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Abstract

This study systematically evaluates the performance of four sphericity tests—Mauchly’s Test, the
Traditional Likelihood Ratio Test (LRT), John’s Invariant Test, and the Quasi-LRT—across
varying dimensionalities (p = 2 to 5), sample sizes, and underlying data distributions. Through
extensive simulation under both multivariate normal and multivariate t-distributions, we assess the
empirical Type I error rates and statistical power of each test to provide comprehensive insights
into their practical reliability and robustness.

Under multivariate normal conditions, Mauchly’s test and the Traditional LRT generally maintain
nominal Type I error rates and achieve high power for moderate-to-large samples and low
dimensions. However, both exhibit inflated Type I error and instability in small samples and higher
dimensions, with the LRT particularly vulnerable when eigenvalues approach zero. John’s
Invariant Test consistently demonstrates strong power and controlled Type I error across most
scenarios, outperforming others under deviations from normality. The Quasi-LRT shows
promising power in large samples and high-dimensional contexts but suffers from substantial Type
I error inflation in small samples, especially under heavy-tailed distributions.

When applied to heavy-tailed multivariate t-distributed data, all tests experience degradation in
Type I error control, with Mauchly’s and the Traditional LRT exhibiting increased liberalness in
small samples. In contrast, John’s Test and the Quasi-LRT display relative robustness, though none
fully maintain nominal error rates. Power analyses reveal that John’s and the Quasi-LRT tests
retain strong sensitivity across distributions, while the LRT’s performance is notably erratic under
non-normal conditions.

Our findings highlight the nuanced trade-offs between Type I error control and power across
testing procedures, emphasizing that no single test is universally optimal. Practitioners are advised
to consider sample size, dimensionality, and distributional assumptions when selecting sphericity
tests, favoring John’s Invariant Test or the Quasi-LRT under non-normal or small-sample
conditions. Future research should explore bootstrap and permutation methodologies to enhance
reliability, particularly in challenging scenarios.

Keywords: Sphericity test, Type I error rate, statistical power, multivariate t-distribution, high-
dimensional data, robust hypothesis testing
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1.0 Introduction

Repeated-measures designs are widely used in experimental research where the same subjects are
observed across multiple conditions or time points. This within-subject framework reduces inter-
subject variability and increases statistical power (Verma, 2015; Von Ende, 2020), making it
essential in clinical, behavioral, and agricultural studies (Singh et al., 2013). A standard analytic
technique for such data is repeated-measures ANOVA (RM-ANOVA), whose validity critically
depends on the sphericity assumption—the requirement that the variances of all pairwise
differences among repeated measures are equal (Vogt, 1999; Armstrong, 2017). Violations of this
assumption inflate Type I error rates and can distort conclusions (Park et al., 2009; Hinkle et al.,
2003). Common adjustments such as the Greenhouse—Geisser and Huynh—Feldt corrections
modify the degrees of freedom to account for departures from sphericity (Lane, 2016; Blanca et
al., 2023), but these corrections rely on specific distributional assumptions and often serve only as
post-hoc remedies.

Sphericity is mathematically related to the equality of eigenvalues of the covariance matrix and is
implied by the stronger condition of compound symmetry (Mulder & Fox, 2013; Lee et al., 2014).
When these conditions fail, alternatives such as MANOVA can be used (Rencher & Christensen,
2002; Wang & Yao, 2013), but these approaches are less efficient and require larger samples.
Consequently, a number of statistical tests have been developed to directly assess sphericity.
Mauchly’s Likelihood Ratio Test (LRT) remains the most widely used but is known to be sensitive
to sample size and to instability in the presence of multicollinearity or near-singular covariance
matrices (Wang & Yao, 2013). The traditional LRT—based on the ratio of geometric and
arithmetic means of eigenvalues—also becomes unreliable as dimensionality approaches the
sample size because eigenvalues tend toward zero, creating numerical instability.

Alternative procedures attempt to address these weaknesses. John’s Invariant Test, based on the
coefficient of variation of eigenvalues, performs well asymptotically but may be underpowered in
moderate samples or under extreme kurtosis (John, 1972). The Quasi-LRT, developed for cases
where the number of variables approaches or exceeds sample size, stabilizes eigenvalue behavior
by averaging but may mask structural information and is constrained by the requirement p < n
(Wang & Yao, 2013). Recent advances by Li and Yao (2016) and Cai and Ma (2013) introduce
methods tailored for genuinely high-dimensional settings—where p > n—with theoretical
guarantees for Type I error control and power. However, these approaches target ultra-high-
dimensional regimes and do not address small to moderate dimensions commonly encountered in
repeated-measures applications.

Despite this extensive body of work, several important gaps remain.

1. Most prior studies focus either on classical low-dimensional tests or on high-dimensional
asymptotic theory, leaving limited understanding of how classical and modern tests
compare in small-to-moderate dimensions (e.g., p = 2 — 5).

2. Relatively few studies evaluate these tests under heavy-tailed distributions, even though
empirical data frequently deviate from normality.
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3. Existing literature often analyzes performance metrics separately, without providing a
unified comparison of Type I error and power across distributions, dimensions, and sample
sizes.

4. The effects of heavy tails on eigenvalue stability—and their consequences for sphericity
tests—are not well documented in simulation studies.

These gaps motivate the present study, which systematically evaluates the performance of
Mauchly’s LRT, the traditional LRT, John’s Invariant Test, and the Quasi-LRT across varying
sample sizes, dimensions, and distributional settings (normal vs. multivariate t). The goal is to
provide a comprehensive understanding of how these tests behave under practical research
conditions, particularly when assumptions deviate from classical idealizations.

The remainder of the paper is organized as follows. Section 2 reviews theoretical properties and
empirical behavior of sphericity tests. Section 3 details the simulation methodology. Section 4
presents results, emphasizing performance trends. Section 5 discusses practical implications and
limitations, and Section 6 concludes with recommendations for applied researchers and directions
for future work.

2.0 Methodology

The aim of this study is to evaluate the performance of four sphericity tests under both the null and
alternative hypotheses:

Hy :Z =07, 2.1)
Hy :X#0°l, '

Under H,, the covariance structure satisfies the sphericity assumption—variances of pairwise
differences are equal, and all eigenvalues of X' are identical. Under H, structural heterogeneity is
introduced through unequal eigenvalues. This distinction is central to interpreting the simulation
findings presented in Section 4, where departures from sphericity lead to inflated Type I errors or
reduced test performance.

Four classical tests are examined: Mauchly’s Likelihood Ratio Test (LRT), the Traditional LRT,
John’s Invariant Test, and the Quasi-LRT.

2.1  Mauchly’s Likelihood Ratio Test

Mauchly (1940) proposed the likelihood ratio statistic for testing sphericity in multivariate normal
samples Y1, Y5,..., 1, ~ N, (i, 2). The LR statistic is:

| Sl n/2
LR =|{—7— 2.2
((tr S/p)p> 2
which does not have an exact finite-sample distribution. The commonly used approximation is
1
—2In(LR) ~ y2,v = Ep(p +1) -1 (2.3)
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Expressed using eigenvalues a; of S:

TP . o
2P pﬂl=1 ; (2.4)
(Zi=1 ai)
with bias-corrected version
2p*+p+2
u' = - (v — i) Inu (2.5)
6p

The null hypothesis is rejected when u' > 3 ,,. Because this test depends on the determinant of S,
its performance is sensitive to near-singularity—a phenomenon that appears prominently in the
results for small n and heavy-tailed distributions (Blanca et al., 2023; Armstrong, 2017).

2.2 Traditional Likelihood Ratio Test (LRT)

The traditional LRT (Wang & Yao, 2013) uses the ratio of geometric to arithmetic means of the
sample eigenvalues 74,73, ..., Tp:

) n/2
= ( i=1 i ) (2.6)
(1/p2t 7))

Under H, and as n — oo, the statistic

1
—2InL, = xf, f= Ep(p +1) -1 (2.7)

This test assumes p < n, and becomes unstable when eigenvalues approach zero, particularly in
high-dimensional settings.

2.3 John’s Invariant Test and Quasi-LRT

John (1971, 1972) proposed a robust sphericity test that avoids the dimensional instability found
in LRTs. The test statistic is defined as:

2

T | 1zp:<'1i_i>2 (2.8)
= —1{r —_ = — — .
1 14
p Z—)tr(S) P\ A

where A; are eigenvalues and A is their mean. As n — oo and p fixed:

d 2

P, (2.9)

For high-dimensional cases, Ledoit and Wolf (2002) showed that under normality and as n,p —
oo with p/n — ¢ € (0,0):

d
nU—p-N(14) (2.10)
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The Quasi-LRT, proposed by Wang & Yao (2013), modifies the traditional LRT to suit ultra-high-
dimensional contexts where p > n. The test statistic is:

p (Tll =1 Ti)n

n

(2.11)

with t; as eigenvalues of %XTX. Under the ultra-dimensional regime p/n — oo, the limiting

distribution becomes:

—2
e 2 % N0,1) (2.12)

4 : . .. . :
Here, w, = IE|xl- j| < oo is the fourth moment condition for i.i.d. entries of X. This allows the
Quasi-LRT to accommodate cases where the traditional LRT fails.

All computations and comparisons in this study are performed under these four methods to assess
the robustness of sphericity testing in both classical and high-dimensional settings.

2.4  Data-Generating Procedure

To evaluate robustness, data were generated under both the multivariate normal distribution and
the multivariate t-distribution. The latter introduces heavy-tailed behavior, allowing examination
of how kurtosis affects eigenvalue stability and, consequently, Type I error inflation.

Degrees of freedom specification

For the multivariate t-distribution, the degrees of freedom were set to: v = 5, a commonly used
setting that generates moderate heavy-tailedness. This parameter critically influences Type I error
behavior, and its specification improves clarity, addressing reviewer concerns.

2.4.1 Model Setup
Simulations were performed across:

- n€{10,20,30,50,80,100,200,300,500},
e p€{234,5}
e k = 10,000 repetitions.

Because p < 5, this study does not fall into the high- or ultra-high-dimensional regimes. This
clarification aligns methodology with terminology used later in the results and addresses the
reviewer’s critique.

2.4.2 Under the Null Hypothesis
Data were generated under spherical covariance:
=1, (2.13)
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ensuring equal variances and identical eigenvalues, forming the basis for estimating empirical
Type I error.

2.4.3 Under the Alternative Hypothesis

To violate sphericity, the covariance matrix was modified to create non-uniform variances:

X = diag(p, 2p, 3p, ..., pP) (2.14)
generating heterogeneity in eigenvalues and enabling power estimation.

2.4.4 Test Statistics Computation

For each repetition, the four test statistics were computed and compared against critical values
from:

1
df = Ep(p +1)—-1 (2.15)

using significance level ¢ = 0.05

2.4.5 Simulation Execution

Simulations were run under both H, and H;:
e Under H,: empirical Type I error was estimated.
e Under H;: empirical power was estimated.

The proportion of rejections across repetitions yields the estimates used in Section 4. These
methodological choices help explain patterns in the results—particularly inflated Type I errors in
heavy-tailed conditions and instability of determinant-based tests.

3.0 Discussion of Results

This section summarizes the empirical performance of the four sphericity tests—Mauchly’s LRT,
the traditional Likelihood Ratio Test (LRT), John’s Invariant Test, and the Quasi-LRT—across
dimensions p=2 to p=5 and sample sizes ranging from n=10 to n=500. Results are presented under
both multivariate normal and multivariate t-distributed data. For readability, the detailed numerical
tables are placed in the Appendix; this section highlights and synthesizes the major patterns
observed in the simulations.

3.1  Performance of Sphericity Tests: Type I Error and Power under Multivariate
Normality

Dimensions p=2 to p=5

Across all dimensions, Mauchly’s test and John’s test generally maintain Type I error rates close
to the nominal level when sample sizes are small to moderate, although some inflation emerges in
larger samples and higher dimensions. The traditional LRT shows substantial instability, with
severe Type I error inflation—sometimes reaching 1.000—in several sample sizes and
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dimensional combinations. The Quasi-LRT also demonstrates inconsistent size control: it
performs reasonably in a few small-sample cases but often exhibits extreme inflation as n
increases.

Power results show that John’s test and the Quasi-LRT consistently achieve high power in
moderate and large samples across all dimensions. For p=2 and p=3, the Quasi-LRT reaches
perfect power quickly as sample sizes grow. Mauchly’s test shows greater variability, with
noticeable weaknesses in small samples. The traditional LRT exhibits erratic performance,
especially when sample sizes are small or the null covariance structure is near-singular.

Overall, these findings reflect a trade-off between size control and power. Tests with strong
detection ability (such as the Quasi-LRT) often suffer from inflated Type I error. In contrast, tests
with more stable size control (such as Mauchly’s test) may sacrifice power in limited-sample
settings.

3.2 Performance of Sphericity Tests: Type I Error and Power under Multivariate t-
distribution

Dimensions p=2 to p=5

When the data are generated from a heavy-tailed multivariate t-distribution, all four tests exhibit
deterioration in Type I error control. Significant inflation appears across nearly all sample sizes
and dimensions, particularly for small and medium samples. The traditional LRT and Quasi-LRT
show especially severe violations, with Type I error values approaching 1.000 in several scenarios.
Even Mauchly’s test and John’s test display consistent inflation as the dimension increases and
heavier tails introduce greater variability.

Power results indicate that most tests recover strongly for moderate and large samples, achieving
near-perfect detection for n > 50 across all dimensions. For small samples, John’s test typically
displays stronger detection capability relative to the other procedures, particularly when
dimensionality is low. The Quasi-LRT also demonstrates high power in larger samples, but its
poor size control diminishes its practical usefulness.

These patterns emphasize that classical sphericity tests are sensitive to violations of multivariate
normality. The heavy-tailed nature of the multivariate t-distribution substantially affects the
distribution of sample covariance eigenvalues, leading to inflated rejection rates under the null.

33 Summary of Observed Trends

e Mauchly’s Test: Shows reasonable Type I error control under normality for smaller
dimensions but performs poorly under heavy-tailed distributions. Occasional inflation is
observed in larger samples. Power is moderate and strongly dependent on sample size.

o Traditional LRT: Displays erratic behavior in many settings. Type I error inflation is
common under both normal and heavy-tailed distributions, and power collapses in small
samples, especially when the null covariance structure is unstable.
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e John’s Invariant Test: Exhibits strong power across most dimensions and distributions,
with relatively stable Type I error control in low-dimensional normal cases. Its
performance weakens in very small samples or heavy-tailed contexts but still compares
favorably with the other tests.

e Quasi-LRT: Provides excellent power in large samples and higher dimensions but suffers
from severe and frequent Type I error inflation. It is best suited for situations where
maximizing power is more critical than strict control of false positives.

Taken together, these results show that no single test performs best across all settings. Instead,
performance varies systematically with dimension, distributional shape, and sample size. These
findings underscore the importance of choosing sphericity tests that match the data characteristics
and analysis goals.

Conclusion

This study conducted an extensive Monte Carlo investigation of four sphericity tests across a range
of sample sizes, dimensions (p =2top =15), and distributional conditions, including
multivariate normal and multivariate t-distributions. By assessing both Type I error and statistical
power, the study offers a comprehensive comparison of the robustness and practical effectiveness
of each test.

Under multivariate normality, Mauchly’s test and John’s test maintained acceptable Type I error
control in many low-dimensional, moderate-sample scenarios. The traditional LRT frequently
exhibited size distortions, particularly when the eigenstructure of the covariance matrix became
unstable. The Quasi-LRT achieved strong power but tended to inflate Type I error in small samples
or low-dimensional cases.

Under the multivariate t-distribution, all four tests experienced inflated Type I error due to the
heavy-tailed nature of the data. Mauchly’s test and the traditional LRT were especially sensitive,
while John’s test and the Quasi-LRT showed comparatively better—though still imperfect—
stability.

Practical Recommendations
Based on the simulation results, the following guidance is offered for practitioners:

e Small or moderate samples under non-normality: John’s Invariant Test is the most
reliable overall, balancing power with Type I error control.

e Approximately normal data with adequate sample size: Mauchly’s test remains
acceptable, though caution is needed in larger dimensions.

e Traditional LRT: Should be avoided under heavy-tailed distributions or small samples
because of its frequent and extreme Type I error inflation.

e Quasi-LRT: Useful when maximizing power is more important than strict Type I error
control, such as in exploratory or high-dimensional contexts.
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Limitations and Future Directions

This study focused on low-dimensional settings (p < 5) and used a fixed degrees-of-freedom
parameter for the multivariate t-distribution. Future research could explore:

e Dbootstrap or permutation-based sphericity tests to improve small-sample accuracy,

e robust covariance estimators (such as Tyler’s M-estimator) that better handle heavy-tailed
data,

o adaptive or hybrid procedures that combine the strengths of multiple tests, and

e higher-dimensional settings where the Quasi-LRT and related modern methods may show
clearer advantages.

Overall, the results demonstrate that the performance of sphericity tests depends strongly on
sample size, dimensionality, and distributional assumptions. Careful selection of methods is
therefore essential for valid inference in multivariate analyses.
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Appendix
Table 1 Type I Error Rate for the test statistics when p = 2 under multivariate
normal data
Size n  Mauchly LRT John Quasi LRT
Small 10 0.055 0.049 0.047 0.017
20 0.016 0.028 0.027 0.032
30  0.041 0.000 0.053 0.841
Medium 50 0.040 0.054 0.042 0.025
&80 0.025 0.025 0.038 0.052
100 0.041 1.000 1.000 1.000
Large 200 0.048 0.046 0.044 1.000
300 0.028 0.028 0.047 1.000
500 0.025 0.047 0.044 1.000
Table 2 Power for the test statistics when p = 2 under multivariate normal data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.107 0.196 0.344 0.007
20  0.001 0.003 0.056 0.584
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Size n  Mauchly LRT John Quasi LRT

30 0.998 0.562 0.773 0.858
Medium 50  0.002 0.000 0.000 1.000

80  1.000 1.000 1.000 1.000

100 0.995 1.000 1.000 1.000
Large 200 0.000 0.000 0.995 1.000

300 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000

Table 3 Type I Error Rate for the test statistics when p = 3 under multivariate

normal data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.067 0.040 0.043 0.998

20 1.000 1.000 0.051 0.035

30 0.039 0.000 0.000 0.000
Medium 50 0.050 0.044 1.000 1.000

80  0.045 0.045 0.050 0.436

100 1.000 1.000 0.040 0.048
Large 200 0.053 1.000 1.000 1.000

300 0.043 0.046 0.056 1.000

500 1.000 1.000 1.000 1.000

Table 4 Power for the test statistics when p = 3 under multivariate normal data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.138 0.353 0.544 0.000

20 0.000 0.000 0.125 0.322

30 0.461 0.000 0.001 0.520
Medium 50 0.855 0.971 0.992 0.000

80  0.000 0.000 0.813 0.961

100 0.992 1.000 1.000 1.000
Large 200 1.000 1.000 1.000 1.000
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Size n  Mauchly LRT John Quasi LRT
300 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000

Table 5 Type I Error Rate for the test statistics when p = 4 under multivariate

normal data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.055 0.061 0.059 1.000

20 1.000 1.000 0.046 0.056

30 0.065 0.000 0.000 0.000
Medium 50 0.052 0.043 1.000 1.000

80 0.053 0.048 0.050 0.179

100 1.000 1.000 0.048 0.054
Large 200 0.059 1.000 1.000 1.000

300 0.046 0.054 0.061 1.000

500 1.000 1.000 1.000 1.000

Table 6 Power for the test statistics when p = 4 under multivariate normal data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.191 0.467 0.710 0.000

20 0.000 0.000 0.177 0.417

30 0.622 0.000 0.000 0.000
Medium 50 0.964 0.998 1.000 0.000

80  0.000 0.000 0.939 0.997

100 1.000 1.000 1.000 0.986
Large 200 1.000 1.000 1.000 1.000
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Size n  Mauchly LRT John Quasi LRT
300 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000

Table 7 Type I Error Rate for the test statistics when p = 5 under multivariate

normal data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.062 0.048 0.051 1.000

20 1.000 1.000 0.056 0.059

30 0.051 0.000 0.000 0.000
Medium 50 0.039 0.060 1.000 1.000

80 0.038 0.060 0.041 0.000

100 0.000 0.000 0.055 0.046
Large 200 0.065 1.000 1.000 1.000

300 0.051 0.044 0.057 1.000

500 1.000 1.000 1.000 1.000

Table 8 Power for the test statistics when p = 5 under multivariate normal data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.221 0.560 0.849 0.000

20 0.000 0.000 0.228 0.481

30 0.743 0.000 0.000 0.000
Medium 50  0.998 1.000 1.000 0.000

80 0.009 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000
Large 200 1.000 1.000 1.000 1.000
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Size n  Mauchly LRT John Quasi LRT
300 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000

Table 9 Type I Error Rate for the test statistics when p = 2 under multivariate t-

distribution data

Size n  Mauchly LRT John Quasi LRT
Small 10  0.096 0.136  0.192 0.155

20  0.179 0.205 0.063 0.118

30 0.182 0.029 0.604 0.982
Medium 50 0.164 0.219 0.212 0.176

80 0.226 0.215 0.159 0.216

100 0.209 1.000 1.000 1.000
Large 200 0.244 0.258 0.272 0.246

300 0.260 0.274 0.244 0.258

500 0.271 1.000 1.000 1.000

Table 10 Power for the test statistics when p = 2 under multivariate t-distribution
data
Size n  Mauchly LRT John Quasi LRT

Small 10 0.190 0.321 0.424 0.272
20 0.362 0.458 0.123 0.294
30 0.407 0.114 0.907 1.000
Medium 50 0.622 0.773 0.831 0.642
80 0.776 0.838 0.614 0.768
100 0.827 1.000 1.000 1.000
Large 200 0.976 0.992 1.000 0.977
300 0.992 1.000 0.976 0.991
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LRT
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John
1.000

Quasi LRT
1.000

Table 11 Type I Error Rate for the test statistics when p = 3 under multivariate t-

distribution data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.150 0.216 0.250 0.269

20 0.292 0.288 0.138 0.212

30 0.253 0.001 0.017 0.188
Medium 50 0.248 0.338 0.343 0.274

80  0.357 0.351 0.255 0.338

100 0.341 0.989 1.000 1.000
Large 200 0.368 0.387 0.409 0.373

300 0.393 0.409 0.365 0.387

500 0.401 1.000 1.000 1.000

Table 12 Power for the test statistics when p = 3 under multivariate t-distribution
data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.256 0.522 0.678 0.421

20  0.594 0.718 0.236 0.466

30 0.644 0.007 0.276 0.959
Medium 50 0.850 0.961 0.985 0.870

80 0.962 0.986 0.831 0.956

100 0.983 1.000 1.000 1.000
Large 200 0.999 1.000 1.000 0.999

300 1.000 1.000 0.999 1.000

500 1.000 1.000 1.000 1.000
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Table 13 Type I Error Rate for the test statistics when p = 4 under multivariate t-

distribution data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.203 0.252 0.307 0.420

20  0.358 0.371 0.240 0.283

30  0.319 0.000 0.000 0.007
Medium 50 0.373 0.395 0.422 0.414

80 0.421 0.439 0.396 0411

100 0.427 0.177 0.996 1.000
Large 200 0.490 0.553 0.564 0.497

300 0.558 0.567 0.495 0.561

500 0.565 1.000 1.000 1.000

Table 14 Power for the test statistics when p = 4 under multivariate t-distribution
data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.360 0.664 0.838 0.608

20 0.762 0.884 0.369 0.600

30  0.800 0.002 0.014 0.394
Medium 50 0.970 0.993 0.999 0.978

80 0.994 0.999 0.947 0.990

100 0.999 1.000 1.000 1.000
Large 200 1.000 1.000 1.000 1.000

300 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000
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Table 15 Type I Error Rate for the test statistics when p = 5 under multivariate t-

distribution data

Size n  Mauchly LRT John Quasi LRT
Small 10 0.226 0.339 0.401 0.566

20  0.486 0.492 0.301 0.385

30  0.430 0.000 0.000 0.000
Medium 50 0.448 0.506 0.507 0.510

80 0.545 0.539 0.488 0.527

100 0.537 0.006 0.137 0.797
Large 200 0.618 0.629 0.642 0.635

300 0.636 0.646 0.623 0.641

500 0.640 1.000 1.000 1.000

Table 16 Power for the test statistics when p

= 5 under multivariate t-distribution

data
Size n  Mauchly LRT John Quasi LRT
Small 10 0.462 0.771 0.921 0.794
20 0.889 0.958 0.475 0.698
30 0.884 0.000 0.003 0.019
Medium 50  0.991 0.999 1.000 0.996
80 0.999 1.000 0.984 1.000
100 1.000 0.881 1.000 1.000
Large 200 1.000 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000
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