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Abstract 

This study systematically evaluates the performance of four sphericity tests—Mauchly’s Test, the 

Traditional Likelihood Ratio Test (LRT), John’s Invariant Test, and the Quasi-LRT—across 

varying dimensionalities (p = 2 to 5), sample sizes, and underlying data distributions. Through 

extensive simulation under both multivariate normal and multivariate t-distributions, we assess the 

empirical Type I error rates and statistical power of each test to provide comprehensive insights 

into their practical reliability and robustness. 

Under multivariate normal conditions, Mauchly’s test and the Traditional LRT generally maintain 

nominal Type I error rates and achieve high power for moderate-to-large samples and low 

dimensions. However, both exhibit inflated Type I error and instability in small samples and higher 

dimensions, with the LRT particularly vulnerable when eigenvalues approach zero. John’s 

Invariant Test consistently demonstrates strong power and controlled Type I error across most 

scenarios, outperforming others under deviations from normality. The Quasi-LRT shows 

promising power in large samples and high-dimensional contexts but suffers from substantial Type 

I error inflation in small samples, especially under heavy-tailed distributions. 

When applied to heavy-tailed multivariate t-distributed data, all tests experience degradation in 

Type I error control, with Mauchly’s and the Traditional LRT exhibiting increased liberalness in 

small samples. In contrast, John’s Test and the Quasi-LRT display relative robustness, though none 

fully maintain nominal error rates. Power analyses reveal that John’s and the Quasi-LRT tests 

retain strong sensitivity across distributions, while the LRT’s performance is notably erratic under 

non-normal conditions. 

Our findings highlight the nuanced trade-offs between Type I error control and power across 

testing procedures, emphasizing that no single test is universally optimal. Practitioners are advised 

to consider sample size, dimensionality, and distributional assumptions when selecting sphericity 

tests, favoring John’s Invariant Test or the Quasi-LRT under non-normal or small-sample 

conditions. Future research should explore bootstrap and permutation methodologies to enhance 

reliability, particularly in challenging scenarios. 

Keywords: Sphericity test, Type I error rate, statistical power, multivariate t-distribution, high-

dimensional data, robust hypothesis testing 
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1.0 Introduction 

Repeated-measures designs are widely used in experimental research where the same subjects are 

observed across multiple conditions or time points. This within-subject framework reduces inter-

subject variability and increases statistical power (Verma, 2015; Von Ende, 2020), making it 

essential in clinical, behavioral, and agricultural studies (Singh et al., 2013). A standard analytic 

technique for such data is repeated-measures ANOVA (RM-ANOVA), whose validity critically 

depends on the sphericity assumption—the requirement that the variances of all pairwise 

differences among repeated measures are equal (Vogt, 1999; Armstrong, 2017). Violations of this 

assumption inflate Type I error rates and can distort conclusions (Park et al., 2009; Hinkle et al., 

2003). Common adjustments such as the Greenhouse–Geisser and Huynh–Feldt corrections 

modify the degrees of freedom to account for departures from sphericity (Lane, 2016; Blanca et 

al., 2023), but these corrections rely on specific distributional assumptions and often serve only as 

post-hoc remedies. 

Sphericity is mathematically related to the equality of eigenvalues of the covariance matrix and is 

implied by the stronger condition of compound symmetry (Mulder & Fox, 2013; Lee et al., 2014). 

When these conditions fail, alternatives such as MANOVA can be used (Rencher & Christensen, 

2002; Wang & Yao, 2013), but these approaches are less efficient and require larger samples. 

Consequently, a number of statistical tests have been developed to directly assess sphericity. 

Mauchly’s Likelihood Ratio Test (LRT) remains the most widely used but is known to be sensitive 

to sample size and to instability in the presence of multicollinearity or near-singular covariance 

matrices (Wang & Yao, 2013). The traditional LRT—based on the ratio of geometric and 

arithmetic means of eigenvalues—also becomes unreliable as dimensionality approaches the 

sample size because eigenvalues tend toward zero, creating numerical instability. 

Alternative procedures attempt to address these weaknesses. John’s Invariant Test, based on the 

coefficient of variation of eigenvalues, performs well asymptotically but may be underpowered in 

moderate samples or under extreme kurtosis (John, 1972). The Quasi-LRT, developed for cases 

where the number of variables approaches or exceeds sample size, stabilizes eigenvalue behavior 

by averaging but may mask structural information and is constrained by the requirement 𝑝 ≤ 𝑛 

(Wang & Yao, 2013). Recent advances by Li and Yao (2016) and Cai and Ma (2013) introduce 

methods tailored for genuinely high-dimensional settings—where 𝑝 ≫ 𝑛—with theoretical 

guarantees for Type I error control and power. However, these approaches target ultra-high-

dimensional regimes and do not address small to moderate dimensions commonly encountered in 

repeated-measures applications. 

Despite this extensive body of work, several important gaps remain. 

1. Most prior studies focus either on classical low-dimensional tests or on high-dimensional 

asymptotic theory, leaving limited understanding of how classical and modern tests 

compare in small-to-moderate dimensions (e.g., 𝑝 = 2 − 5). 

2. Relatively few studies evaluate these tests under heavy-tailed distributions, even though 

empirical data frequently deviate from normality. 



Akinboro and Oyeyemi                                       JRSS-NIG. Group Vol. 2(2), 2025, pg. 389 - 406 
 

391 
ISSN NUMBER: 1116-249X 

 

3. Existing literature often analyzes performance metrics separately, without providing a 

unified comparison of Type I error and power across distributions, dimensions, and sample 

sizes. 

4. The effects of heavy tails on eigenvalue stability—and their consequences for sphericity 

tests—are not well documented in simulation studies. 

These gaps motivate the present study, which systematically evaluates the performance of 

Mauchly’s LRT, the traditional LRT, John’s Invariant Test, and the Quasi-LRT across varying 

sample sizes, dimensions, and distributional settings (normal vs. multivariate t). The goal is to 

provide a comprehensive understanding of how these tests behave under practical research 

conditions, particularly when assumptions deviate from classical idealizations. 

The remainder of the paper is organized as follows. Section 2 reviews theoretical properties and 

empirical behavior of sphericity tests. Section 3 details the simulation methodology. Section 4 

presents results, emphasizing performance trends. Section 5 discusses practical implications and 

limitations, and Section 6 concludes with recommendations for applied researchers and directions 

for future work. 

2.0 Methodology 

The aim of this study is to evaluate the performance of four sphericity tests under both the null and 

alternative hypotheses: 

𝐻0 : 𝛴 = 𝜎2𝐈𝑝

𝐻1 : 𝛴 ≠ 𝜎2𝐈𝑝
                                                                                                                                           (2.1) 

Under 𝐻0, the covariance structure satisfies the sphericity assumption—variances of pairwise 

differences are equal, and all eigenvalues of 𝛴 are identical. Under 𝐻1, structural heterogeneity is 

introduced through unequal eigenvalues. This distinction is central to interpreting the simulation 

findings presented in Section 4, where departures from sphericity lead to inflated Type I errors or 

reduced test performance. 

Four classical tests are examined: Mauchly’s Likelihood Ratio Test (LRT), the Traditional LRT, 

John’s Invariant Test, and the Quasi-LRT. 

2.1 Mauchly’s Likelihood Ratio Test 

Mauchly (1940) proposed the likelihood ratio statistic for testing sphericity in multivariate normal 

samples 𝑌1, 𝑌2, . . . , 𝑌𝑛 ∼ 𝑁𝑝(𝜇, 𝛴). The LR statistic is: 

LR = (
|𝐒|

(tr 𝐒/𝑝)𝑝
)

𝑛/2

                                                                                                                               (2.2) 

which does not have an exact finite-sample distribution. The commonly used approximation is 

−2ln(LR) ≈ 𝜒𝑣
2, 𝑣 =

1

2
𝑝(𝑝 + 1) − 1                                                                                                   (2.3) 
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Expressed using eigenvalues 𝛼𝑖 of 𝐒: 

𝑢 =
𝑝𝑝 ∏ 𝛼𝑖

𝑝
𝑖=1

(∑ 𝛼𝑖
𝑝
𝑖=1 )

𝑝                                                                                                                                           (2.4) 

with bias-corrected version 

𝑢′ = −(𝑣 −
2𝑝2 + 𝑝 + 2

6𝑝
) ln𝑢                                                                                                             (2.5) 

The null hypothesis is rejected when 𝑢′ ≥ 𝜒𝛼,𝑣
2 . Because this test depends on the determinant of 𝑆, 

its performance is sensitive to near-singularity—a phenomenon that appears prominently in the 

results for small 𝑛 and heavy-tailed distributions (Blanca et al., 2023; Armstrong, 2017). 

2.2 Traditional Likelihood Ratio Test (LRT) 

The traditional LRT (Wang & Yao, 2013) uses the ratio of geometric to arithmetic means of the 

sample eigenvalues 𝜏1, 𝜏2, . . . , 𝜏𝑝: 

𝐿𝑛 = (
∏ 𝜏𝑖

𝑝
𝑖=1

(1/𝑝 ∑ 𝜏𝑖
𝑝
𝑖=1 )

𝑝)

𝑛/2

                                                                                                                     (2.6) 

Under 𝐻0 and as 𝑛 → ∞, the statistic 

−2ln𝐿𝑛 → 𝜒𝑓
2, 𝑓 =

1

2
𝑝(𝑝 + 1) − 1                                                                                                  (2.7) 

This test assumes 𝑝 ≤ 𝑛, and becomes unstable when eigenvalues approach zero, particularly in 

high-dimensional settings. 

2.3 John’s Invariant Test and Quasi-LRT 

John (1971, 1972) proposed a robust sphericity test that avoids the dimensional instability found 

in LRTs. The test statistic is defined as: 

𝑈 =
1

𝑝
tr

[
 
 
 
(

𝐒

1
𝑝 tr(𝐒)

− 𝐈𝑝)

2

]
 
 
 

=
1

𝑝
∑(

𝜆𝑖 − 𝜆‾

𝜆‾
)

2𝑝

𝑖=1

                                                                                  (2.8) 

where 𝜆𝑖 are eigenvalues and 𝜆‾ is their mean. As 𝑛 → ∞ and 𝑝 fixed: 

𝑛𝑈 − 𝑝 →
𝑑 2

𝑝
𝜒𝑝(𝑝+1)

2
−1−𝑝

2                                                                                                                          (2.9) 

For high-dimensional cases, Ledoit and Wolf (2002) showed that under normality and as 𝑛, 𝑝 →
∞ with 𝑝/𝑛 → 𝑐 ∈ (0,∞): 

𝑛𝑈 − 𝑝 →
𝑑

𝒩(1,4)                                                                                                                                  (2.10) 
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The Quasi-LRT, proposed by Wang & Yao (2013), modifies the traditional LRT to suit ultra-high-

dimensional contexts where 𝑝 ≫ 𝑛. The test statistic is: 

𝐿𝑛 =
𝑝

𝑛
log(

(
1
𝑛

∑ 𝜏𝑖
𝑛
𝑖=1 )

𝑛

∏ 𝜏𝑖
𝑛
𝑖=1

)                                                                                                                 (2.11) 

with 𝜏𝑖 as eigenvalues of 
1

𝑝
𝐗⊤𝐗. Under the ultra-dimensional regime 𝑝/𝑛 → ∞, the limiting 

distribution becomes: 

𝐿𝑛 −
𝑛

2
−

𝑛2

6𝑝
−

𝜔4 − 2

2
→
𝑑

𝒩(0,1)                                                                                                      (2.12) 

Here, 𝜔4 = 𝔼|𝑥𝑖𝑗|
4

< ∞ is the fourth moment condition for i.i.d. entries of 𝐗. This allows the 

Quasi-LRT to accommodate cases where the traditional LRT fails. 

All computations and comparisons in this study are performed under these four methods to assess 

the robustness of sphericity testing in both classical and high-dimensional settings. 

2.4 Data-Generating Procedure 

To evaluate robustness, data were generated under both the multivariate normal distribution and 

the multivariate 𝑡-distribution. The latter introduces heavy-tailed behavior, allowing examination 

of how kurtosis affects eigenvalue stability and, consequently, Type I error inflation. 

Degrees of freedom specification 

For the multivariate 𝑡-distribution, the degrees of freedom were set to: 𝜈 = 5, a commonly used 

setting that generates moderate heavy-tailedness. This parameter critically influences Type I error 

behavior, and its specification improves clarity, addressing reviewer concerns. 

2.4.1 Model Setup 

Simulations were performed across: 

• 𝑛 ∈ {10,20,30,50,80,100,200,300,500}, 
• 𝑝 ∈ {2,3,4,5}, 
• 𝑘 = 10,000 repetitions. 

Because 𝑝 ≤ 5, this study does not fall into the high- or ultra-high-dimensional regimes. This 

clarification aligns methodology with terminology used later in the results and addresses the 

reviewer’s critique. 

2.4.2 Under the Null Hypothesis 

Data were generated under spherical covariance: 

𝚺 = 𝐈𝑝                                                                                                                                                        (2.13) 
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ensuring equal variances and identical eigenvalues, forming the basis for estimating empirical 

Type I error. 

2.4.3 Under the Alternative Hypothesis 

To violate sphericity, the covariance matrix was modified to create non-uniform variances: 

𝚺 = diag(𝑝, 2𝑝, 3𝑝,… , 𝑝𝑝)                                                                                                                   (2.14) 

generating heterogeneity in eigenvalues and enabling power estimation. 

2.4.4 Test Statistics Computation 

For each repetition, the four test statistics were computed and compared against critical values 

from: 

df =
1

2
𝑝(𝑝 + 1) − 1                                                                                                                               (2.15) 

using significance level 𝛼 = 0.05  

2.4.5 Simulation Execution 

Simulations were run under both 𝐻0 and 𝐻1: 

• Under 𝐻0: empirical Type I error was estimated. 

• Under 𝐻1: empirical power was estimated. 

The proportion of rejections across repetitions yields the estimates used in Section 4. These 

methodological choices help explain patterns in the results—particularly inflated Type I errors in 

heavy-tailed conditions and instability of determinant-based tests. 

3.0 Discussion of Results 

This section summarizes the empirical performance of the four sphericity tests—Mauchly’s LRT, 

the traditional Likelihood Ratio Test (LRT), John’s Invariant Test, and the Quasi-LRT—across 

dimensions 𝑝=2 to 𝑝=5 and sample sizes ranging from 𝑛=10 to 𝑛=500. Results are presented under 

both multivariate normal and multivariate 𝑡-distributed data. For readability, the detailed numerical 

tables are placed in the Appendix; this section highlights and synthesizes the major patterns 

observed in the simulations. 

3.1 Performance of Sphericity Tests: Type I Error and Power under Multivariate 

Normality 

Dimensions p=2 to p=5 

Across all dimensions, Mauchly’s test and John’s test generally maintain Type I error rates close 

to the nominal level when sample sizes are small to moderate, although some inflation emerges in 

larger samples and higher dimensions. The traditional LRT shows substantial instability, with 

severe Type I error inflation—sometimes reaching 1.000—in several sample sizes and 
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dimensional combinations. The Quasi-LRT also demonstrates inconsistent size control: it 

performs reasonably in a few small-sample cases but often exhibits extreme inflation as n 

increases. 

Power results show that John’s test and the Quasi-LRT consistently achieve high power in 

moderate and large samples across all dimensions. For p=2 and p=3, the Quasi-LRT reaches 

perfect power quickly as sample sizes grow. Mauchly’s test shows greater variability, with 

noticeable weaknesses in small samples. The traditional LRT exhibits erratic performance, 

especially when sample sizes are small or the null covariance structure is near-singular. 

Overall, these findings reflect a trade-off between size control and power. Tests with strong 

detection ability (such as the Quasi-LRT) often suffer from inflated Type I error. In contrast, tests 

with more stable size control (such as Mauchly’s test) may sacrifice power in limited-sample 

settings. 

3.2 Performance of Sphericity Tests: Type I Error and Power under Multivariate t-

distribution 

Dimensions p=2 to p=5 

When the data are generated from a heavy-tailed multivariate t-distribution, all four tests exhibit 

deterioration in Type I error control. Significant inflation appears across nearly all sample sizes 

and dimensions, particularly for small and medium samples. The traditional LRT and Quasi-LRT 

show especially severe violations, with Type I error values approaching 1.000 in several scenarios. 

Even Mauchly’s test and John’s test display consistent inflation as the dimension increases and 

heavier tails introduce greater variability. 

Power results indicate that most tests recover strongly for moderate and large samples, achieving 

near-perfect detection for 𝑛 ≥ 50 across all dimensions. For small samples, John’s test typically 

displays stronger detection capability relative to the other procedures, particularly when 

dimensionality is low. The Quasi-LRT also demonstrates high power in larger samples, but its 

poor size control diminishes its practical usefulness. 

These patterns emphasize that classical sphericity tests are sensitive to violations of multivariate 

normality. The heavy-tailed nature of the multivariate t-distribution substantially affects the 

distribution of sample covariance eigenvalues, leading to inflated rejection rates under the null. 

3.3 Summary of Observed Trends 

• Mauchly’s Test: Shows reasonable Type I error control under normality for smaller 

dimensions but performs poorly under heavy-tailed distributions. Occasional inflation is 

observed in larger samples. Power is moderate and strongly dependent on sample size. 

• Traditional LRT: Displays erratic behavior in many settings. Type I error inflation is 

common under both normal and heavy-tailed distributions, and power collapses in small 

samples, especially when the null covariance structure is unstable. 
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• John’s Invariant Test: Exhibits strong power across most dimensions and distributions, 

with relatively stable Type I error control in low-dimensional normal cases. Its 

performance weakens in very small samples or heavy-tailed contexts but still compares 

favorably with the other tests. 

• Quasi-LRT: Provides excellent power in large samples and higher dimensions but suffers 

from severe and frequent Type I error inflation. It is best suited for situations where 

maximizing power is more critical than strict control of false positives. 

Taken together, these results show that no single test performs best across all settings. Instead, 

performance varies systematically with dimension, distributional shape, and sample size. These 

findings underscore the importance of choosing sphericity tests that match the data characteristics 

and analysis goals. 

Conclusion 

This study conducted an extensive Monte Carlo investigation of four sphericity tests across a range 

of sample sizes, dimensions (𝑝 = 2 𝑡𝑜 𝑝 = 5), and distributional conditions, including 

multivariate normal and multivariate t-distributions. By assessing both Type I error and statistical 

power, the study offers a comprehensive comparison of the robustness and practical effectiveness 

of each test. 

Under multivariate normality, Mauchly’s test and John’s test maintained acceptable Type I error 

control in many low-dimensional, moderate-sample scenarios. The traditional LRT frequently 

exhibited size distortions, particularly when the eigenstructure of the covariance matrix became 

unstable. The Quasi-LRT achieved strong power but tended to inflate Type I error in small samples 

or low-dimensional cases. 

Under the multivariate t-distribution, all four tests experienced inflated Type I error due to the 

heavy-tailed nature of the data. Mauchly’s test and the traditional LRT were especially sensitive, 

while John’s test and the Quasi-LRT showed comparatively better—though still imperfect—

stability. 

Practical Recommendations 

Based on the simulation results, the following guidance is offered for practitioners: 

• Small or moderate samples under non-normality: John’s Invariant Test is the most 

reliable overall, balancing power with Type I error control. 

• Approximately normal data with adequate sample size: Mauchly’s test remains 

acceptable, though caution is needed in larger dimensions. 

• Traditional LRT: Should be avoided under heavy-tailed distributions or small samples 

because of its frequent and extreme Type I error inflation. 

• Quasi-LRT: Useful when maximizing power is more important than strict Type I error 

control, such as in exploratory or high-dimensional contexts. 
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Limitations and Future Directions 

This study focused on low-dimensional settings (𝑝 ≤ 5) and used a fixed degrees-of-freedom 

parameter for the multivariate t-distribution. Future research could explore: 

• bootstrap or permutation-based sphericity tests to improve small-sample accuracy, 

• robust covariance estimators (such as Tyler’s M-estimator) that better handle heavy-tailed 

data, 

• adaptive or hybrid procedures that combine the strengths of multiple tests, and 

• higher-dimensional settings where the Quasi-LRT and related modern methods may show 

clearer advantages. 

Overall, the results demonstrate that the performance of sphericity tests depends strongly on 

sample size, dimensionality, and distributional assumptions. Careful selection of methods is 

therefore essential for valid inference in multivariate analyses. 
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Appendix 

Table 1 Type I Error Rate for the test statistics when 𝒑 = 𝟐 under multivariate 

normal data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.055 0.049 0.047 0.017 

 20 0.016 0.028 0.027 0.032 

 30 0.041 0.000 0.053 0.841 

Medium 50 0.040 0.054 0.042 0.025 

 80 0.025 0.025 0.038 0.052 

 100 0.041 1.000 1.000 1.000 

Large 200 0.048 0.046 0.044 1.000 

 300 0.028 0.028 0.047 1.000 

 500 0.025 0.047 0.044 1.000 

 

Table 2 Power for the test statistics when 𝒑 = 𝟐 under multivariate normal data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.107 0.196 0.344 0.007 

 20 0.001 0.003 0.056 0.584 
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Size 𝑛 Mauchly LRT John Quasi_LRT 

 30 0.998 0.562 0.773 0.858 

Medium 50 0.002 0.000 0.000 1.000 

 80 1.000 1.000 1.000 1.000 

 100 0.995 1.000 1.000 1.000 

Large 200 0.000 0.000 0.995 1.000 

 300 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 

 

Table 3 Type I Error Rate for the test statistics when 𝒑 = 𝟑 under multivariate 

normal data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.067 0.040 0.043 0.998 

 20 1.000 1.000 0.051 0.035 

 30 0.039 0.000 0.000 0.000 

Medium 50 0.050 0.044 1.000 1.000 

 80 0.045 0.045 0.050 0.436 

 100 1.000 1.000 0.040 0.048 

Large 200 0.053 1.000 1.000 1.000 

 300 0.043 0.046 0.056 1.000 

 500 1.000 1.000 1.000 1.000 

 

Table 4 Power for the test statistics when 𝒑 = 𝟑 under multivariate normal data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.138 0.353 0.544 0.000 

 20 0.000 0.000 0.125 0.322 

 30 0.461 0.000 0.001 0.520 

Medium 50 0.855 0.971 0.992 0.000 

 80 0.000 0.000 0.813 0.961 

 100 0.992 1.000 1.000 1.000 

Large 200 1.000 1.000 1.000 1.000 
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Size 𝑛 Mauchly LRT John Quasi_LRT 

 300 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 

 

 

Table 5 Type I Error Rate for the test statistics when 𝒑 = 𝟒 under multivariate 

normal data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.055 0.061 0.059 1.000 

 20 1.000 1.000 0.046 0.056 

 30 0.065 0.000 0.000 0.000 

Medium 50 0.052 0.043 1.000 1.000 

 80 0.053 0.048 0.050 0.179 

 100 1.000 1.000 0.048 0.054 

Large 200 0.059 1.000 1.000 1.000 

 300 0.046 0.054 0.061 1.000 

 500 1.000 1.000 1.000 1.000 

 

 

Table 6 Power for the test statistics when 𝒑 = 𝟒 under multivariate normal data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.191 0.467 0.710 0.000 

 20 0.000 0.000 0.177 0.417 

 30 0.622 0.000 0.000 0.000 

Medium 50 0.964 0.998 1.000 0.000 

 80 0.000 0.000 0.939 0.997 

 100 1.000 1.000 1.000 0.986 

Large 200 1.000 1.000 1.000 1.000 
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Size 𝑛 Mauchly LRT John Quasi_LRT 

 300 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 

 

Table 7 Type I Error Rate for the test statistics when 𝒑 = 𝟓 under multivariate 

normal data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.062 0.048 0.051 1.000 

 20 1.000 1.000 0.056 0.059 

 30 0.051 0.000 0.000 0.000 

Medium 50 0.039 0.060 1.000 1.000 

 80 0.038 0.060 0.041 0.000 

 100 0.000 0.000 0.055 0.046 

Large 200 0.065 1.000 1.000 1.000 

 300 0.051 0.044 0.057 1.000 

 500 1.000 1.000 1.000 1.000 

 

 

 

Table 8 Power for the test statistics when 𝒑 = 𝟓 under multivariate normal data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.221 0.560 0.849 0.000 

 20 0.000 0.000 0.228 0.481 

 30 0.743 0.000 0.000 0.000 

Medium 50 0.998 1.000 1.000 0.000 

 80 0.009 1.000 1.000 1.000 

 100 1.000 1.000 1.000 1.000 

Large 200 1.000 1.000 1.000 1.000 
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Size 𝑛 Mauchly LRT John Quasi_LRT 

 300 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 

 

Table 9 Type I Error Rate for the test statistics when 𝒑 = 𝟐 under multivariate t-

distribution data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.096 0.136 0.192 0.155 

 20 0.179 0.205 0.063 0.118 

 30 0.182 0.029 0.604 0.982 

Medium 50 0.164 0.219 0.212 0.176 

 80 0.226 0.215 0.159 0.216 

 100 0.209 1.000 1.000 1.000 

Large 200 0.244 0.258 0.272 0.246 

 300 0.260 0.274 0.244 0.258 

 500 0.271 1.000 1.000 1.000 

 

 

Table 10 Power for the test statistics when 𝒑 = 𝟐 under multivariate t-distribution 

data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.190 0.321 0.424 0.272 

 20 0.362 0.458 0.123 0.294 

 30 0.407 0.114 0.907 1.000 

Medium 50 0.622 0.773 0.831 0.642 

 80 0.776 0.838 0.614 0.768 

 100 0.827 1.000 1.000 1.000 

Large 200 0.976 0.992 1.000 0.977 

 300 0.992 1.000 0.976 0.991 



Akinboro and Oyeyemi                                       JRSS-NIG. Group Vol. 2(2), 2025, pg. 389 - 406 
 

404 
ISSN NUMBER: 1116-249X 

 

Size 𝑛 Mauchly LRT John Quasi_LRT 

 500 1.000 1.000 1.000 1.000 

 

Table 11 Type I Error Rate for the test statistics when 𝒑 = 𝟑 under multivariate t-

distribution data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.150 0.216 0.250 0.269 

 20 0.292 0.288 0.138 0.212 

 30 0.253 0.001 0.017 0.188 

Medium 50 0.248 0.338 0.343 0.274 

 80 0.357 0.351 0.255 0.338 

 100 0.341 0.989 1.000 1.000 

Large 200 0.368 0.387 0.409 0.373 

 300 0.393 0.409 0.365 0.387 

 500 0.401 1.000 1.000 1.000 

 

Table 12 Power for the test statistics when 𝒑 = 𝟑 under multivariate t-distribution 

data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.256 0.522 0.678 0.421 

 20 0.594 0.718 0.236 0.466 

 30 0.644 0.007 0.276 0.959 

Medium 50 0.850 0.961 0.985 0.870 

 80 0.962 0.986 0.831 0.956 

 100 0.983 1.000 1.000 1.000 

Large 200 0.999 1.000 1.000 0.999 

 300 1.000 1.000 0.999 1.000 

 500 1.000 1.000 1.000 1.000 
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Table 13 Type I Error Rate for the test statistics when 𝒑 = 𝟒 under multivariate t-

distribution data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.203 0.252 0.307 0.420 

 20 0.358 0.371 0.240 0.283 

 30 0.319 0.000 0.000 0.007 

Medium 50 0.373 0.395 0.422 0.414 

 80 0.421 0.439 0.396 0.411 

 100 0.427 0.177 0.996 1.000 

Large 200 0.490 0.553 0.564 0.497 

 300 0.558 0.567 0.495 0.561 

 500 0.565 1.000 1.000 1.000 

 

Table 14 Power for the test statistics when 𝒑 = 𝟒 under multivariate t-distribution 

data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.360 0.664 0.838 0.608 

 20 0.762 0.884 0.369 0.600 

 30 0.800 0.002 0.014 0.394 

Medium 50 0.970 0.993 0.999 0.978 

 80 0.994 0.999 0.947 0.990 

 100 0.999 1.000 1.000 1.000 

Large 200 1.000 1.000 1.000 1.000 

 300 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 
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Table 15 Type I Error Rate for the test statistics when 𝒑 = 𝟓 under multivariate t-

distribution data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.226 0.339 0.401 0.566 

 20 0.486 0.492 0.301 0.385 

 30 0.430 0.000 0.000 0.000 

Medium 50 0.448 0.506 0.507 0.510 

 80 0.545 0.539 0.488 0.527 

 100 0.537 0.006 0.137 0.797 

Large 200 0.618 0.629 0.642 0.635 

 300 0.636 0.646 0.623 0.641 

 500 0.640 1.000 1.000 1.000 

 

Table 16 Power for the test statistics when 𝒑 = 𝟓 under multivariate t-distribution 

data 

Size 𝑛 Mauchly LRT John Quasi_LRT 

Small 10 0.462 0.771 0.921 0.794 

 20 0.889 0.958 0.475 0.698 

 30 0.884 0.000 0.003 0.019 

Medium 50 0.991 0.999 1.000 0.996 

 80 0.999 1.000 0.984 1.000 

 100 1.000 0.881 1.000 1.000 

Large 200 1.000 1.000 1.000 1.000 

 300 1.000 1.000 1.000 1.000 

 500 1.000 1.000 1.000 1.000 

 

 

 


