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ABSTRACT 

Burr Type II distribution (BIID), a type from the Burr family of distributions is used in 

survival and reliability analysis. It is also used in modeling skewed data such as in finance 

and in hydrology. To improve the flexibility of BIID in fitting different data sets, this 

study derived a new three parameter BIID termed the New Burr Type II Distribution 

(NBIID). The underlying characteristics of the new distribution were studied. Mean 

Square Error (MSE) was adopted as a measure for evaluating the efficiency and 

consistency of the two parameter estimation methods, Maximum Likelihood Estimation 

(MLE) and Maximum Product of Spacing (MPS) proposed for estimating NBIID 

parameters. Results indicate MPS a more efficient and consistent parameter estimation 

method for NBIID. Furthermore, four model selection metrics; Bayesian Information 

Criterion (BIC), Akaike Information Criterion (AIC), Hannan-Quinn Information 

Criterion (HQIC) and Consistent Akaike Information Criterion (CAIC) were used to 

evaluate the performance of NBIID amongst two comparative ones using four real-life 

data sets. The NBIID performed better, demonstrating that it can provide a better fit in 

comparison to comparative models and was concluded a good choice for modeling 

different real-data sets. 
Keywords: Burr Type II Distribution; Probability Density Function; Cumulative Density 

Function; Maximum Likelihood Estimation; Maximum Product of Spacing. 

1. Introduction 

New distributions and classes of distributions are being introduced and studied as 

extensions of existing distributions and classes of distributions. Studies have shown that 

these new distributions and classes are usually more flexible and provide good fit to data 

when compared with their counterparts. Statistical distributions are useful tools in fields 

such as health, finance, meteorology, insurance, and many others for comprehensive study 

of data sets. There are various ways to expand or modify current distributions to create 

new ones with more flexibility. Among these approaches are the exponentiation technique 

developed by Gompertz (1825); differential equation method developed by Pearson 
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(1895). Hasting et al. (1947) developed quantile function approaches; Johnson (1949) 

presented a transformation method; Shaw and Buckley (2009) proposed the transmutation 

method; Gupta and Kundu (2009) reviewed the Power Transformed Method (PTM). 

Alzaatreh et al. (2013) was credited with the transform transformer strategy; α-power 

transformation method was introduced by Mahdavi and Kundu (2017). and Al-Babtain et 

al. (2020) presented the Modified Kies generator (MK-G).   

There are twelve different kinds of cumulative distribution functions in the Burr system of 

distributions. The Burr type II distribution (BIID) is one of the twelve types of continuous 

distributions in the Burr system. The Burr system of distributions is the special case or 

limiting case of several common theoretical distributions, such as the logistic Weibull, 

Gompertz, exponential, generalized logistic, normal, extreme value, and uniform 

distributions.  

Gupta and Kundu (2010) introduced the proportional reversed hazard logistic distribution 

which can be identified as the BIID. The BIID is also known as the type I generalized 

logistic distribution. The Probability Density Function (PDF) can be skewed and is 

unimodal in nature and log-concave for all values of the shape parameter, Literature has a 

variety of Burr distribution adjustments. Yari and Tondpour (2017) derived the new Burr 

distribution by utilizing a differential equation to which Burr distributions are solutions. 

Isa et al. (2022) introduced Sine Burr XII distribution by trigonometric transformation 

using Burr XII distribution as the base distribution. The new distribution has no additional 

parameter and the properties were studied. The MLE method was used for the estimation 

of distribution parameters and two data sets were used to demonstrate the applicability of 

the Sine-Burr XII distribution. 
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Olapede (2004) extended the BIID obtaining the extended type I generalized logistic 

distribution. Nahed (2017) derived the transmuted BIID, an extension of the BIID. 

Alshenawy et al. (2022) investigated the posterior estimation for the Burr type II 

distribution's parameters. For the posterior estimation, several loss functions and 

informative and noninformative priors were considered. Using actual data, the suggested 

model fitting abilities was evaluated against seven classes of distributions. The 

comparison took into account the generalizations of the following distributions: Gompertz, 

half normal, log-logistic, Laplace, Weibull, exponential, Rayleigh, gamma, log normal, 

Pareto, Levy, inverse gamma, chi-square, Maxwell, and inverse chi-square distributions. 

The Kolmogorov-Smirnov (KS) test, BIC, and AIC were used in the comparison. The 

study's findings indicated that the BIID and their modifications is a suitable substitute for 

lifetime distributions that are frequently employed. Comparable outcomes were obtained 

using some standards and modified distributions with up to six parameters in the model.  

Bhatti et al. (2023) introduced the New Modified Burr XII (NMBXII) distribution which 

is compounding of gamma distribution and the generalized Nadarajah-Haghighi as well as 

a derivation from the T-X family modification method. The MLE method was adopted for 

the estimation of model parameters. Empirically authors established NMBXII suitable for 

study of time periods between successive earthquakes and flood discharges and tax 

revenue. Anafo et al. (2024) modified the Burr XII distribution developing the modified 

alpha power-transformed Burr XII distribution by the integration of the weighted version 

of the alpha power transformation family of distribution. Other adjustments of Burr 

distribution include: include: New modified Burr type III distribution (Jamal et al., 2021), 

Mc-Donald modified Burr type III (Mukhtar et al., 2019), Kumaraswamy Burr-Type X 

(Madaki et al., 2022), Beta Burr XII (Paranaiba et al., 2011), Kumaraswamy Burr XII 

(Paranaiba et al., 2012), Type II Exponentiated Half Logistic-Odd Burr X-G Power Series 
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(Dingalo et al., 2023), Power Unit Burr XII distribution (Yildirim et al., 2023)), Logistic 

Burr XII (Guerra et al., 2023) and Generalized Gamma Burr III (Olobatuyi et al., 2018). 

While certain members of Burr family of distributions have been utilized in successful 

simulation and analysis of lifetime data, other family members are not studied as much. 

BIID has not been given much consideration in lifetime modelling, even though it is the 

second example of a solution to the differential equation specified by the Burr system of 

distribution.  

This work focuses on a new variant of the BIID termed the New Burr Type II Distribution 

(NBIID), building on these earlier studies. To make the distribution more useful in the 

modeling of data with extreme values or heavy tails whose shapes may not have been 

sufficiently described by the existing distribution, the NBII distribution introduces two 

additional parameters by transformation similar to those described by Nadarajah and 

Haghighi (2011). The generated distribution's Cumulative Density Function (CDF), PDF, 

Survival Function (SF), Hazard Function (HF), quantile function, median and order 

statistics are all derived and validity of PDF tested. Furthermore, the parameters are 

estimated by method of maximum likelihood and maximum product of spacings and 

performance compared among comparative distributions. Extending existing distributions 

provide users with more flexible distributions for modeling of different types of data. 

2. Methods 

2.1 A New Burr Type II Distribution 

From the Burr system of distribution (Burr, 1942), Let Y represent the Burr Type II 

distributed random variable with CDF and PDF given in Equations (2.1) and (2.2) 

respectively, 
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( ) ( )1 ,    0,  -yF y e y



−

−= +                                                                   (2.1) 

and 

( ) ( )
( )1

1   0,  y yf y e e y


 
− +

− −= +  −                                                     (2.2) 

where   is a shape parameter of BIID. 

Considering the transformation approach similar to Nadarajah and Haghighi (2011), let 

( )1 1    ,    , 0;    y x x R
  = + −                                                                    (2.3) 

where   and   are two extra shape parameters. And substituting Equation (2.3) into 

Equation (2.1) gives the new distribution (NBIID) with CDF given as: 

( )
( )1 1

1 ,     , , 0;     -
x

F x e x





  

−
− + 

= +      
 

                                          (2.4) 

where , ,    are shape parameters of the distribution. 

The PDF corresponding to Equation (2.4) is obtained by differentiating Equation (2.4) 

with respect to x  as: 

( ) ( )
d

f x F x
dx

=  

( ) ( ) ( )
1

11 1 1 1 11 1
x x

e e x x
 

 



   

− −
−− + − + −   = − + − +     

 

( ) ( ) ( ) ( )
1

1 1 1 1 11 1 1
x x

f x x x e e
 

 



 

− −
− − + − +−  

= + + 
 

                                          (2.5) 

The PDF and CDF plot are given in Figure 2.1 and Figure 2.2 respectively. 
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Figure 2. 1: The PDF Plots of NBIID 
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Figure 2. 2: The CDF Plot of NBIID 

2.2 Validity Test of New Burr Type II Distribution 

It is necessary to show that ( ) 1f x dx


−
= . For the proposed distribution,  

( ) ( ) ( ) ( )
1

1 1 1 1 11 1 1
 

 



 

− −
  − − + − +−

− −

 
= + + 

 
 

x x
f x dx x x e e dx                     (2.6) 

Let 
( )1 1 x

m e


− +
=  

( ) ( )
11 1 11

x
dm e x x dx


   

−− + −= − +  

( ) ( )1 1 11 1
x

dm
dx

x x e


 
− − +−

−
 =

+

                                                                                  (2.7) 

As ;   x m→ → and as ;  0x m→− →  

Putting Equation (2.7) into Equation (2.6) 
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( )f x dx  = − 1x − 1 x+( ) ( )1 1 1 x
e


 − − +

( )
1

1 .
dm

m




− −
+

1x − 1 x+( ) ( )1 1 1 x
e


 − − +

0

−     

                    ( )
1

0
1 m dm




 − −
= +                                                                                    (2.8) 

Let ( )
21 1

1 1
1

m A dm m dA
A m
= +  =  = − +

+
 

                                                2dm A dA−= −                                                                   (2.9) 

As 
1

;  0m
A

→ →  and as 
1

0;  1m
A

→ →  

Substituting Equation (2.9) into Equation (2.8) gives: 

( ) ( )
0 11

1 2 1

1 0
f x dx A A dA A dA

  
 − −

− − −

−
= − =    

                                                        

1

0

1 0 1
A




 
= = − = 

 
                  (2.10) 

The expression in Equation (2.10) indicates that the distribution PDF is a valid probability 

density function. 

2.3 Survival (Reliability) Function     

The probability that the item fails after time x is denoted by: 

( ) ( )PrS x ob X x=             (2.11) 

The function S is called the survival (reliability) function of X defined as: 

( ) ( )1S x F x= −                                                                                                  (2.12) 

where, ( )F x  is the CDF for NBIID in Equation (2.4) 
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( )
( )1 1

1 1
x

S x e



−

− +   
= − +  

   

                                                                             (2.13) 

 

 

Figure 2. 3: The Survival Plot of NBIID 

2.4 Hazard (Failure Rate) Function 

The hazard function is the probability that an object will fail or a person will die at a 

particular time given that the event has not occurred previously. Hazard function is 

defined as: 

( )
( )

( )

( )

( )1
rf

f x f x
h x

S x F x
= =

−
                                                                                 (2.14) 
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where, ( )f x denotes the PDF of the NBIID in Equation (2.5) and ( )S x is the survival 

function of the NBIID in Equation (2.13) 

( )
( ) ( ) ( )

( )

( )

1
1 1 1 1 11

1 1

1 1

1 1

x x

rf

x

x x e e

h x

e

 
 





 





− +
− − + − +−

−
− +

 
+ + 

 =
   
− +  
   

                                    (2.15) 

 

 

Figure 2. 4: The Hazard Rate Function Plot of NBIID 
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2.5 Quantile Function 

The quantile can be used to generate random numbers. It can also be used to find 

Quartiles, Median, Octiles, measures of Skewness and Kurtosis. The quantile function of 

the NBIID is obtained using the CDF as follows  

( )
( )1 1

1
x

F x e



−

− + 
= + 
 

 

( )
1

1 1
1

x
e u





−− + 

 + = 
 

                                                                                       (2.16) 

     
( )

1
1 1

1
x

e u





−− +  

= − 
 

                

( )
1

1 1 1x n u


 
− 

− + = − 
 

 

( )

1

1

1 1 1n u x



−  

− − = +   
  

 

1

1

1 1 1x n u


 
−   

= − − −    
    

                                                                           (2.17)  

( )

1
1

1

1 1 1 :u qx Q u n u x





−

 
    

= = − − −     
     
 

                                                    (2.18) 

where, u  follows a uniform distributed random variable on the interval (0,1). Setting 

0.5u = , the median of NBIID is obtained thus: 
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( )

1
1

1

2 0.5 1 0.5 1 1mx Q n





−

 
    

= = − − −     
     
 

                                                (2.19) 

The lower quartile and upper quartile can also be obtained from equation (2.18) by 

respectively setting 0.25 and 0.75u u= = . 

2.6 Order Statistics 

In the domains of dependability and life testing, order statistics are extensively utilized. 

Let 
1: 2: :...,n n n nX X X   , be the order statistics obtained from a random sample (r.s) 

1 2, ,..., nX X X  from NBIID with the PDF [ ( )f x ] and CDF [ ( )F x ], respectively, given in 

Equations (2.5) and (2.4) then the PDF of the mth order statistics, say 
: :i n m nX X= , can be 

expressed as: 

( )
( )

( ) ( ) ( )
1

:

!
1 ;  1,2,...,

1 !( )!

m n m

m n

n
f x F x F x f x m n

m n m

− −

= − =      − −
                     (2.20) 

Using binomial expansion 

( ) ( ) ( )
0

1 1
n m n mn m ii

i
i

F x F x
− −−

=

 
− = −       

 
                                                                        (2.21) 

Substituting (2.21) into (2.20) 

( )
( ) ( )

( ) ( ) ( ) ( )
1

:

0

!
1

1 ! !

n m n mm ii

m n
i

i

n
f x F x F x f x

m n m

− −−

=

 
= −       − −  

  

             
( )1 !

i
n n m− −

=
( )

( )

!

1 !m n m− −( ) ( )
( ) ( )

1

0 ! ! !

n m
m i

i

F x f x
n m i i

−
+ −

=

  
− −

  

             
( )

( ) ( )
( ) ( )

1

0

1 !

1 ! ! !

i
n m

m i

i

n
f x F x

m n m i i

−
+ −

=

−
=   − − −
                                                   (2.22) 
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Substituting the PDF (f(x)) and CDF (F(x)) of NBIID into (2.22) above gives the order 

statistics as: 

( )
( )

( ) ( )
( ) ( ) ( )

( )
( )

( )1 1
1 1 1 1 1 1 11

:

0

1 !
1 1 1

! 1 ! !

i m in m
x x x

m n

i

n
f x x x e e e

i m n m i

  
  

 


 

− + − + −−
− − + − + − +−

=

−    
= + + +   − − −    


                                                                                                                                      (2.23) 

The PDF of the smallest order statistics for 1m =  is given as: 

( ) ( ) ( ) ( )
( )

( )
1 1

1 1 1 1 1 1 11

1: 1 1 1

i
x x x

nf x n x x e e e
  

  
 

 

− + − −
− − + − + − +−    

= + + +   
   

                 (2.24) 

Furthermore, the PDF of the largest order statistics for m n=  is given bellow: 

( ) ( ) ( ) ( )
( )

( )
1 1

1 1 1 1 1 1 11

: 1 1 1

n
x x x

n nf x n x x e e e
  

  
 

 

− + − −
− − + − + − +−    

= + + +   
   

               (2.25)                                                                                                                                              

2.7 Parameter Estimation 

This study proposes two estimation procedures for NBIID, namely MLE and MPS. 

2.7.1 Maximum Likelihood Estimation (MLE) 

The likelihood function of the developed (NBIID) is given as such that ( )( ), ,   = : 

( ) ( ) ( ) ( ) ( )
( )1

1 1 1 1 11

1 1

; , , 1 1
n n

x x

i i

L f x x x e e
 

 



     

− +
− − + − +−

= =

  
= = + +  

   
             (2.26) 

( )
( ) ( )

( )

1

1
1 1

1 1 11

1 1 1

1 1

n

i
ii

n n nx
xn n n

i i

i i i

x x e e


 





    =

  − +
− + − − + −

= = =

  
= + + 

 
                        (2.27) 

and the log-likelihood function is: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )1
1

1 1 1

1 1 1
n n n

i i i

i i i

n L n n n n n n n x n x x
      
−

−

= = =

= + + + + + + − +    

                 
( )

( )1
1 1

1

1
i

n
x

i

n e



− +

− +

=

 
+ + 

 
                                                                              (2.28)         
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

1 1 1 1
n n n

i i i

i i i

n n n n n n n x n x n x
     

= = =

= + + + − + − + + − +    

    ( )
( )1 1

1

1 1
i

n
x

i

n e





− +

=

 
− + + 

 
                                                                                       (2.29) 

Differentiating the log-likelihood function partially with respect to the parameters and 

equating to zero. 
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Equations (2.30), (2.31) and (2.32) cannot be solved analytically, thus the use of software 

like R to obtain the parameters. 

2.7.2 Maximum Product of Spacing (MPS) 

Here, the method of MPS is described briefly as follows: 

Supposed ( )( ), ,
i

F x     and ( )( )1
, ,

i
F x   

−
 for 1,2,..., 1i n= +  are the CDF of the 

NBIID 

 Let, ( ) ( )( ) ( )( )1
, , , , , ,i i i

M F x F x        
−

= −                                                (2.33) 
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Be the uniform spacing of a random sample generated from the NBIID. Then it can be 

noted that 
( )( )0

, , 0F x    =  and 
( )( )1

, , 1
n

F x   
+

=  such that, 

( )
1

1

, , 1
n

i

i

M   
+

=

=           (2.34) 

Therefore, the estimate of the parameters ( ), ,    using MPS method are obtained by 

maximizing the logarithm of Geometric Mean (GM) of spacing as: 

( ) ( )( ), , , ,J Log GM     =                                                                       (2.35) 
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For NBIID by inverting Equation (2.4) 
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Thus, maximizing Equation (2.36) 
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The solution to Equations (2.37), (2.38) and (2.39) are obtained using numerical solution 

found in software like R and Python.  
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2.8 Evaluation of Efficiency and Consistency of Parameter Estimation Methods 

Simulated datasets with specific parameter values and increasing sample sizes were 

generated to check for consistency and efficiency of the parameter estimation methods 

(MLE and MPS) proposed for NBIID.  

i. Consistency is established if the estimated parameter values converge towards the 

specific parameter values as sample sizes increases. The estimated parameter 

values are not to change substantially with increasing sample sizes. 

ii. Mean square errors were computed for specific parameter values at increasing 

sample sizes. A lower Mean Square Error (MSE) indicates a more efficient 

estimator, the estimation method that performs better. 

iii. Simulation Studies: Simulation was repeated for N = 1000 replications based on 

the quantile function defined in Equation (2.18). Sample sizes of sizes n = 10, 

20, 30, 50, and 100 were considered for the following parameter combinations: 

α = 1, β = 1, θ =1; α = 1.5, β = 1, θ =1; and α = 2, β = 1, θ =1. 

a. Generate 
iu ∼ U (0, 1), i = 1, 2, ..., n; 

b. Determine the random samples from the NBII distribution 

c. Apply MLE and MPS estimation methos 

d. Repeat steps a to c for 1000 replications to obtain the estimates 

e. Compute bias and MSE to investigate the precision of the MLEs and MPS as 

follows: 

( ) ( ) ( )
1000 1000 2

1 1

1 1
  and  ,  where , ,

1000 1000

T

i i

Bias MSE       
= =

= − = − =   
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2.9 Performance Evaluation of NBIID  

NBIID was applied to four real-life data sets and compared to two competing distributions 

using AIC, BIC, CAIC), and HQIC. A lower performance metric value indicates better 

performance. 

3. Results and Discussion 

3.1 Simulation Study 

Simulation study was conducted to evaluate the adaptability, consistency and efficiency of 

the parameter estimators of NBIID.  

The MLEs and MPS accuracy were evaluated for various sample sizes and specific 

parameter combinations. The 1000 replications of the simulations were carried out in order 

to assess the effectiveness of MLE and MPS figures. The study computed a number of 

statistics, including the mean, biases, and mean squared errors (MSEs), based on three 

different parameter combinations as indicated in Table 3.1, Table 3.2 and Table 3.3 below. 

Table 3. 1: Performance Evaluation of MLE and MPS Methods of Estimation 

n Parameters 

MLE MPS 

Estimate Bias MSE Estimate Bias MSE 

10 

α=1 1.0600 0.0600 0.0685 1.0406 0.0406 0.0251 

β=1 0.9996 -0.0004 0.0001 1.0001 0.0001 0.0003 

θ=1 1.0017 0.0017 0.0006 1.0007 0.0007 0.0001 

20 

α=1 1.0441 0.0441 0.0041 1.0314 0.0314 0.0029 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

30 

α=1 1.0414 0.0414 0.0038 1.0299 0.0299 0.0027 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

50 

α=1 1.0379 0.0379 0.0034 1.0287 0.0287 0.0026 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

100 

α=1 1.0328 0.0328 0.0027 1.0250 0.0250 0.0020 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 
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Table 3. 2: Performance Evaluation of  MLE and MPS Methods of Estimation  

n Parameters 

MLE MPS 

Estimate Bias MSE Estimate Bias MSE 

10 

α=1.5 1.6210 0.1210 0.3385 1.5879 0.0879 0.1874 

β=1 0.998 -0.002 0.0063 0.9969 -0.0031 0.0044 

θ=1 1.0132 0.0132 0.0046 1.0082 0.0082 0.0026 

20 

α=1.5 1.5683 0.0683 0.0182 1.5513 0.0513 0.0298 

β=1 0.9997 -0.0003 0.0001 0.9995 -0.0005 0.0002 

θ=1 1.0013 0.0013 0.0003 1.0011 0.0011 0.0004 

30 

α=1.5 1.5619 0.0619 0.0085 1.5448 0.0448 0.0060 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0002 0.0002 0.0000 1.0001 0.0001 0.0000 

50 

α=1.5 1.5568 0.0568 0.0076 1.5431 0.0431 0.0057 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

100 

α=1.5 1.5492 0.0492 0.006 1.5375 0.0375 0.0045 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

 

Table 3. 3: Performance Evaluation of MLE and MPS Methods of Estimation 

n Parameters 

MLE MPS 

Estimate Bias MSE Estimate Bias MSE 

10 

α=2 2.2975 0.2975 1.3221 2.1972 0.1972 0.6137 

β=1 0.9916 -0.0084 0.0320 0.9918 -0.0082 0.0150 

θ=1 1.0472 0.0472 0.0198 1.0277 0.0277 0.0112 

20 

α=2 2.0998 0.0998 0.1098 2.0734 0.0734 0.0793 

β=1 0.9984 -0.0016 0.0006 0.9984 -0.0016 0.0006 

θ=1 1.0110 0.0110 0.0020 1.0070 0.0070 0.0013 

30 

α=2 2.0802 0.0802 0.0145 2.0589 0.0589 0.0105 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0032 0.0032 0.0003 1.0019 0.0019 0.0002 

50 

α=2 2.0752 0.0752 0.0133 2.0572 0.0572 0.0101 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0005 0.0005 0.0000 1.0004 0.0004 0.0000 

100 

α=2 2.0656 0.0656 0.0107 2.0500 0.0500 0.0079 

β=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

θ=1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

 

Table 3.1 presents the estimates of the parameters using MLE and MPS methods with 

1  = = = . As seen from Table 3.1, for the increasing sample sizes of 

10,  20,  30,  50 and 100n = , the mean of each estimate using the methods of MLE and 
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MPS of estimation approaches true parameter values. Similarly, the MSE of each estimate 

using MLE and MPS of estimation decreases and approaches zeros. The table reveals that 

with the increasing sample sizes, both MLE and MPS methods yield similar results with 

MPS producing lower MSE compared to MLE.  

Table 3.2 provides the estimates of the parameters in which 1.5,  1,  1  = = = . Table 

3.2 reveals that the mean estimates of each parameter using MLE and MPS methods of 

estimation approach fixed parameter value 1.5,  1,  =1  = = , as the sample sizes 

increases. The MSE of the parameters using MLE and MPS methods of estimation 

decreases and converge to zero. It also proves that the MSE using MLE and MPS still 

approaches similar result as the sample sizes increases. Likewise, MPS provides the least 

MSE compared with MLE.  

Table 3.3 shows that the mean estimates of each parameter using MLE and MPS of 

estimation approach fixed parameter value 2,  1,  1  = = = . As sample sizes increase, 

the MSE of the parameter using MLE and MPS methods of estimation decreases and 

converges to zero. Hence, MPS provides the least MSE compared to MLE, this indicates 

better estimation in comparison with MLE.  

3.2 Application to Real-life Data Sets 

This section presents application of NBIID to real-world data sets in order to determine 

their potential and performance in comparison to other competing distributions. The 

unbounded ( ,− + ) distributions, namely the Transmuted Burr Type II (TBIID) and the 

base distribution, the Burr Type II distribution, distributions were considered for 

comparison of performance.  
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3.2.1 Data 1 

The data represents the life of fatigue fracture of Kevlar 373/epoxy subjected to constant 

pressure at 90% stress level until all had failed. The data has also been used by David et al. 

(2021), Mohammed and Ugwuowo (2020), Owoloko et al. (2015), among others. The data 

is as follows: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 

0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 

0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 

1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 

1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 

2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 

3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 

9.0960. 

3.2.2 Data II 

The second data set is a subset of the data reported by Bekker et al. (2000), which 

corresponds to the survival times (in years) of a group of patients given chemotherapy 

treatment alone. The data consist of survival times (in years) for 45 patients. It is as 

follows: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 

0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 

1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 

2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033. 

4.2.3 Data III 

The third data set is the survival times (in days) of 72 guinea-pigs infected with virulent 

tubercle bacilli. This data set was originally discussed and reported by Bjerkedal (1960) 

and recently by Chhetri et al. (2022) and Mohammed et al. (2023). For computational 
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convenience, each lifetime point in the original guinea-pigs data set is divided by one 

hundred. New transformed survival times of 72 guinea-pig is as shown: 0.10, 0.33, 0.44, 

0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1.00, 1.00, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 

1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.20, 1.21, 1.22, 1.22, 1.24, 1.30, 1.34, 1.36, 1.39, 1.44, 

1.46, 1.53, 1.59, 1.60, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.95, 1.96, 1.97, 2.02, 

2.13, 2.15, 2.16, 2.22, 2.30, 2.31, 2.40, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 

3.47, 3.61, 4.02, 4.32, 4.58, 5.55 

4.2.4 Data IV 

The considered data set represents the maximum levels of the flood used by Alshanbari et 

al. (2023). 

0.7791985, 1.1483097, 2.9672206, 1.4938204, 1.5833982, 1.7602758, 0.2158896, 

0.3316141, 0.9555678, 0.6043510, 0.8510060, 0.4920070, 0.3715561, 0.6607851, 

0.4876386, 0.4834433, 0.7375517, 0.5111949, 1.1339544, 0.3851595, 2.3691135, 

0.5186865, 0.4137324, 0.7189331, 0.7381207, 0.3792905, 0.3972784, 0.6167996, 

0.8184564, 0.3787097, 2.0782179, 1.4738027, 2.2733590, 1.4995140, 2.3685689, 

0.7929649, 1.3452230, 3.7218931, 0.4847362, 0.5570308, 0.6421779, 0.3521637, 

1.2319488, 1.0085401, 0.5739284, 0.8282354, 1.3438912, 0.7985639, 0.5913791, 

0.3593687, 0.6421779, 0.3521637, 1.2319488, 1.0085401, 0.5739284, 0.8282354, 

1.3438912, 0.7985639, 0.5913791, 0.3593687, 1.2470297, 1.5119436, 1.2313264, 

0.4174427, 0.4856877, 0.7467844, 1.4316524, 2.0115124, 0.5920552, 0.6354470, 

0.2082874, 0.8970404, 0.4521464, 0.8233669, 1.0459246, 0.8731764, 0.8302978, 

1.5595648, 0.8808601, 1.5319633, 0.7943833, 1.0328066, 2.1259828, 0.6339371, 

1.3113389, 0.8507588, 1.1216619, 4.5418208, 1.2421274, 3.5577773, 2.0439183, 

0.3183116, 0.7603422, 0.6969910, 0.6208522, 0.7419367, 2.3501271, 0.4923549, 
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0.9713638, 1.7159552, 1.1431615, 0.5176597, 0.6126890, 0.3778499, 0.4487731, 

0.4412745, 0.2943709, 0.2843115, 0.3939066, 0.4730012, 1.8675487, 1.6653246, 

1.9875657, 1.7238783, 1.8093874, 1.9698237, 1.8123847, 1.9654765, 1.8654765, 

2.1987234, 2.2165476, 2.8654765, 2.9216547, 2.8012938, 2.8092834, 2.7165476, 

2.8165476, 3.2654765, 3.2912873, 3.2091827, 3.2234893, 3.6547652, 3.9654765, 

3.2187324, 4.9827360, 4.1372098, 4.1412307, 5.1987322, 5.1988294, 6.1876232, 

5.9826342. 

Table 3. 4: Descriptive statistics for the data sets 

Statistics Data 1 Data 2 Data 3 Data 4 

Observations 76 45 72 141 

Min 0.0251 0.047 0.100 0.2083 

Max 9.096 4.033 5.550 6.1876 

Mean 1.9592 1.3414 1.7682 1.4706 

Std. Dev 1.5739 1.2466 1.0345 1.2614 

1st Quartile 0.9048 0.395 1.080 0.5914 

Median 1.7362 0.841 1.495 0.9714 

3rd Quartile 2.2959 2.178 2.240 1.9698 

Skewness 1.9406 0.9399 1.3140 1.5943 

Kurtosis 4.9474 -0.4532 1.8534 2.2631 

     

The summary of the data set, including mean, standard deviation, skewness and kurtosis, 

is provided in Table 3.4. It can be observed from the table that the skewness measure of 

the real-life data sets is positive. So, the distribution of the data is skewed to the right. 

Also, since the kurtosis measure of data 1 is greater than 3 (> 3), the distribution is 

leptokurtic in nature. For data 2, data 3, and data 4, the kurtosis measure is less than 3 (< 

3), so the distribution for the data is platykurtic in nature. 
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Table 3. 5: Performance of the NBII Distribution against Competing Models using 

Data 1 

Model Estimates L AIC BIC CAIC HQIC 

NBIID 

α = 8.8667 (2.5878) 

120.9115 247.823 254.8152 248.1563 250.6174 
β = 0.5280 (0.1092) 

θ = 1.5247 (0.1708) 

TBIID 
α = 5.5122 (0.2114) 

125.4005 254.801 259.4624 254.9654 256.6639 
β = 0.4454 (0.6990) 

BIID α = 4.5349 (0.5201) 126.765 255.5301 257.8608 255.5841 256.4615 

 

Table 3. 6: Performance of the NBII Distribution against Competing Models using 

Data 2 

Model Estimates L AIC BIC CAIC HQIC 

NBIID 

  = 15.9096 (13.1338) 

58.7088 123.4178 128.8377 124.0031 125.4383 β = 0.2579 (0.1047) 

θ = 2.1037 (0.3129) 

TBIID 
α = 3.7389 (0.5718) 

69.4733 142.9467 146.5601 143.2325 144.2938 
β = 0.5287 (0.2478) 

BIID α = 2.9968 (0.4467) 70.991 143.9821 145.7888 144.0751 144.6556 

 

 

Table 3. 7: Performance of the NBII distribution against Competing Models using Data 3 

Model Estimates L AIC BIC CAIC HQIC 

NBIID 

α = 12.7231 (4.8749) 

94.1345 194.2689 201.1403 194.6167 197.0073 β = 0.6060 (0.1389) 

θ = 1.6205 (0.2001) 

TBIID 
α = 6.6916 (0.6949) 

97.1645 198.3291 202.91 198.5005 200.1547 
β = 0.8254 (0.1509) 

BIID α = 4.7871 (0.5603) 103.1977 208.3953 210.6858 208.4517 209.3081 
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Table 3. 8: Performance of the NBII Distribution against Competing Models using 

Data 4 

Model Estimates L AIC BIC CAIC HQIC 

NBIID 

α = 13.2566 (3.2391) 

181.5583 369.1166 377.9629 369.2918 372.7114   = 0.3830 (0.0476) 

  = 1.9264 (0.1065) 

TBIID 
 = 4.4485 (0.3544) 

208.9517 421.9033 427.8009 421.9903 424.2999 
β = 0.6435 (0.1219) 

BIID   = 3.4109 (0.2872) 216.6811 435.3622 438.3109 435.391 436.5605 

 

The performances for NBIID and other competing distributions with applications to real-

life data sets 1, 2, 3 and 4 are given in Tables 3.5, 3.6, 3.7, and 3.8. The NBIID gives the 

least values of AIC, BIC, CAIC, and HQIC statistics compared to other comparative 

distributions. This shows that the new distribution performs better for the datasets under 

study. 

The density plots for NBIID against its comparative distributions using Data 1, 2, 3 and 4 

are provided in Figures 3.1, 3.2, 3.3, and 3.4. 

 

Figure 3. 1: The Fitted PDF for Fatigue Fracture Data 1 



Danjuma et al.  JRSS-NIG. Group Vol. 2(1), 2025, pg. 376 - 405 

 

401 
ISSN NUMBER: 1116-249X 
 

 

Figure 3. 2: The Fitted PDF for Chemotherapy Patient Data 2 

 

Figure 3 3: The Fitted PDF for Guinea-pigs’ Data 3 
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Figure 3 4: The Fitted PDF for Flood Data 4 

4. Conclusion 

 Studies show that adding parameter(s) to existing distributions increases flexibility and 

goodness of fit, making such distributions suitable for modeling variety of data types The 

Burr type II distribution was modified to derive a three-parameter distribution termed the 

New Burr type II Distribution. Properties of the new distribution were studied.  The 

density shape is unimodal and could be approximately symmetric and skewed. Some 

important features of the distribution were identified. The model parameters were 

estimated using MLE and MPS estimation methods. MPS was established to perform 

better with a lower MSE. Further studies will serve to reveal other interesting properties of 

the NBIID. NBIID is hence proposed a good alternative for modelling continuous real-life 

data sets. 
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