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Abstract

In real life situations, the assumption of homogeneity is often violated and the
variances of the error terms are not the same, heteroscedastic problem. In this work,
D-optimality criterion which is an experimental design was used when there is
heterocedsasticity in the data set of kinematic viscosity and when the data had been
corrected using different methods for correction thereby making the variance of the
error structure to be equal. Comparing the resultfor the two regression models used,
when there is heteroscedasticity and when it has been corrected, the variances and the
determinants of dispersion matrices shows that D-optimal design when the data set
has been corrected is more efficient than when there is heteroscedastic .
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INTRODUCTION

Experimentation is the process of planning a study to meet specified objectives which
constitutes a foundation of the empirical sciences (Zhu, 2012).One major advantage
of experiment is its ability to control theexperimental conditions as well as to
determine the variables to include in a study (Fackle Fornius, 2008). Since the
introduction of experimental design principle in the first half of the 1930, optimal
experimental designs have been gaining attentionand had become useful tools among
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researchers in various fields (Atkinson and Donev, 1992; Atkinson, 1996; Atkinson,
Donev and Tobias, 2007; Berger and Wong, 2009).

There are various design criteria, D-optimality has been the most frequently used; and
often performs better than other criteria ((Zocchi and Atkinson, 1999; Atkinson ef al.,
2007). Hence, the D-optimality has become one of the most popular criteria which
involves designs that minimize the generalized variance of the parameter vector.The
D-optimal designs seek to minimize|(X'X)™!|(dispersion matrix) or equivalently
maximize the determinant of the information matrix (X'X)of the design through some
forms of statistical modeling such as regression model. The information matrix (also
called Fisher information matrix)measures the amount of information that random
variable Xaffects an unknown parameter 6 of a distribution.One of the important
assumptions of the standard regression model is that the variance of the error
terms(disturbance term,u;) must be equal across the observations and this is refers to
as homoscedastic [E (uiz) = g% = 1,2,---,n]. However, in real life situations, this
assumption is often violated and the variances of the error terms are not the same. The
condition where error terms have different variances is termed heteroscedasticity
[E (uiz) = al-zi = 1,2, -+, n]that is, unequal variance across the observations(Lambert,
2013; Knaub, 2017).Heteroscedasticity, which is often referred to as a “problem” that
needs to be “solved” or “corrected” is the change in variance of predicted y, given
different values of the independent variables (Knaub, 2011, 2017).This study
therefore, adoptedD-optimal designs otherwise known as D-optimality criterion in
regression model with heteroscedasticity error terms to provide the most accurate
estimates of model parameters using Kinematic Viscosity Data.

LITERATURE REVIEW

Atkinson (1996) gave a compelling account of the usefulness of optimal design and
their potential application to other fields. Berger and Wong (2009) showed interest in
application of optimal design in different disciplines.Mannarswamy,et.al, (2009)
derived D-optimal experimental designs for three common adsorption isotherm
models: the 2-parameter Freundlich, the 2-parameter Langmuir, and the 3-parameter
Langmuir. For each of these liquid-solid adsorption models, the D-optimal design
equations were derived from the information matrix and then solved numerically to
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determine the specific design values as a function of the model parameters. It was
determined that the D-optimal designs for all three isotherms were independent of the
proportionality parameter in the model and the design optimality was verified using
the general equivalence theorem. Fang (2002) considered D-optimal designs for
polynomial regression models with low-degree terms being missed by applying the
theory of canonical moments. It turns out that the optimal design places equal weight
on each of the zeros of some Jacobi polynomial when the number of unknown
parameters in the model is even.Wang, et.al, (2006) worked on D-optimal designs for
Poisson regression models. For the one-variable first-order Poisson regression model,
it has been found that the D-optimal design in terms of effective dose levels is
independent of the model parameters. Habib (2013) found locally D-optimal design
for a Logit model in discrete choice experiment where there are many alternative set
for people to make their choice using D-optimal design for the combination of the
level of attributes to create alternatives.Habib, et.al, (2014) worked on D-optimal
design for logistic regression model with three independent variables; they obtained a
locally D-optimal design for several specific states, presented certain designs with
different points and calculated the subject optimality based on space of the
parameters. Gaviriaa and Lopez-Riosb (2014) worked on Locally D-Optimal Designs
with heteroscedasticity. In their work, two methodologies were considered in a non
linear model with one explanatory variable. They used variance modeling
methodology and Box-Cox transformation to get D-optimal design.

MATERIALS AND METHOD

The data usedin this study is a secondary data on the kinematic viscosity of a
lubricant (response variable) in stokes as a function of temperature (o;) and the
pressure in atmosphere (atm), were obtained by Linssen (1975). The data setwhich
was tested and found to be violating the assumption of homoscedasticity was
codedbetween—1 < x < 1.

The Linear model

Vi = Bo + B1x1 + B2x; + ¢
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where y; is the viscosity, X, is the temperature and x,is the pressure, the parameters
are fB; and e;is the error term.

The polynomial model was also used and we found D-optimal design for each
modelusing sequential method when there is heteroscedasticity and when it has been
corrected. The sequential method for getting D-optimal design was used to achieve the
results in this work

The sequential method of getting D-optimal design procedure requires a sufficient
number of observations because we have to ensure that the inverse | Xy Xy| ™t exist. A
simple condition that will guarantee the inverse exist is to have the number of
different design points greater than or equal to the number of parameters, that is N >
p. The design points are selected within the range of —1 < x < 1 for the variables.
Wherever the maximum value of the Standardized variance s(x,, ) is found will be
added to the next design matrix. The process continued until the condition for getting
optimal design was reached. The maximum s(x,, &) value decreases as N
increases,according to the general equivalence theorem (Kiefer and Wolfowitz,
1960), a D-optimal design satisfies the condition that s(x,, &) < p.

x;i—D Xmax—Xmin

The coded values for x; and x, uses d; = where D = x,,,;, —

Xmax— 2
Heteroscedasticity was corrected using the following steps
i.  Run the OLS of the model and obtain the estimated residuals
ii.  Obtain the log of the squared residuals
iii.  Correction methods are
Method 1 regress logé? on (x1,x,)
Method 2 regress logé? on (x, x,, x2,x3)
Method 3 regresslogé? on (x1, X,,x%, x3, x1%3)

RESULTS AND DISCUSSION

The linear (first) model is

Vi = Po + Prx1 + Baxz +ei(1)
The partial derivative for the model is

f,(xi) = (11 X1, xZ) (2)

The information matrix is now
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M) =Xw; f(x) f'(x) 3)

The corresponding 3 X 3 design matrix for the model is
1.000000 1.000000  0.322035

X3 =(1.000000 —0.494439 0.413935 4
1.000000 —0.235592 —0.026634

The maximums(x,, &) is found for x; = 1.00000 and x, = —1.000000, so these
design points were added to design matrix X3 and the design matrix is now

1.000000 1.000000 0.322035

X, = 1.000000 —0.494439 0.413935 (5)
1.000000 —0.235592 —-0.026634
1.000000 1.000000 —1.000000

Table 1 shows the D-optimal design when there is heteroscedasticity. It means that if

there are 100 experimental units, 20 should be allocated to when x; = —1 andx, =
1,also when x; = 1 and x, = 1. In the same vein, 30 should be allocated to when
x; = —1andx, = —1,also whenx; = 1land x, = —1

Tablel: Sequential construction of a D-optimal design for the linear (first) model

N X1N+1 X2N+1 s(xq,€) Desr
3 1.0000 —1.0000 49.5896 0.000819
4 —1.0000 —1.0000 13.9742 0.002128
5 —1.0000 1.0000 7.2029 0.003511
6 1.0000 1.0000 6.0575 0.004728
7 —1.0000 —1.0000 4.3792 0.005966
8 1.0000 —1.0000 43516 0.007015
9 —1.0000 1.0000 42274 0.008169
10 1.0000 1.0000 3.7240 0.00931
903 —1.0000 —1.0000 3.009 1

The D-optimal design for the model is
(-1,1) (Q,1)(-1,-1) (1,-1)

&= { 2z 3 3 } 6)

10 10 10 10
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Comparison for D-optimal designs when there is heteroscedaticicty and when it has
been corrected was presented in Table 2 for linear model. The Mean and Variance for
these were shown. The correction methods used here were three and this was done for
polynomial model

Table 2: D-optimal designs for model 1 {y; = By + f1x1 + f2x, + e;(Linear
Model)}

Model D-optimal Designs Mean Variance
Uncorrected (-1,1) Q,D(- 1 -1 (1,-1)
2 2 3 } 2.7 8.5
10
Corrected 1 1 ,1) (1 1)( 1 -1) (1 1)
{ S5 5 5 } 2.5 7.5
20 20
2 -1,1) (1 1)( 1 -1) (1 1)
{ 5 6 5 } 2.45 7.25
20 20
3 -1,1) (1 1)( 1 -1) (1 1)
{ S5 5 5 2.5 2.5
20 20

From Table 2, the mean and variance for the D-Optimal design when there is
heteroscedasticity and it has been corrected were shown. The results show that the
variance of the D-Optimal when there is heteroscedasticity is higher than when it has
been corrected, which show the efficiency of the corrected one. Similarly, Table 3
also show same results for the second model used.

The polynomial model considered in this work is y; = B + f1x1 + B2Xx2 + B3x, + €
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Table 3: D-optimal designs for model 2 (Polynomial Model)

Model D-optimal Designs Mean | Variance
Uncorrected | ((—1,1) (1,1)(-1,—-1) (1,-1)(—0.2356,1) (—0.2356,—1)
3 3 3 4 3 4 3.65 | 1625
20 20 20 20 20 20
Corrected 1 | ((—1,1) (1,1)(-1,-1) (1,-1)(—0.2356,1) (—0.2356,—1)
4 4 2 3 4 3 3.4 14.3
20 20 20 20 20 20
(-1,1) (1,1)(-1,-1) (@1,-1)(—0.2356,1) (—0.2356,—1)
2 4 4 2 3 4 3 34 14.7
20 20 20 20 20 20
(-1,1) A,1)(1,-1) (1,-1)(—0.2356,1) (—0.2356,—1)
3 4 4 4 4 2 2 31 12.1
20 20 20 20 20 20

Table 3 below shows the D-optimal design and the comparison is based on the mean
and the variance of the design knowing fully well that for a good estimator, efficiency
must be ascertained which is relevant to minimum variance. Therefore, the D-optimal
design when there is no heteroscedasticity is the best in experimental design. Table 4
further established the effect of heteroscedasticity on D-optimal design for
itsminimizes the determinant of dispersion matrix or maximize the information
matrix, meaning that the smaller the determinant, the better the design. Model 1 can
be considered to have performed best relative to this fact

Table 4: Comparison of D-optimal designs in relative to the determinants of

dispersion matrices

Model | heteroscedasticity No Heteroscedasticity

Correction Method 1 2 3
Model 1 | 3.331295e¢7 11 3.331158e711 3.329784e711 | 3.323053¢711
Model 2 | 2.498338e~11 2.498807¢ 11 2.499842¢711 | 2.4987226e" 11
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CONCLUSION

Generally, in regression model presence of heteroscedasticity makes the estimator
unbiased but not efficient when ordinary least squares (OLS) approach is used. In
view of this, finding D-optimal design when Heteroscedasticity has been corrected is
better than when left uncorrected. In optimality criterion too, presence of this
phenomenon also affect the D-optimal design that an experimenter wishes to
achieve.It is recommended that when finding D-optimal design, heteroscedasticity
should be corrected especially when dispersion matrix is involved in the method to
get the optimal design.
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