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Abstract

Adaptive Learning Rate Optimization Algorithms (ALROA) are used in solving
machine and deep learning problems. This study aims to adopt these algorithms to
estimate the coefficients of traditional linear regression models between global
population and GDP by countries for the Year 2019. Algorithms such as Stochastic
Gradient Descent (SGD), Stochastic Gradient Descent with Momentum (SGD with
Momentum), Nesterov Accelerated Gradient Descent (NAG), Modified Root Mean
Squared Propagation (Modified RMSprop), and Modified Adaptive Moment
Estimation (Modified Adam) were used in this study. A learning rate of 0.01 and
exponential decay rates of 0.9 and 0.999 were used for the first and second
momentum. Half Mean Square Error (HMSE) was used as the loss function while
Root Mean Square Error (RMSE) was used to rank the algorithms in order of
accuracy. The ranking showed that SGD with Momentum, Adam, and SGD could be
modified and successfully adapted for estimating the coefficients of regression
models with a high degree accuracy.
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INTRODUCTION

Estimating the coefficients of regression models can be formulated asan optimization
problem(Muehlebach and Jordan, 2019).The key to the success of optimization
algorithms, structural or stochastic,in minimizing convex functions is that these
functions have local or global phenomena (Bubeck, 2015). Gradient Descent
Optimization Algorithms (GDOA) provide an effective way to solve a good number
of optimization problems with the aim of estimatingcoefficients of regression
modelssuch that the Error Sum of Squares (ESS) between the predicted and the
observed values of a variable of interest is minimized (Mayooran, 2018).Loss
Functions have the same local and global minima and this behaviour makes faster
convergence to be achieved using optimization algorithms (Bubeck, 2015). SGD and
SGD with momentum are two of the most common algorithms for solving
optimization problems involving large volumes of data (Loizou and Richtarik,
2018).Loizou and Richtarik (2018) proved the linear convergence of SGD and SGD
with momentum algorithms.NAG descent converges to the global minimum faster
than most extant optimization algorithms (Nesterov, 1983; Muehlebach and Jordan,
2019).This study provided answers to the following questions: Can deep learning and
neural network algorithms be adopted estimating the coefficients of in linear
regression models? What adjustments have to be made to these algorithms? And how
well would they do compared to traditional regression methods? The study was
limited to regression models using cross—sectional data.

LITERATURE REVIEW

Bubeck (2015) carried out an investigation into understanding what he termed the
“oracle complexity of convex optimization” which is an understanding into how
many iterations it will take for an algorithm to converge to the global minimum.
Furthermore, Qianxiao et al. (2017) observed that the standard gradient descent (GD)
attains convergence slower in comparison to SGD when the gradient evaluations
progressively becomes large, although the high sensitivity of SGD with the learning
rate makes its convergence rate equally slow. Consequently, a number of attempts
have been employed. Notable amongst these are: to reduce the variance of the noise
gradient using adaptive learning rate and momentum acceleration mechanisms (Zou
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and Shen, 2018). Zou and Shen (2018) further posited that adaptive learning rate and
the use of momentum mechanisms showed more suitable solution to problems since
no large memory was required for their computation. NAG is a momentum
accelerated mechanism that has been theoretically and numerically investigated for
both convex and non-convex optimization problems for global learning rate. Owing
to conciseness and effectiveness of momentum accelerated mechanisms, the NAG
momentum speeds up the training of deep networks. It is a product of “discretizing an
ordinary differential equation with a semi—implicit Euler integration scheme”
(Muehlebach and Jordan, 2019). Bubeck, ef al. (2015) proposed a new method for
unconstrained optimization of a smooth and strongly convex function which attains
the optimal rate of convergence of NAG descent.

METHODOLOGY

Model Development

Let Ygpp and  Xp,puiation be independent variables denoting observations on GDP
and Population, respectively. Also, let the relation between Y;pp and Xpopyiation be
given by:

Yepp = ao + alXPopulation +e (D

where a, and a, are unknown parameters for the function and E,,,,is a vector of
measurement errors.

Log Transformation
The natural logarithm of Y;pp, given as Ygpp 104, in equation (1) gives a transformed
model of form:

YGDP_log = 90 + 91XPopulation_log + Eerror (2)

where 8y, = log ay, 6; = log a,, X Population_log = naturallogof Xpopuiation and
Eorror = naturallogof e;.
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Ordinary Least Squares
Let X,«, be a matrix of predictor variables. The Ordinary Least Square (OLS)
Estimator of (2) given by Mayooran (2018) is defined as:

é2><1 = Xﬁsz YGDP_log 3)

Where Xy, = (Xjx2Xnx2)™ "Xz
It should be noted that X, , is the pseudoinverse of the matrix X,,», as described by
Moore (1920) and Penrose (1955).

Loss Function
The loss function used is the Half Mean Squared Error (HMSE) and is defined as:

1 2
L(90:91) = m ?:1(Ypredicted - YGDP_log) 4)

Stochastic Gradient Descent
The objective of Stochastic Gradient Descent (SGD) is to minimise (5).The
Stochastic gradient Descent Algorithm is defined by Ruder (2016) as:

. . d
9jL+1 = 6]1. - Troj L(eo, 91) (5)

Where Hj-irepresents the value of the j'* coefficient of theit"iteration and t is the

learning rate. And % L(6y, 6,) is a partial differentiation with respect to 6;.
]

. ; ; 1
Forj =0, 96+1 = 96 - TZZ?:l(Ypredicted - YGDP_log) (6)
. 1 i 1
Forj = 199{-'-1 = 01— T;Z&l(ypredicted - YGDP_log)XPopulation_log (7

Stochastic Gradient Descent with Momentum

The objective of Stochastic Gradient Descent with Momentum is to minimise (4):
Stochastic Gradient Descent with Momentum as defined by Loizou and Richtarik
(2018) is given as:

0/*' = 6/ — m! (8)
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Where Hjirepresents the value of the j* coefficient of theitMiteration.m} the

momentum of theit"iteration defined as:
l+1 .Bmt 69]_ L(6o,6,) )

And £ is the exponential decay rate of the momentum,m,.

FOI‘] =0 ml+1 .Bmt + Z 1( predicted — YGDP_log) (10)

9L+1 = 96 - Tmé+1 (11)
Forj=1 ml+1 .Bmt + Z 1( predicted — YGDP_log)XPopulation_log (12)
fitl = gl — rm;“ (13)

Nesterov Accelerated Gradient Descent (NAG)

The objective is to minimize the modified cost functionL (wg, w4).
wo = bp — pm; (14)

wy = 6, — pmy (15)

Where mi*! = pmi + a%jl‘ ((80 —,Bmé), (91 - ,Bmé')) is the momentum of

the(i + 1)%"iteration and S is the exponential decay rate of the Recast as: momentum
(Ruder, 2018; Muehlebach and Jordan, 2019).NAG Algorithm is defined as:

0/*" = 6/ — tm{*? (16)

Where Qj-irepresents the value of the j'" coefficient of theitMiterationand t is the

learning rate.

Forj = 0.m{*' = Bmi + Z 1(Yoreaictea = Yopp_iog) (17)
9L+1 — 66 _ ,l_ml+1 (18)

Forj =1, L+1 Bmt + Z 1( predicted — YGDP_log)XPopulation_log (19)
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gi+1 = gl — ! (20)

Modified Root Mean Square Propagation (Modified RMSprop)

The objective of RMSprop is to minimize (4). RMSprop is defined by Bubeck (2015)
as:
gitt

=i - —" 21,6 21
T [mitiea0e-s 9 (60, 6,) @)

Where Qirepresents the value of the j* coefficient of theit*iteration, T is the learning

i+1:

rate and m;™"is defined as:

ml+1 .Bmt + (1- ﬁ)ﬁl’wo;eﬂ (22)

B is the exponential decay rate of the momentum m;.Using the RMSprop algorithm
as defined in (21) for traditional regression problems resulted in complex number
regression coefficients due to the possibility of negative momentum m; in the

algorithm. To solve this problem, we resorted to using Modified RMSprop which

uses the absolute value of| +1|

— % 1(6,,0) (23)
mi*2|+10e-8 2%

FOI‘] =0 ml+1 .Bmt + (1 - .8) Z 1( predicted — YGDP_log) (24)

9L+1 = 90 W’l 1( predicted ~ YGDP_log) (25)
1+10e~

FOI‘] - 1 ml+1 .Bmt + (1 - .B) Z 1( predicted — YGDP_log)XPopulatio _log(26)

1 pi
9L+ - 8; \/_+10e‘8n ( predicted — YGDP_log)XPopulation_log (27)

i+1 _ i _
o/t = o]

Modified Adaptive Moment Estimation (Modified Adam)
The objective of Adam is to minimize (4). Adam is defined by Kingma and Ba
(2017):
i+1 _ pi T 1
6/*' = f — ———mi" (28)

mg
} vit1+10e~8
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Where Hj-irepresents the value of the j'* coefficient of the i*" iteration,r is  the

learning rate.m, and v, are the respective first and second momentum of the cost
function of the algorithm respectively defined as:

mitl = gmi+ (1- ﬁl)a%jL(eo,el) (29)

i 0
véﬂ = Bve+ (1— .82)671_14(90' 61) (30)

p1 and f, are the exponential decay rates for the first and second momentum
respectively. Also, due to the possibility of negative momentum,v;, using Adam as
defined in (28) results in the coefficientsbeing complex numbers.However, using
Modified Adam which uses the absolute value of | +1| results in (28) becoming:

eji+1 — eji -t i+l (31)

m
|vitt|+10e—8

Where m;, v; and L(GO, 6,) are as defined above.

Forj = OmH-l = .Blmt + (A= B> Z 1( predicted — YGDP_log) (32)

v£+1 = ,Bzvt + (1= B2)= Z 1( predicted — YGDP_log) (33)
06" = 6§ — ;méﬂ (34)

“ 1] 110e~8

Forj =1 ml+1 .Blmt + (1- .81) Z ( predicted — YGDP_log)XPopulation_log
(35)
L+1 ,Bzvt + (1 - ﬁz) Z 1( predicted — YGDP_log)XPopulation_log (36)
9L+1 = 91 _ ;miﬁl (37)

[vitt|+10e—8
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DATA ANALYSIS

The cross—sectional data of total Population by countries and their respective GDP for
2019was sourced from World Population website. Data analysis was carried out using
GNU's Not Unix! (GNU) Octave (Eaton ef al., 2014). A histogram (Figure 1) for each
of the two variables was found to be skewed to the right consequently suggesting that
each variable in the dataset does not have a centred mean value. In other words, the
plot suggests that the datasets are not normally distributed.
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Figure 1: Histogram of GDP (a) and Population (b).

Heteroscedasticity in the original dataset was confirmed by Breusch—Pagan (BP) and
Goldfeld—Quandt (GQ) Tests (Table 1).Consequently, a natural logarithm
transformation was carried out on the data set. Assessment of the transformed data for
heteroscedasticity using BP and GQ testsshowed that the transformed datasetwas
homoscedastic (Table 1). As such, the OLS is expected to provide consistent
estimators.
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Table 1: Heteroscedasticity Test for Equation (1) and Equation (2)

Breusch—Pagan (BP) Test Goldfeld—Quandt (GQ) Test
Linear Model } .
Chi-sq. df p-value Chi-sq. dfl  df2 p-value
Original dataset 14.001 1 0.0002 955.51 101 100 <0.001
Log(original) dataset 3.0625 1 0.0801 1.1073 101 100 0.3053

The new data was randomly split into two parts; 80% (training), 20% (test). Adaptive
learning rate algorithms were used on the training data witha learning rate of 7 =
0.01first with 100 then with 1000 iterations. Theta and momentum valueswere
initialized to zero. The exponential decay rates for the first and second momentum
were set to 0.9 and 0.999 respectively. The resultant parameters were then used to
create linear regression models between the two variables, Population and GDP. The
input variable from the test data was then used to predict GDP. The predicted data
were then compared with the observed test data using Root Mean Square Error
(RMSE) to rank the methods in terms of precision.

RESULTS AND DISCUSSION

The algorithms started from the same maximum loss of 290.28, but converged to
different minimum losses.Table 2 contain the coefficients of the regression model
based on the different algorithms under study after 100 iterations and those of the
OLS method.
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Table 2: Descriptive Statistics and Parameter Estimates of the Methods after 100

Iterations.

Loss Theta
Algorithm Minimum Maximum 0, 0,
OLS - - 11.96333 0.79036
SGD 2.6099 290.28 0.12694 1.55085
SGD with Momentum 2.5536 290.28 0.34484 1.52887
NAG 290.28 Inf -8.5509e+228  -1.3309¢+230
RMS Propagation 249.56 290.28 0.10856 0.10856
Adam 2.2655 290.28 1.4622 1.4622

All algorithms showed steep convergence, with the exception of NAG which had no
convergence point as it tends to infinity and RMSprop which hada shallow descent
with a minimum loss of 249.56. Adam has a minimum loss of 2.2655 after 100
iterations which it maintained after 1000 iterations (Table 3).
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Figure 2: Loss of the Methods after Hundred iterations.
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After 1000 iterations, RMSProp minimum loss dropped to 31.592but still had one of
the highest minimum loss among the converging methods. A rank of the accuracy of
the methods using the Root Mean Square Error (RMSE) showed that the OLS was the
most accurate while RMSProp method was the least accurate (Table 4).

Table 3: Descriptive Statistics and Parameter Estimates of the Methods after 1000
Iterations.

Loss Theta
Algorithm Minimum Maximum 0, 0,
SGD 2.5446 290.28 0.36887 1.53530
SGD with Momentum | 2.0242 290.28 2.5173 1.3973
NAG 290.28 Inf NaN NaN
RMS Propagation 31.592 290.28 0.99899 0.99899
Adam 2.2655 290.28 1.4653 1.4653

Table 4: Rank of the methods using RMSE.

Algorithm RMSE Order of Precision
OLS 1.3375 1
SGD with Momentum 1.7351 2
Adam 1.8478 3
Stochastic Gradient Descent 1.9701 4
RMS Propagation 7.7081 5
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CONCLUSION AND RECOMMENDATION

We investigated the possibility of adopting deep learning algorithms for estimating
the parameters of regression models and found that with the exception of NAG which
tended to infinity, SGD with Momentum, Modified Adam, and SGD can be
successfully adopted for estimating the coefficients of regression models with a high
degree accuracy. Modified RMSprop was as successful at estimating the coetficient
of regression models.
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