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ABSTRACT 

Under-five mortality (U5M) data often exhibit complex spatial dependencies and nonlinear 

temporal patterns that conventional survival models may fail to capture adequately. This study 

provides an extension to Bayesian Accelerated Failure Time (AFT) model that simultaneously 

accounts for nonlinear (NL) effects of continuous covariate, time-varying acceleration factors, 

and spatial heterogeneity in child survival analysis. Using data from the 2018 Nigeria 

Demographic and Health Survey (NDHS), the study extended the Weibull AFT model by 

incorporating B-splines for nonlinear effects of continuous covariate, random-walk time-varying 

coefficients, and intrinsic conditional autoregressive (ICAR) spatial random effects. Model 

performance was evaluated using Deviance Information Criterion (DIC) and Watanabe-Akaike 

Information Criterion (WAIC). Results demonstrate that the extended model (flexible spatial AFT 

model) significantly outperforms traditional parametric specifications. The findings revealed 

breastfeeding as the strongest protective factor (time ratio [TR]=5.95, 95% CI: 5.65-6.25), 

followed by complete antenatal care utilization (TR=2.14, 95% CI: 1.86-2.46) and longer birth 

intervals (TR=1.17, 95% CI: 1.12-1.23). Spatial analysis identified significant geographic 

clustering, with northern Nigerian states showing higher survival times than southern regions. The 

time-varying effects revealed that urban residence advantages diminish as children age while 

breastfeeding protection remains stable. This study provides a methodological advancement in 

survival analysis by simultaneously integrating NL effect of continuous covariates, non-constant 

acceleration factor and spatial effects within the AFT framework, offering policymakers a refined 

tool for targeted U5M interventions. The approach is broadly applicable to clustered survival data 

in global health and demographic research.   

Keywords: Accelerated Failure Time model, under-five mortality, spatial survival analysis, 

Bayesian inference, nonlinear effects, time-varying coefficients 

 

1.0 Introduction 

Under-five mortality (U5M) data from Demographic and Health Surveys (DHS) often exhibit 

spatial dependencies due to regional disparities in healthcare access, socioeconomic conditions, 

and environmental factors. Traditional survival models, such as the Accelerated Failure Time 

(AFT) model, frequently overlook these spatial effects, leading to biased estimates and obscured 

area-level determinants of child survival (Egbon, 2022). The classical AFT model relies on 

restrictive assumptions, including constant acceleration factors and linear covariate effects on log 
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survival time (Cox & Oakes, 1984). However, in multivariable analyses, these assumptions may 

not hold for certain covariates, limiting the model's applicability. Similarly, flexible extensions of 

the Cox proportional hazards (PH) model often encounter violations of key assumptions, such as 

non-constant hazard ratios (violating PH) or nonlinear covariate effects on log hazard sometimes 

both for the same continuous covariate. 

While flexible extensions of PH models have been extensively developed to address non-

proportionality and nonlinear effects (Grambsch & Therneau, 1994; Huang & Liu, 2006; Sauerbrei 

et al., 2007), similar advancements in AFT models remain limited. Recent methodological 

progress has introduced semiparametric AFT models (Zhang et al., 2018; Lin et al., 2021), 

demonstrating superior performance in handling time-varying and nonlinear covariate effects, 

particularly in oncology, genomics, and clinical trials (Wu et al., 2021; Kang et al., 2020). 

However, their application to clustered survival data requiring spatial dependency adjustments 

remains underexplored, highlighting a critical gap in the literature. 

Empirical studies on U5M have predominantly employed Cox PH, parametric survival, and spatial 

survival models. Spatial analyses in Kenya (Daniel, 2021) and Nigeria (Fagbamigbe & Nnanatu, 

2022; Egbon et al., 2022) reveal significant geographic clustering of mortality risks, with 

socioeconomic, maternal, and healthcare access factors as key determinants. Studies across Sub-

Saharan Africa (Fenta et al., 2025; Yalew et al., 2022) highlight the role of birth spacing, maternal 

education, and household wealth in child survival. In Nigeria, Cox PH models (Wegbom et al., 

2019; Okoli et al., 2022) and Bayesian spatial approaches (Ghilagaber et al., 2013) consistently 

identify regional disparities, with higher mortality risks in northern states. Similar patterns are 

observed in Bangladesh (Fatima-Tuz-Zahura et al., 2017) and India (Singh & Singh, 2023), where 

multilevel survival models underscore the influence of birth order, maternal age at birth, and 

sanitation.  

Despite these advances and numerous studies, few integrate flexible AFT models (model that 

relaxes the two key assumptions of classical AFT) with spatial dependencies, leaving a critical gap 

in modeling U5M’s complex risk structures. This study bridges this gap by employing an advanced 

spatial AFT framework to enhance the precision and interpretability of U5M determinants in 

clustered DHS data. The specific objectives of the study include (i) to provide an extended 

Bayesian Accelerated Failure Time model that incorporates nonlinear covariate effects, time-

varying coefficients, and spatial dependencies for analyzing U5M patterns in Nigeria; (ii) to 
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compare the performance of the extended flexible AFT with spatial random effect model against 

conventional AFT models using Bayesian model selection criteria (DIC and WAIC) (iii) to identify 

the key determinants of under-five mortality and, (iii) to map spatial variations in child mortality 

risk across Nigerian states in order to identify significant geographic clusters of high and low 

mortality risk 

2.0 Materials and Methods 

The study utilized data from the 2018 Nigerian Demographic and Health Survey (NDHS), which 

were extracted, cleaned, and analyzed using STATA and the Integrated Nested Laplace 

Approximation (INLA) approach, implemented via the R-INLA package. The outcome variable 

was the time to death within five years of birth, with children who survived beyond this period 

treated as censored observations. An event (U5M) was recorded if a child died before reaching 

their fifth birthday.  

2.1 Variables Classification 

The careful selection of variables from the NDHS data is crucial for ensuring the study's relevance 

and validity. The variables chosen are those that are directly related to the research hypothesis and 

are supported by existing literature on the determinants of U5M. By focusing on a targeted subset 

of variables, researchers can effectively address the study's objectives and provide meaningful 

insights into the factors influencing U5M. 

For the purpose of this study, the maternal age birth (Mage) was kept in its metrical forms while 

the other variables were categorical; breastfeeding status was coded “1” for children that were 

breastfed and “0” for those that were not breastfed (reference category); Preceding Birth Intervals 

(PBI) was coded 2 for More than 33 months, 1 for 24 – 33 months and 0 for less 24 months 

(reference category), Maternal Educational qualification (MEQ) was coded 3 for those with 

“Higher education”, 2 for those with “secondary education”, 1 for those with “primary education” 

and 0 for those with “No formal education” (Reference category). Wealth Index (WID) was coded 

0, 1, 2, 3 and 4 for “poorest (reference category)”, “poorer”, “Middle”, “rich” and “richest” 

respectively. The Maternal Body Mass Index (BMI) was coded 0, 1 and 2 for “Underweight 

(reference category)”, “Normal” and “Overweight/obese” respectively. Antenatal Care Utilization 

(ACU) was coded 0 and 1for those with “incomplete (reference category)” and “complete” 

antenatal care utilization respectively. The sex of child was coded “0” for those male and “1” for 

female. Type of Place of Residence (TPR) was coded “0” for urban (reference category) and “1” 
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for rural. Mosquito Net Use (MNU) was coded “0” for not usage and “1” for those that used it. 

Source of Drinking Water (SoDW) was coded “0” for improved and “1” for unimproved. 

2.2 Accelerated Failure Time Model Formulation 

In the conventional Accelerated Failure Time model, the natural logarithm of the event time, 

𝐿𝑜𝑔(𝑇), is modeled as a linear function of the covariate vector 𝑀 (Wei, 1992, Kalbfleisch & 

Prentice, 2002): 

𝐿𝑜𝑔(𝑇) = 𝛽0 + ∑ 𝛽𝑗𝑀𝑗 + 𝜎𝜀𝑝
𝑗=1         (1) 

Taking the exponent of both side of equation (1) resulted to: 

𝑇 = exp (𝛽0 + 𝜎𝜀) exp(∑ 𝛽𝑗𝑀𝑗
𝑝
𝑗=1 ) = 𝑇0 exp(∑ 𝛽𝑗𝑀𝑗

𝑝
𝑗=1 )    (2) 

Where: 

 𝑀𝑗 , 𝑗 = 1,2, … , 𝑝 are the covariates, 𝛽𝑗 , 𝑗 = 0,1, … , 𝑝 are the regression coefficient, 𝜎(> 0) is the 

scale parameter and 𝜀  is a random error which has a specified distribution. The term 

exp(∑ 𝛽𝑗𝑀𝑗
𝑝
𝑗=1 ) is the acceleration factor. Thus, if 𝛽𝑗 > 0 consequently, exp(∑ 𝛽𝑗𝑀𝑗

𝑝
𝑗=1 ) > 0, the 

covariates 𝑀𝑗 decelerated the survival process and if 𝛽𝑗 < 0 consequently, exp(∑ 𝛽𝑗𝑀𝑗
𝑝
𝑗=1 ) < 0, 

the covariates 𝑀𝑗 accelerated the survival process.    

In order to account for the spatial dependency, the Conventional AFT model (1) has been extended 

by incorporating spatial random effect (Egbon et al., 2022) as given as below:  

𝐿𝑜𝑔(𝑇) = 𝛽0 + ∑ 𝛽𝑗𝑀𝑗 + 𝑤𝑖 + 𝜎𝜀𝑝
𝑗=1        (3)   

𝑤𝑖 = 𝑛𝑖 + 𝑣𝑖  

Where the frailty term 𝑤𝑖 incorporate the effect of both heterogeneity via the non-spatial frailty 𝑛𝑖 

and spatial dependency through the spatial frailty 𝑣𝑖. The non-spatial frailty 𝑛𝑖 is the random effect 

which independently and identically distributed with mean 0 and variance 𝜎𝑢
2 that is,  

𝑛𝑖~𝑁(0, 𝜎𝑛
2) while the spatial frailty 𝑣𝑖 is define purely based on Intrinsic Conditional 

Autoregressive (ICAR) to account for the spatial dependency between clusters (states) 

2.3 Extended Flexible AFT Models 

Both the AFT model in (1) and its spatial random effect extension (3) assume (i) a linear 

relationship between each continuous covariate and log event time, and (ii) time-invariant log 

acceleration factors (𝛽), meaning the log time ratios remain constant over time. In this study, we 

provide a flexible extension of the AFT model to simultaneously relax both these conventional 

assumptions and to account for possible non-constant acceleration factor (Time-varying 
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coefficient) effect on log of time and/or non-linear (NL) effects of continuous covariate(s) while 

accounting for the spatial random effect. 

First, by relaxing the linearity assumption of conventional AFT model, the AFT model in (3) was 

extended to:  

𝐿𝑜𝑔(𝑇) = 𝛽0 + ∑ 𝜓𝑗𝑚𝑗 + ∑ 𝑓𝑘(𝑋𝑘)𝑞
𝑘=1 + 𝑤𝑖 + 𝜎𝜀𝑝

𝑗=1     (4) 

Where: 

∑ 𝜓𝑗𝑚𝑗
𝑝
𝑗=1  = Linear effect of categorical covariates 𝑚𝑗    

∑ 𝑓𝑘𝑋𝑘
𝑞
𝑘=1  = Non-linear effects of continuous covariates 𝑋𝑘  modelled via B-splines  

𝑓𝑘(𝑋𝑘) = ∑ 𝛾𝑘𝑛𝐶𝑘𝑛(𝑋𝑘)𝑑
𝑛=1   

𝐶𝑘𝑛(. ) = 𝑛𝑡ℎ basis function for 𝑋𝑘 (e.g. quadratic spline) 

𝛾𝑘𝑛 = Coefficients of the spline terms 

𝑑 = Degrees of freedom (Internal Knots +Spline order)  

Secondly, by relaxing the constant acceleration factor assumption, the AFT model in (3) was 

extended to: 

𝐿𝑜𝑔(𝑇) = 𝛽0 + ∑ 𝜓𝑗𝑚𝑗 + ∑ 𝛼𝑖(𝑡𝑖)𝑍𝑖
𝑝
𝑖=1 + 𝑤𝑖 + 𝜎𝜀𝑝

𝑗=1      (5) 

Where: 

∑ 𝜓𝑗𝑚𝑗
𝑝
𝑗=1  = Linear effect of categorical and metrical covariates 𝑚𝑗 (constant acceleration factor) 

∑ 𝛼𝑖(𝑡𝑖)𝑍𝑖
𝑝
𝑖=1 =  Linear effect of time-varying covariates 𝑍𝑖 

𝛼𝑖(𝑡) = is the time varying coefficient (non-constant acceleration factor) model through random 

work in INLA. 𝛼(𝑡) = 𝛼(𝑡 − 1) + 𝜂𝑡 evolves stochastically, allowing flexible, data-driven 

temporal variation.    𝜂𝑡~𝑁(0, 𝜏2) innovations (Gaussian noise) with variance 𝜏2.    

Thirdly, by relaxing both assumptions, the AFT model in (3) was extended to: 

 𝐿𝑜𝑔(𝑇) = 𝛽0 + ∑ 𝜓𝑗𝑚𝑗 + ∑ 𝛼𝑖(𝑡𝑖)𝑍𝑖
𝑝
𝑖=1 + ∑ 𝑓𝑘(𝑋𝑘)𝑞

𝑘=1 + 𝑤𝑖 + 𝜎𝜀𝑝
𝑗=1   (6) 

Where: 

∑ 𝜓𝑗𝑚𝑗
𝑝
𝑗=1  = Linear effect of categorical covariates 𝑚𝑗 (constant acceleration factor) 

∑ 𝛼𝑖(𝑡𝑖)𝑍𝑖
𝑝
𝑖=1 =  Linear effect of time-varying covariates 𝑍𝑖 

∑ 𝑓𝑘𝑋𝑘
𝑞
𝑘=1  = Non-linear effects of continuous covariates 𝑋𝑘 
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𝛼𝑖(𝑡) = is the time varying coefficient (non-constant acceleration factor) model through random 

work in INLA. Note that the covariates vectors  𝑚, 𝑍 𝑎𝑛𝑑 𝑋 are subset of matrix 𝑀 and, regression 

coefficient  𝛽 = 𝜓, 𝛼(𝑡), 𝛾. 

2.4 Intrinsic Conditional Autoregressive (ICAR) model. 

A conditional auto-regressive structure is used to model spatial dependence in the Besag ICAR 

prior (Besag et al. 1991). Specifically, it is modelled that the prior distribution of each observation 

is conditional on the values of its neighbors. A Gaussian distribution is commonly used to describe 

this conditional dependence. The variance of the distribution represents the degree of spatial 

autocorrelation, and the mean is a weighted average of the nearby values. Spatially correlated 

random effects can be used to account for spatial dependency.  

Let 𝐸𝑖𝑗 = 1 if area 𝐸𝑖  𝑎𝑛𝑑 𝐸𝑗 share a nontrivial border and 𝐸𝑖𝑗 = 0 otherwise. Set 𝐸𝑖𝑗 = 0, then 

the 𝐺 × 𝐺 matrix 𝐸 = [𝐸𝑖𝑗] is called the adjacency matrix for the region 𝐷. The ICAR prior is 

defined through the set of all conditional distributions as given below: 

𝜋(𝐼𝐶𝐴𝑅_𝑃𝑟𝑖𝑜𝑟) = 𝑣𝑗|{𝑣𝑖: 𝑖 ≠ 𝑗}~𝑁 (�̅�𝑗 , 𝜗2

𝑎𝑗+
⁄ ) , 𝑗 = 1, … , 𝐺     (7) 

Equation 3.23 denoted 𝑣~𝐼𝐶𝐴𝑅 (1
𝜗2⁄ ), where 𝑎𝑗+is the number of neighbors of area 𝐶𝑗, �̅�𝑗 =

1

𝑎𝑗+
∑ 𝛾𝑖𝑖:𝑎𝑖𝑗=1

 is the sample mean of the 𝑎𝑗+values of the neighboring areal unit frailties, and 

𝜗2

𝑎𝑗+
⁄ is the conditional variance. In this study, the spatial parameter 𝑣𝑖 is a 37 × 1 vector of 

spatial effects to account for heterogeneity between states in Nigeria. Let 𝑤 = (𝑣1, … , 𝑣37). 

2.5 Weibull Baseline Distribution 

The probability density function (PDF) of the Weibull distribution with the scale parameter 𝜑  and 

the shape parameter 𝛾 is denoted as: 

 𝑓(𝑡|𝜑, 𝛾) = 𝐹′(𝑡: 𝜑, 𝛾) =
𝛾

𝜑
(

𝑡

𝜑
)

𝛾−1

exp [− (
𝑡

𝜑
)

𝛾

]   (8) 

The survival function of the Weibull distribution is given as: 

𝑆(𝑡) = 1 − 𝐹(𝑡) = exp [− (
𝑡

𝜑
)

𝛾

]      (9) 

The hazard function of the Weibull distribution is given as: 

ℎ(𝑡|𝜑, 𝛾) =
𝜑

𝛾
(

𝑡

𝛾
)

𝜑−1

        (10) 
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2.6 Bayesian Inference 

A typical Bayesian workflow includes three major steps that is the prior distribution, Likelihood 

Function 𝐿(𝜃) and Posterior distribution 𝜋(𝜃|𝐷).   

Step I: Prior Distribution for Parameters and Regression Coefficient 

This study employs a non-informative independent gamma distribution as the prior for baseline 

parameters. Gamma distributions offer flexibility, accommodating both non-informative (uniform) 

priors and marginal priors for regression coefficients. Similar priors have been widely adopted in 

prior literature, including studies by Alvares et al. (2021), Muse et al. (2022a, 2022b), and Khan 

& Basharat (2022). Here, 

𝜋(𝜌)~𝐺(𝑐1, 𝑑1) =
𝑑1

𝑐2

Γ(𝑐1)
𝜌𝑐1−1𝑒−𝑑1𝜌;  𝑐1, 𝑑1, 𝜌 > 0      (11) 

𝜋(𝜆)~𝐺(𝑐2, 𝑑2) =
𝑑2

𝑐2

Γ(𝑐2)
𝜆𝑐2−1𝑒−𝑑2𝜆;  𝑐2, 𝑑2, 𝜆 > 0      (12) 

The hyperparameters of the prior distributions can be easily estimated using historical data from 

the baseline distribution (Muse et al., 2022b). Assuming a normal prior distribution for the 

regression coefficients, we have: 

𝜋(𝜓)~𝐺(𝑐3, 𝑑3)          (13) 

The Time -varying coefficient [𝛼(𝑡)] was modeled via random work of order one (RW1). 

𝛼𝑖(𝑡)~𝑁(𝛼𝑖(𝑡 − 1), 𝜏𝛼
2),  𝜏𝛼

2~𝐺𝑎𝑚𝑚𝑎(𝑎𝛼, 𝑏𝛼).      (14) 

Non-linear effect of continuous covariates modeled via quadratic b-splines (p=2) with one internal 

knot (m = 1) for estimating 𝑓(𝑋). The coefficient: 

𝛾𝑘~𝑁(0, 𝜏𝑘
2𝑃𝑘

−1),  𝜏𝑘
2~𝐺𝑎𝑚𝑚𝑎(𝑎𝑓 , 𝑏𝑓)      (15) 

The prior distribution for the spatial parameter 𝑤𝑖 in this study is a 37 × 1 vector of spatial random 

effects to account for heterogeneity between states in Nigeria. Let 𝑤 = (𝑤1, … , 𝑤37). The spatial 

parameter 𝑤 was modelled via Baseg-ICAR prior, that is: 

𝜋(𝑤)~𝐼𝐶𝐴𝑅           (16) 

By letting 𝛽 = (𝜓, 𝛼(𝑡), 𝛾𝑘),  the joint prior distribution of all unknown parameters is given by: 

𝜋(𝜌, 𝜆, 𝛽, 𝑤) = 𝜋(𝜌)𝜋(𝜆)𝜋(𝛽)𝜋(𝑤)         (17) 

Step II: Likelihood Function 𝑳(𝜽) 

Let assumed that subjects are observed at 𝑔 distinct spatial locations 𝑔1, … , 𝑔𝑘. Let also assumed 

that 𝑡𝑖𝑗 be the (possibly censored) survival time, for subject 𝑗 at location 𝑔𝑖 and 𝑀𝑖𝑗 be the 
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corresponding p-dimensional vector of covariates, 𝑖 = 1, … , 𝑘, 𝑗 = 1, … , 𝑛𝑖; let 𝑛 = ∑ 𝑛𝑖
𝑘
𝑖=1 . 

Furthermore, let assume that the survival 𝑡𝑖𝑗 lies in the interval (𝑐𝑖𝑗, 𝑑𝑖𝑗), 0 ≤ 𝑐𝑖𝑗 ≤ 𝑑𝑖𝑗 ≤ ∞. Also, 

let 𝜀 =
log(𝑇𝑖)−𝜇𝑖

𝜎
,   where   𝜇𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑚𝑗 + ∑ 𝛼𝑖(𝑡𝑖)𝑍𝑖

𝑝
𝑖=1 + ∑ 𝑓𝑘(𝑋𝑘)𝑞

𝑘=1 + 𝑤𝑖
𝑝
𝑗=1  

The likelihood function of the extended mode is given by, 

𝐿(𝜃|𝑇, 𝛿) = ∏ [
1

𝜎𝑇𝑖
∅(

log(𝑇𝑖)−𝜇𝑖

𝜎
)]𝛿𝑖 × [𝑆(

log(𝑇𝑖)−𝜇𝑖

𝜎
)]1−𝛿𝑖𝑛

𝑖=1       (18) 

Where: 

∅(. ) = probability density function of the error distribution (e.g. Weibuill) 

 𝑆(. ) =corresponding survival function 

𝜃 = (𝜌, 𝜆, 𝛽, 𝑤) all parameters  

Step III: Posterior distribution 𝝅(𝜽|𝑫) 

Using Bayes’ Theorem, the joint posterior density function is expressed as the multiplication of 

the likelihood function and the prior distribution as given below: 

𝑝(𝜃|𝑇) = 𝐿(𝜃|𝑇, 𝛿) × 𝜋(𝜌, 𝜆, 𝛽, 𝑤)        (19) 

The joint posterior density was analytically intractable due to integration challenges, so inference 

was performed using Integrated Nested Laplace Approximation (INLA) (Martino & Riebler, 

2014).  

3.0 Results 

Table 1: Constant Hazard Postulation  
Covariates Chi-Square DF P-value 

Maternal Age at Birth 116.129 1 2 × 10−16 

Duration of Breastfeeding  10.280 1 0.0013 

Preceding Birth Intervals 4.829 2 0.0754 

Maternal Education Qualification 4.777 3 0.0653 

Wealth Index 2.702 4 0.0945 

Body Mass Index 0.497 2 0.7801 

Antenatal Care Utilization 3.039 1 0.0813 

Sex of Child  1.781 1 0.1821 

Type of Place of Residence 4.106 1 0.0427 

Mosquito net use  9.412 1 0.0022 

Source of Drinking Water  0.164 1 0.6852 

Global Test 207.675 18 2 × 10−16 

Source: Author’s Compilation 

  

The results of the test of proportional hazards assumption are shown in Table 1. Significant 

violations (p < 0.05) were found for maternal age at birth, breastfeeding duration, mosquito net 
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use, and place of residence, indicating these covariates have time-varying effects on under-five 

mortality. The remaining variables - including maternal education, wealth index, birth intervals, 

antenatal care, maternal BMI, child sex, and water source - showed no significant violations (p > 

0.05). The global test was highly significant (χ² = 207.675, p < 0.05), confirming overall non-

proportionality in the model. Consequently, time-varying coefficients were incorporated for 

covariates that violated the proportional hazards assumption. 

 

Table 2: Flexible AFT Model Comparison  

Model DIC WAIC 

Weibull AFT Model 152397.19 152393.06 

Weibull AFT Model with Spatial Random Effect 152355.10 152345.08 

Spline based Weibull AFT Model 152392.07 152387.76 

Spline based Weibull AFT Model with Spatial Random Effect 152350.49 152340.33 

Weibull AFT Model with NCAF 104896.59 104892.87 

Weibull AFT Model with NCAF and Spatial Random Effect 104895.00 104891.48 

Flexible Weibull AFT Model 104876.99 104872.86 

Flexible Weibull AFT Model with Spatial Random Effect* 104875.47 104870.92 

Source: Authors Compilation 

The results in Table 2 compare the performance of various flexible Accelerated Failure Time (AFT) 

models using Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion 

(WAIC). The standard Weibull AFT model has the highest DIC (152397.19) and WAIC 

(152393.06), indicating the poorest fit among the models. Incorporating spatial random effects 

improves model performance, as seen in the reduced DIC (152355.10) and WAIC (152345.08) for 

the spatial Weibull AFT model. The spline-based Weibull AFT models show marginal 

improvements over the standard Weibull but remain inferior to models accounting for non-constant 

acceleration factors (NCAF). The most substantial improvement occurs with the introduction of 

NCAF, where the Weibull AFT model with NCAF achieves a significantly lower DIC (104896.59) 

and WAIC (104892.87). The best-performing model is the flexible Weibull AFT (model that 

simultaneously incorporate non-linear effect of continuous covariates and non-constant 

acceleration factor) with spatial random effects, which yields the lowest DIC (104875.47) and 

WAIC (104870.92), demonstrating that simultaneously accounting for both nonlinear effects of 

continuous covariates, non-constant acceleration factor and spatial dependencies provides the 

optimal fit.  
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Table 3: Posterior Mean Estimates from Flexible Weibull AFT Model with Spatial Random Effect  
Covariates Posterior Mean Time Ratio Posterior SD 95% CI 
Maternal Age at Birth     
Mage bs1 0.445 1.560 0.110 0.229, 0.662 
Mage bs2 0.512 1.669 0.084 0.347, 0.677 
Mage bs3 0.516 1.675 0.095 0.329, 0.703 
Breast Feeding Status     
Not Breast Fed Ref    
Breast Fed 1.784 5.954 0.026 1.733, 1.834 
Preceding Birth Intervals     

< 24  Ref    

24 – 33 0.032 1.033 0.017 0.001, 0.065 

> 33  0.160 1.174 0.023 0.115, 0.205 

Maternal Educ. Qualification     

No Formal Education Ref    

Primary        -0.011 0.989 0.022 -0.032, 0.055 

Secondary 0.058 1.060 0.027 0.003, 0.110 

Higher Education 0.109 1.115 0.052 0.008, 0.210 

Wealth Index     

Poorest Ref    

Poorer 0.035 1.036 0.038 0.039, 0.109 

Middle 0.096 1.101 0.038 0.023, 0.170 

Richer 0.090 1.094 0.039 0.014, 0.167 

Richest 0.118 1.125 0.040 0.039, 0.197 

Maternal Body Mass Index     

Underweight Ref    

Normal 0.018 1.018 0.039 -0.058, 0.094 

Overweight/Obese -0.007 0.993 0.045 -0.094, 0.081 

Antenatal Care Utilization     

Incomplete Ref    

Complete 0.761 2.140 0.072 0.620, 0.901 

Sex of Child      

Male Ref    

Female -0.014 0.986 0.015 -0.043, 0.015 

Type of Place of Residence     

Rural Ref    

Urban 0.010 1.010 0.020 0.029, 0.049 

Mosquito Net Use      

No Ref    

Yes 0.039 1.040 0.016 0.006, 0.070 

Source of Drinking Water      

Improved  Ref    

Unimproved 0.022 1.022 0.019 -0.015, 0.058 

Spatial Effect Precision 6.080  1.213 2.642, 7.050 
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Non-Constant Accelerator Factor Precision 

 Mean Variance Posterior SD  95% CI 

Mage  552 0.0018 2050 117.1, 3480.0 

Breastfed 674 0.0015 4570 86.00, 4120.0 

Type of Place of Resident 0.034 29.4117 0.008 0.021, 0.530 

Mosquito Net Use 6620 0.0002 3050 145.9, 3870.0 

Source: Authors Compilation 

 

Table 3 displays the posterior estimates from the flexible Weibull AFT Model with Spatial 

Random Effect, providing insights into how each covariate influences under-five survival time. 

Time ratios greater than 1 indicate prolonged survival (lower risk of early death), while values less 

than 1 suggest shortened survival (higher risk of U5M). 

Maternal age shows nonlinear effects through its basis spline terms, with all three splines (bs1, 

bs2, bs3) demonstrating significant protective effects on child survival. The first spline (TR=1.560) 

indicates that initial increases in maternal age provide substantial benefits, while the second 

(TR=1.669) and third (TR=1.675) splines show these protective effects strengthen further at higher 

maternal ages, suggesting maternal maturity consistently enhances child survival prospects. 

Breastfeeding status emerges as the single most influential protective factor, with breastfed 

children showing nearly six times longer survival times (TR=5.954) compared to non-breastfed 

children. Preceding birth intervals demonstrate a clear dose-response relationship with child 

survival. While moderate intervals of 24-33 months show modest benefits (TR=1.033), longer 

intervals exceeding 33 months provide substantially increase survival time (TR=1.174), 

highlighting the importance of adequate birth spacing for child health outcomes. 

Maternal education presents a graduated protective effect, where primary education shows no 

significant benefit (TR=0.989), secondary education (TR=1.060) provides measurable advantages, 

and higher education offers the strongest protection (TR=1.115). This pattern suggests education's 

benefits for child survival time accumulate with each additional level attained. The wealth index 

reveals a progressive protective effect. From poorer (TR=1.036) to richest (TR=1.125) households, 

each wealth quintile shows incrementally better child survival time (lower U5M risk), 

demonstrating how economic resources consistently translate to improved child health. 

Maternal body mass index shows essentially neutral effects on child survival, with normal weight 

(TR=1.018) and overweight/obese (TR=0.993) mothers showing no statistically significant 

differences from underweight mothers in terms of child survival outcomes. Complete antenatal 
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care utilization demonstrates strong protective effects (TR=2.140), more than doubling child 

survival time compared to incomplete care. This finding underscores the critical importance of 

comprehensive prenatal healthcare services for improving child survival. 

Sex differences show minimal impact, with female children having marginally lower survival 

(TR=0.986) than males, though this difference is not statistically significant as the confidence 

interval includes zero. Type of place of residence was significant predictor of U5M with urban 

residence provides a small but measurable survival advantage (TR=1.010) over rural areas, likely 

reflecting better access to healthcare and other resources in urban settings. Mosquito net use 

increase child survival time (TR=1.040), confirming the importance of malaria prevention 

measures for child survival in endemic areas. Drinking water source shows negligible impact on 

survival time (TR=1.022) though statistically not significant. 

The spatial random effects (precision=6.080) confirm significant geographic variation in mortality 

patterns, indicating important regional differences not explained by the measured covariates. 

The non-constant acceleration factor analysis reveals how covariate effects on child survival vary 

across developmental stages, with breastfeeding demonstrating a minute influence 

(variance=0.0015) as its strong protective effect (TR=5.954) remains slightly consistently high 

throughout all childhood periods, while residence type shows extreme variability 

(variance=29.4117) indicating the urban advantage fluctuates dramatically - potentially offering 

strong protection during specific vulnerable periods but minimal benefits at other ages. Mosquito 

net use maintains very consistent effects (variance=0.0002) with steady protection across all ages, 

whereas maternal age exhibits moderate variation (variance=0.0018) as its benefits may strengthen 

during certain developmental phases when maternal experience becomes particularly crucial, 

demonstrating that while some factors like breastfeeding provide continuous protection, others like 

urban residence offer age-specific advantages that could inform targeted intervention strategies. 
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Fig. 1: Posterior mean (Average) Spatial Effect of State Based Survival Risk of U5M from Flexible 

Weibull AFT Model with Spatial Random Effect 

 

The map of Nigeria in figure 1 illustrates the geographic distribution of U5M using time ratios. 

The regions colored with darker red/burgundy (northern state) had time ratios greater than 1 

indicating increase in survival time (lower U5M risk), while regions with lighter yellow areas 

(southern states) had time ration ratios less than 1 represent decreased survival time (higher U5M 

risk). This reveals that some northern states experience better child survival outcomes compared 

to some states in southern regions. 
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Figure 2: State based Spatial Random Effect size of U5M from Flexible Weibull AFT Model with 

Spatial Random Effect 

 

 

The graph in figure 2 depicts the spatial random effects influencing U5M across Nigeria's states, 

with effect sizes ranging from approximately -0.005 to +0.005 along the y-axis. Northern and 

north-central states (numbers 1-13, including Benue, Abuja, Kogi, Kwara, Nasarawa, Niger, 

Plateau, Adamawa, Bauchi, Borno, Gombe, Taraba, and Yobe) predominantly display positive 

effect sizes, with states like Borno (10) and Gombe (11) showing particularly strong positive 

effects. These positive values indicate spatial factors in these regions contribute to increased child 

survival time (reduced U5M risk). 

Southern states (approximately numbers 21-36, encompassing states like Abia, Anambra, Ebonyi, 

Enugu, Imo, Akwa-Ibom, Bayelsa, Cross River, Delta, Edo, Rivers, Ekiti, Lagos, Ogun, Ondo, 

and Osun) generally exhibit negative effect sizes, with several states in the 28-31 range showing 

some of the strongest negative effects. The final state, Oyo (37), continues this southern pattern 

with a negative effect size. These negative values suggest decrease survival time (increase U5M 

risk).  

Figure 3 depicts the Non-Constant Acceleration Factor for Type of Place of Residence on U5M, 

showing a clear downward trend in mean effect (log of time ratio) over five-time bins spanning 

from 0 to 59 months (Under five years). The time ratio steadily decreases from approximately 18 

at baseline to around 9 at the 40th months of the child age. This declining pattern suggests that the 

impact of residence type (urban versus rural settings) on U5M diminishes as time progresses, 
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indicating that geographical disparities in child survival outcomes become less pronounced as the 

child ages. 

 

Figure 3: Non-Constant Acceleration Factor for Type of Place of Resident on U5M 

 

 

Figure 4: Non-Constant Acceleration Factor for Mosquito Net Use on U5M 

Figure 4 examined the Non-Constant Acceleration Factor for Mosquito Net Use on U5M reveals 

that the protective effect of mosquito nets on child survival remains fairly consistent from early 

infancy through 59 months of child age. 

Figure 5 illustrates the Non-Constant Acceleration Factor for Maternal Age at Birth on U5M across 

five-time bins ranging from 0 to 59 months. The plot shows central estimates that remain slightly 

above zero but very close to the reference line throughout all time periods, indicating a minimal 

and consistent effect of maternal age on child mortality as children age. The flat trajectory of these 

estimates suggests that whatever minor influence maternal age at birth might have on child survival 
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remains fairly constant throughout early childhood development, without meaningful increases or 

decreases in its impact over time. 

 

Figure 5: Non-Constant Acceleration Factor for Maternal Age at Birth on U5M 

 

 

Figure 6: Non-Constant Acceleration Factor for Breastfeeding on U5M 
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Figure 6 depicts the Non-Constant Acceleration Factor for Breastfeeding on U5M across five-time 

bins ranging from 0 to 59 months. The plotted points show a slight downward trend starting at 

approximately 0.1 in the earliest time bin (0-10 months) and gradually declining to near zero by 

the 40-59month time bin. The subtle downward slope suggests that whatever protective effect 

breastfeeding might have on child survival slightly diminishes as children age progresses. 

4.0 Discussion of Findings 

The parametric Accelerated Failure Time (AFT) model provides an alternative to the Proportional 

Hazards (PH) model by directly estimating covariate effects on event time through log time ratios 

rather than hazard ratios (Wei, 1992; Kalbfleisch, 2011). The classical AFT model assumes 

constant time ratios (acceleration factors) and linear covariate effects on log event time (Cox & 

Oakes, 1984), but these assumptions often fail in multivariable settings. While flexible PH 

extensions have extensively addressed non-proportional hazards and nonlinear effects (Faivre, 

1999; Inaba et al., 2012; Remontet et al., 2007), similar advancements in AFT models remain 

underdeveloped, leaving a gap in handling complex survival data where proportionality 

assumptions are violated. Therefore, this study presents an improved accelerated failure time 

model that simultaneously incorporates non-constant acceleration factor, non-linear effect (NL) of 

continuous covariates and spatial random effects. These models were applied to Under-5 Mortality 

data extracted from the Nigerian Demographic and Health Survey. The NL effects of continuous 

covariate was modeled using quadratic Basis-splines (B-spline) with one interior knot while the 

non-constant acceleration factor was modelled using random work. The NL estimate describes 

how the time ratio varies with an increasing value of a continuous covariate, whereas the non-

constant acceleration factor estimate informs how the strength of the covariate effect changes 

during the follow-up. To capture the clustering nature of the data, the Besag Intrinsic Conditional 

Autoregressive (ICAR ICAR) spatial random effects was utilized. The performance of the 

extended model was compared with existing AFT models using model comparison metrics: 

Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). 

The results of the model comparison showed that the extended parametric AFT model that 

simultaneous incorporate NL effect of continuous covariate, non-constant acceleration factor and 

spatial random effect demonstrate better performance (Table 1). This finding is agreement with 

findings from previous study by Pang et al. (2021).  
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The study's findings align with recent methodological advancements in flexible Accelerated 

Failure Time (AFT) models, particularly in capturing nonlinear and time-varying effects of 

covariates on child survival. The nonlinear effects of maternal age, modeled via basis splines, 

resonate with Zhang et al. (2018), who demonstrated that penalized spline AFT models effectively 

capture complex relationships, such as U-shaped or threshold effects, in survival data. The 

protective effects of maternal age increasing with maturity suggest that traditional linear AFT 

models may underestimate the nuanced influence of maternal factors, reinforcing the need for 

flexible modeling approaches. Similarly, the strong protective effect of breastfeeding (TR=5.954) 

supports findings from Kang et al. (2020), whose neural network AFT model highlighted how 

dominant predictors like breastfeeding can overshadow other covariates, necessitating advanced 

methods to disentangle their effects. The dose-response relationship of birth intervals also mirrors 

Wu et al. (2021), who found that spline-based AFT models better detect J-shaped relationships 

than linear models, emphasizing the importance of flexible modeling in uncovering threshold 

effects in child survival.   

The study’s spatial random effects (precision=6.080) corroborate findings from Daniel (2021) and 

Fenta et al. (2025), who identified significant geographic clustering in U5M using spatial survival 

models. The unexplained regional heterogeneity suggests that unobserved contextual factors—

such as healthcare access or environmental conditions—play a critical role, reinforcing the need 

for spatially explicit survival models. Additionally, the non-constant acceleration factor analysis 

aligns with Chen and Zhou (2007) and Orbe et al. (2020), who demonstrated that time-varying 

effects are common in survival analysis. The extreme variability in urban residence effects 

(variance=29.4117) suggests that its protective role fluctuates across childhood stages, possibly 

aligning with periods of heightened vulnerability (e.g., neonatal phase). This finding supports the 

argument by Lin et al. (2021) that standard AFT models may miss critical age-specific covariate 

interactions, necessitating flexible approaches like Bayesian Additive Regression Trees (BART) 

or time-varying coefficient models.   

The socioeconomic gradients observed particularly in maternal education and wealth echo findings 

from Wegbom et al. (2019) and Fagbamigbe & Nnanatu (2022), who identified education and 

wealth as key determinants of U5M in Nigeria. The graduated protective effect of education 

(stronger at higher levels) aligns with Kunnuji et al. (2022), suggesting that policies targeting 

maternal education beyond primary schooling could yield substantial survival benefits. The 
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negligible impact of maternal BMI contrasts with some literature but may reflect regional 

differences in nutritional dynamics, as seen in Yalew et al. (2022), where biological factors like 

birth weight were more predictive than maternal anthropometrics. The strong protective effect of 

antenatal care (TR=2.140) supports Ahmed et al. (2020) and Egbon et al. (2022), reinforcing the 

importance of healthcare access—a finding particularly relevant for sub-Saharan Africa, where 

gaps in prenatal care persist.   

Finally, the study’s methodological implications resonate with broader trends in survival analysis. 

The use of flexible splines and spatial effects aligns with Ghilagaber et al. (2013) and Fenta et al. 

(2025), who advocate for geo-additive and spatiotemporal models to account for unobserved 

heterogeneity. The findings also parallel Koissi et al. (2005) and Jaiswal et al. (2024), who 

emphasized the role of multilevel and frailty models in addressing clustered survival data. 

However, the study’s novel application of non-constant acceleration factors extends existing work 

by quantifying how covariate effects vary across developmental stages a dimension underexplored 

in traditional U5M studies.  

5.0 Summary and Conclusion   

5.1 Summary 

The work strengthens child survival analysis by applying Bayesian AFT modeling to show the 

effects of nonlinear terms, changing speed of change over time, and heterogeneity in space. Based 

on data from the 2018 Nigeria Demographic and Health Survey, B-splines, variable coefficients, 

and ICAR spatial effects are all included in the model. The results are better than those from 

traditional methods (DIC and WAIC), with breastfeeding, antenatal check-ups, and waiting 

between births all being important for children’s survival. The analysis of spatial data suggests 

that more kids survive in northern Nigeria. While the advantage of living in an urban area gets 

weaker as time goes on, continuing to breastfeed remains a safe way to protect infants. Using this 

flexible model, it is possible to analyze under-five mortality in detail and shape better, data-based 

health actions. 

5.2 Conclusion 

This study extends the Accelerated Failure Time model to incorporate nonlinear effects, time-

varying coefficients, and spatial dependencies for under-five mortality analysis. The extended 

Weibull AFT model outperformed traditional versions (lower DIC/WAIC values), identifying 

breastfeeding, maternal education, birth intervals, and antenatal care as key survival determinants 
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with significant spatial clustering across Nigerian states. Time-varying effects revealed age-

dependent protection from urban residence. These findings highlight the value of flexible modeling 

for capturing complex mortality patterns often missed by conventional methods. The approach 

provides policymakers with a robust tool for targeted interventions in high-burden regions. Future 

work could integrate machine learning to further improve predictions and uncover latent risk 

patterns. 

5.3 Strength of the Study 

This study offers several key strengths, including extending Accelerated Failure Time (AFT) 

model that simultaneously accounts for nonlinear effects of continuous covariate, non-constant 

acceleration factors, and spatial dependencies a methodological advancement over traditional 

survival models. By utilizing Bayesian inference with Integrated Nested Laplace Approximation 

(INLA), the study efficiently handles complex spatial survival data while providing interpretable 

time ratio estimates. The incorporation of both nonlinear splines and time-varying coefficients 

allows for a more nuanced understanding of how risk factors like breastfeeding, maternal 

education, and healthcare access differentially impact child survival across developmental stages 

and geographic regions. Additionally, the use of nationally representative Demographic and Health 

Survey (DHS) data enhances the generalizability of findings to similar low-resource settings. The 

model's superior performance, as demonstrated by lower DIC and WAIC values compared to 

conventional AFT models, underscores its robustness in analyzing clustered survival data with 

violated assumptions of conventional AFT model, making it a valuable tool for both researchers 

and policymakers targeting under-five mortality reduction. 

5.4 Limitations of the Study 

This study has several limitations. Firstly, its reliance on self-reported data from the 2018 Nigeria 

Demographic and Health Survey may introduce biases and fail to fully capture the complexities of 

under-five mortality rates. Additionally, the model may not control for all potential confounding 

factors, such as genetic factors, that could impact under-five mortality. Finally, while the study 

offers valuable insights into the Nigerian context, its findings may not be universally applicable 

due to Nigeria's unique socio-cultural and demographic characteristics. 
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