | 0.01349866 0.001444 0.001445

0.99 | 2.048956 | 0.005048 | 0.012853 | 0.00499 | 0.01285322 0.004971 0.005011

Simulation Results and Discussion
The simulation study's results are presented in Tables 1-4, which display the mean squared error

(MSE) values for each estimator under various scenarios, including different levels of

multicollinearity (p), sample sizes (n), and numbers of explanatory variables (p). The smallest

MSE value in each row is highlighted in bold.

The results provide a comprehensive analysis of the estimators' performance in the presence of

multicollinearity. The findings offer valuable insights into the challenges and potential solutions

for parameter estimation in complex regression scenarios. Notably, the PMLE consistently

underperformed, indicating the need for caution or alternative approaches when multicollinearity

iS a concern.
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Key Findings

1. Impact of Multicollinearity: The results confirm that multicollinearity adversely affects
estimation accuracy. As p increased, all estimators experienced a significant increase in MSE.

2. Sample Size: A larger sample size (n) was found to be crucial for improving estimation
accuracy, as it consistently led to a decrease in MSE across almost all estimators.

3. Number of Explanatory Variables: The results show that the MSE fluctuated across all
estimators as the number of explanatory variables (p) increased from 2 to 12. This suggests that
additional variables introduce higher levels of multicollinearity.

4. Performance of the Proposed Estimator: The proposed estimator consistently outperformed
other estimators, including the PMLE, PRRE, PLE, and PMRTE, across various scenarios. The
proposed estimator demonstrated superior performance in the presence of multicollinearity.

5. Biasing k Parameter: The results show that biasing the k parameter of the median and

minimum version of the proposed estimator still offered more favorable values in terms of MSE.

However, the PPROP1 estimator proposed in this study, and which uses the biasing
parameter k (median) consistently yielded the minimum MSE, making it a reliable choice for
researchers facing similar regression challenges when using Poisson regression where the
explanatory variables are correlated. Previous works has shown that using PRRE, PLE, PMRTE
and other existing estimators in handling multicollinearity problem in Poisson regression keeps
solving the multicollinearity problem. Literatures also establishes that estimators will be efficient
estimator if it has the lowest MSE value, therefore from this study the proposed estimator has the
lowest MSE with the compared with other existing estimators used in this study. So therefore,

PPROPL1 can be used to handle multicollinearity problem.
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Conclusion

This simulation study investigated the performance of various estimators in the presence of
multicollinearity in Poisson regression models. The results show that multicollinearity
significantly affects estimation accuracy, and that increasing sample size can improve estimation
accuracy. The proposed estimator consistently outperformed other estimators, including the
PMLE, PRRE, PLE, and PMRTE, across various scenarios. Specifically, the PPROP1 estimator,
which uses the median version of the biasing parameter k, emerged as the most reliable choice
for researchers facing similar regression challenges.

The findings of this study have important implications for researchers and practitioners who deal
with Poisson regression models. They highlight the need to carefully consider the effects of
multicollinearity and to explore the proposed estimator approaches that can provide more
accurate and reliable results.
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