2020 RSS-NLG Conference Proceedings

BAYESIAN ESTIMATION OF OPTIMAL
HYPERPARAMETERS OF LINEAR REGRESSION
MODELS USING QUANTILE RANGES

AYOADE I. ADEWOLE! and OLUSOGA A. FASORANBAKU?

! Department of Mathematics,
Tai Solarin University of Education ljagun Ogun State Nigeria.
’Department of Statistics, Federal University of Technology Akure

Author Email Address: oafasoranbaku@yahoo.com,
P.M.B 704, Akure, Ondo State, Nigeria,
Tel: +2348033932972
Corresponding Author Email Address: hayorhade2005@gmail.com,
P.M.B 2118, ljebu-Ode
Ogun State, Tel: +2348055124368

ABSTRACT

Bayesian estimations have the advantages of taking into account the uncertainty of all
parameter estimates which allows virtually the use of vague priors. Most importantly
if the data are sparse, there is a need to specity prior distributions for all unknown
parameters in analyzing the data from a Bayesian view. This study focused on
determining the quantile range at which optimal hyperparameter of normally
distributed data with vague information could be obtained in Bayesian estimation of
linear regression models. Normally distributed data of 200 sample sizes were
generated through Monte Carlo Simulation approach. Confidence Intervals for the
regression parameters were obtained from the Ordinary Least Squares analysis. The
variances were divided into 10 equal parts to obtain the hyperparameters of the prior
distribution. Observation Precisions, Posterior Precisions were estimated from the
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regression output to determine the posterior means estimate for each model to derive
the new dependent variables. Average Absolute Deviation was employed for model
selection are used to validate the adequacy of each model. The process was repeated
10000 times to determine the quantile range for the optimal hyperparameters. The
study established that the optimal hyperparameters are located within 5™ and 7%
deciles. The research simplified the process of selecting the hyperparameters of prior
distribution from the data with vague information in empirical Bayesian inferences.

KEYWORD: Optimal Hyperparameters, Quantile Ranges, Bayesian Estimation and
Vague Prior.

INTRODUCTION

Linear Regression represents the dependent variable as a linear function of one or
more independent variables, subject to a random “disturbance °’
estimates the mean value of the dependent variables for given level of independent
variables, the relationship is modeled using linear predictor functions whose unknown
model parameters are estimated from the data. (Hilary 1967, Schaalje and Rencher
2007). Linear regression focuses on the conditional probability distribution of Y
given X, rather than on the joint probability distribution of Y and X, which is in the
domain of multivariate analysis, (Yan 2009, Rencher and William 2012).

or error term. It

In statistics, Bayesian linear regression is an approach to linear regression in which
the statistical analysis is undertaken within the context of Bayesian inference. The
Bayesian approach provides a complete paradigm for both statistical inference and
decision making under certainty. Bayesian methods make it possible to incorporate
scientific hypothesis in the analysis (by means of prior distribution) and may be
applied to problems whose structure is too complex for conventional methods to
handle. While the objectivity of frequentist statistics has been obtained by
disregarding any prior knowledge of the process being measured, the Bayesian
approach allows direct probability statements about the parameters which are much
more useful than the confidence statements. The essence of Bayesian approach is to
provide a mathematical rule explaining how existing beliefs can be changed in the
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light of new evidence. In other words, it allows scientist to combine new data with
their existing knowledge or prior. Researchers considered Bayesian approach to be
superior to frequentist approach through the application of prior information. The
argument is that the introduction of prior distributions violates the objective view
point of convectional statistics, Lunn et al. (2013)..

This study is to investigate the claim of Atkinson ef al. (1993) that prior distribution
could be suggested by data to reduce the uncertainty around the determination of
Bayesian prior and to use the prior to determine the superiority of Bayesian
regression analysis over frequentist regression analysis. Raftery et al (1997)
considered the problems of accounting for model uncertainty in linear regression
model. Conditioning on a single selected model ignores model uncertainty, and thus
leads to underestimation of uncertainty when making inferences about quantities of
interest. A Bayesian solution to this problem involves averaging over all possible
models when making inferences about quantities of interest.

Aside from investigating Atkinson et al. (1993), this research work also aimed to
determine the quantile range at which optimal hyperparameters could be obtained
when Bayesian estimation is employed to solve regression analysis of normally
distributed data with vague information. Agresti (2006) examined Bayesian Inference
for categorical Data Analysis, with primary emphasis on contingency table analysis.
Several application of Bayesian analyses have yielded evidence that some
hyperparameters indeed are much important. Through minimizing an empirical error
criterion, Adankon and Cheryl (2009) used a gradient descent method to
automatically select hyperparameter values for the least squares support vector
machine. (Bergstra and Bengio, 2012, Hutter ez al. 2013) also worked on speeding up
automatic selection of hyperparameter value for neural work. Liseo andMacaro
(2013) considered the problem of deriving objective priors for the causal stationary
autoregressive model of orderp.Guido et al. (2018) provided review of prior
distributions for objective Bayesian analysis. However, not much work has been done
on determining the range of obtaining the optimal hyperparameter in Bayesian
estimation of linear regression models. With this gap in mind, this study opts to
determine the optimal quantile range of the prior parameters and establish the prior
parameters from ordinary least squares (OLS) model confidence intervals.
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MATERIALS AND METHODS

The simple linear regression model is given by
yv,=a+px, +¢g, (1)

fori=1.,2,....,n, y,is the response variable, x; is the explanatory variable, a and f are

the unknown parameters that are to be estimated and ¢; is the residual term. The term
g; is independent and identically distributed with a normal distribution with mean 0
and unknown, ¢2.

Baye’s theorem is constantly summarized by
Posterior « prior X likelihood

Hence, there is a need to determine the prior and the likelihood distribution for the
model.

The joint likelihood is factored into a product of two individual likelihood of

a and . It is simplified as

Likelihood ,,,, (c,, B) < likelihood ., (a ) Xlikelihood . () 2)
where;
1
likelihood _ . ce”——— (- B)* 3
samph (IB) 20‘2/Ss¥ (IB ) ( )
and
1
likelihood. . (o) ce ——(a.—A.)* 4
samph( x) 202/’/1( X x) ( )

The independent likelihood is independent, the likelihood of the slope 8 has a normal

2
shape with mean B and the variance % Similarly, the likelihood of a, also has
2

. . g
normal shape with mean 4, and variance—.
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If the joint likelihood is multiplied by joint prior, it is proportional to the joint
posterior. Using independent priors for each parameter, the joint prior of the two
parameters is the product of the two individual priors.

gl .p)=g(a,)Xg(p) Q)

The joint prior follows a normal distribution.

The joint posterior is proportional to the joint prior multiplied by the joint likelihood.

g(a,.p|data) < g(a,.p) X likelihood,,,,. (a,. )  (6)

where the data is the set of ordered pair(x;, y;), ..., (Xn, Yn)

Regression analysis was run for a data set, the standard errors obtained from the
linear regression result for the output from the parameters fy,.., Sswere used to
obtain the lower and upper limits for the prior variance required for thestudy analysis
using chi- square with (#—1) degree of freedom.

(n—1)s> and (n—1)s>

> > respectively (7)
Xajrn-1 Xi-a)2,n-1

The confidence interval for each parameter is used to determine the prior mean range
Bott,, XSE 8)

Difference between lower and upper intervals obtained above is divided into 9 grid
points. Each pair of the points is the mean and variance for the prior distribution,
these grid points are referred to as the hyperparameters of the prior distribution.

B~N(m,.s2) ©)

The likelihood function is of the form:

X/B~N(B, "7) (10)



2020 RSS-NLG Conference Proceedings

where X is the average of X; ,..., X,

The likelihood of the regression parameters £y, .., B4 were estimated, for the intercept
(By), the mean square error from the regression analysis and the sample size n were
used while the sum of squares of the independent variables (X),s = 1, ...,4 and the
mean square errorobtainedwere used to determine the likelihood of B, B, fzand f,.

MSE

likelihood of f, = —— (11)
n

likelihood of p, = MSE (12)
SSx,

likelihood of B, = MSE (13)
SSx,

likelihood of p, = MSE (14)

T SSx,

likelihood of p, = MSE (15)
SSx,

The posterior distribution:

Bl X ~N@m's.(S's)") (16)

The posterior precisions of the regression parameters £, .., Bsare the prior precisions
plus the observation precision for the parameters.
1 1

n
for p,, SAy - 54 3 (17)

for g

” 12 — +— (18)
(S'B) S° B c
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1 1 SSX
for §,, — = +—2 (19)
’ (S ﬁz)2 Szﬂz o’
1 1 SSX
for B;, — = + =3 (20)
’ (S ;83)2 S2ﬂ3 o’
1 1 SSX
for f,. — = + = 1)
! (S ;84)2 Szﬂ4 o’

The Bayes estimates of B, ..., B, were obtained using the equations below:

prior precision observation precision

- —— X prior mean + - —— OLS Estimate
posterior precision posterior precision

(22)
1 n
By o’ :
for 1309 ﬁ X PMIBO + ﬁ X ,BO OLS Estimate
s* By o’ s* B, -
(23)
1 58X,
s* By o’ ;
for g, ————— X PMpB, + X B, OLS Estimate
1 58X, 1 ssx;
SZ,BI 0_2 SZ,BI 0_2
24)
1 58X,

' o’
for f,, 1—2&9 X PMB, + T s X B, OLS Estimate
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(25)
1 S5X,
f 54y PM, o’ OLS E
— X +——X timat
or S 1 S8X, Z 1 ssx P Stimate
2 + 2\ 2 2
s” B, o s B, o
(26)
1 S5X,
F 54, PM, o’ OLS E 27
— X — X j
or f,, 7 P B, + 7 pr b, stimate 27
2 + 2 2 2
sy o By o
SIMULATION STUDY

The simulation study applied a Monte Carlo simulation approach that generated the
data set used for the extensive analysis to determine optimal hyperparameters and the
optimal quantile range.

Let y; and x; denote the simulated data of the dependent and k explanatory variable,
Xi1y s Xikos

fori=1,...n.

the linear regression model is given by:

Y =B+ Bx;, + Brxyun t B X, T & (28)

where k =4 and 10000 sets of random data of sample size 100 were simulated for the
four independent variables x; to x,with ygenerated from a linear regression model
with normally distributed error term. The parameters used for the simulation were
chosen arbitrarily, they were given below as

ﬁo = 07, ﬁl = 04, ﬁz = 05, ﬁ3 = 01, ﬁ4 = 0.2
X1~ N(4,0.3), x,~ N(2,0.1), x3~ N (5, 3), and x,~ N(3,1) and e~ N(0, 1),
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(29)

Regression analysis was run on each set of the simulated data, intervals for the prior
mean and prior variance of the parameters determined were divided into 9 grid points,
each pair of the grid points is therefore used to determine the posterior Bayesian
estimates for the determinationof the optimal hyperparameter. The average absolute
deviation for the posterior estimates for each of 9 grid points of the models was
computed and the model with the least Average Absolute Deviations (AAD) ischosen
as the best model with the corresponding hyperparameters as the optimal
hyperparameters. The process was repeated for the remaining 9999 data set and the
optimal hyperparameters for the 10000 data set were considered to determine the
optimal quantile range. The Average Absolute Deviation was computed as

1 N, ST
0,2 s

(30)
where N is the sample size.
S is the number of grid points.
T is the number of simulations
Y; is the simulated dependent variables.

Y; is the estimated dependent variables derived from posterior estimates.

RESULTS AND DISCUSSION
LINEAR REGRESSION ANALYSIS

The ordinary least squares parameters’ estimates obtained from the linear regression
analysis of each set of simulated data was presented in Table 1 below
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TABLE 1: REGRESSION STATISTICS

Multiple R 0.6523
R- Square 0.8836
Adjusted R Square 0.7106
Standard Error 0.8529
Observations 200
Df SS MS F Significance
F
Regression 4 50.3721 38.3386 38.1944 3.3372E-11
Residual 195 93.3560 0.9032
Total 199 144.2281
Standard
Coefficients | Error t statistics | P- value | Lower Upper
95% 95%
Intercept | 0.4814 0.03672 | 1.2638 0.1946 | 0.4089 | 0.5538
X1 0.2409 0.2778 0.6582 0.3671 -0.3069 | 0.7887
Xy 0.5275 0.3415 3.0945 0.9923 -0.1459 | 1.20094
X3 0.7423 0.1892 0.4789 0.2514 | 0.3692 1.1154
Xy 0.3364 0.4096 4.1139 0.8356 | -0.4713 | 1.14413

The standard error of the regression parameters f3,.., f, from the regression analysis
results of the simulated data are 0.03672, 0.2778, 0.3415, 0.1892, and 0.4096
respectively. The chi square values for y2 /2 and Xz, /2 were obtained from the
statistical table as 161.826 and 239.960 respectively for sample size 200. These
values were used to obtain the lower and upper limits of the prior variances for the
regression parametersfy, .., 4.




2020 RSS-NLG Conference Proceedings

Precision measures statistical variability,D, were obtained as the differences between
the limits divided by 10 for the parameters [y, .., B4.The Dyare the incremental values
added to the lower limit of each of the prior variance to obtain D; and where i = 1 to
9. The prior precision obtained is the reciprocal of the prior variance. Table 2 to 5
shows the derivation of priorvariances, prior precisions for the parameter estimates
for the 9 grid points.

TABLE 2: THE PRIOR VARIANCE AND PRECISION FOR THE

PARAMETER ESTIMATE B,

n—-1s?| (n—1)s? Prior Prior
Xﬁ J2n—1 X12—a J2n—1 Do D, Variance Precision

of By of By
N 200 0.00112 0.00166 0.000054 D, =LL+ D, |0.001174 | 851.7887
S 0.03672 D, = D, + D, | 0.001228 | 814.3322
Xz“/z 161.826 D; = D, + D, | 0.001282 | 780.0312
X21—0¢/2 239.960 D, = D;+ D, | 0.001336 | 748.5029
Ds = D, + D, | 0.00139 [ 719.4244
D¢ = Ds+ D, | 0.001444 | 692.5207
D, = Dg + D, | 0.001498 | 667.5567
Dg = D, + D, | 0.001552 | 644.3298
Dy = Dg+ D, | 0.001606 | 622.6650
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TABLE 3: THE PRIOR

VARIANCE AND

PRECISION FOR THE

PARAMETER ESTIMATE g4
(n—1s?| (n—1)s? Prior Prior
Xﬁ J2n—1 X12—a J2m—1 Variance Precision
of B, of B,
Dy D;

N 200 0.06399 0.09490 0.003090 | D, =LL+ D, | 0.06708 14.9075
S 0.2778 D, = D; + Dy | 0.07017 14.2511
)(20,/2 161.826 D; = D, + D, | 0.07326 13.6500
)(21_,1/2 239.960 D, = D;+ D, | 0.07635 13.0975
Ds = D, + Dy | 0.07944 12.5881
D¢ = D5+ D, | 0.08253 12.1168
D, = Dg + D, | 0.08562 11.6795
Dg = D; + D, | 0.08871 11.2726
Dy = Dg+ Dy | 0.09180 10.8932
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TABLE 4: THE PRIOR VARIANCE AND PRECISION FOR THE
PARAMETER ESTIMATE g,

(n—1s?| (n—1)s? Prior Prior
X2 J2m—1 X, 21 Variance | Precision
of B, of B8,
Dy D;

N 200 0.0967 0.14341 0.00497 D; =LL+ D, 0.1016 9.8425
S 0.3415 D, = D;+ D, | 0.1066 9.3809
)(20,/2 161.826 D;=D,+ D, |0.1116 8.9606
)(21-“/2 239.960 D,= D;+ D, |0.1165 8.5837

Ds = D, + D, 0.1215 8.2305

Dg= D5+ D, |0.1265 | 7.9051

D, = Dy + D, | 0.1315 | 7.6045

Dg = D; + D, 0.1365 7.3260

D9 = Dg + DO 0.1414 7.0721
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TABLE S5: THE PRIOR VARIANCE

AND PRECISION FOR THE

PARAMETER ESTIMATE £3
(n—1s?| (n—1)s? Prior Prior
Xz J2m—1 Xi, J2m-1 Variance | Precision
of B3 of B3
D, D
N 200 0.02968 0.04401 0.001433 D, =LL+ D, |0.03111 | 32.1440
S 0.1892 D, =D, + D, | 0.03254 | 30.7314
)(20,/2 161.826 D; = D, + D, |0.03397 | 29.4377
)(21_0,/2 239.960 D, = D;+ D, |0.03541 | 28.2406
Ds = D, + D, |0.03685 | 27.1370
D¢ = Ds + D, | 0.03827 | 26.1301
D, = Dg+ D, | 0.03971 | 25.1825
Dg = D, + D, |0.04114 | 24.3072
Dy = Dg+ D, | 0.04257 | 23.9072
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TABLE 6: THE PRIOR VARIANCE AND PRECISION FOR THE
PARAMETER ESTIMATE g,

(n—1s?| (n—1)s? Prior Prior
X2 J2m-1 X, J2m-1 Variance | Precision
of B, of B,
D, D

N 200 0.13913 0.20631 0.00672 | D, = LL+ D, | 0.1458 6.8587
S 0.4096 D, = D; + Dy | 0.1525 6.5573
)(Za/z 161.826 Dy = D, + D, | 0.1593 6.2775
)(21_0,/2 239.960 D, = D;+ D, | 0.1660 6.0240

Do = Ds+ Dy | 0.1794 | 5.5741

D, = Dg+ D, | 0.1862 | 5.3705

Dg= D, + Dy | 0.1929 | 5.1840

Dy = Dg+ Dy | 0.1996 | 5.0100

The sum of the squares of the deviation from the mean of the independent variables
SS5X,, §5X,, §5X5 and SS5X, for the simulated data were calculated as 32.19, 24.09,

414. 61 and 291.52 respectively. The observation precisions for o 51 B, B3, and [,
SSXy _ 3219 _ 3¢ ¢agg SSX, _ 24.09

were given by Ul= 221.4348 ,

2 62 0.9032 oz 09032
26,6718 , 2% = 2120 _ 4590456 and 22t = 2222 — 39 4595 respectively.
o 0.9032 o 0.9032
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The Posterior Precision for the Regression Parameters

The prior precision of the regression parameters, the mean square error, the sum of
squares of the deviation were substituted in equations (17-21) to derive the posterior
precision for the regression parameters. Table 7 below presents the posterior
precisions of the 9 grid points.

TABLE 7: THE POSTERIOR PRECISION OF THE PARAMETER
ESTIMATE

Posterior | Posterior Posterior Posterior Posterior
Precision | Precision | Precision of | Precision  of | Precision of f,,
of By, of B, B, Bs,

1073.2235 | 50.5474 36.5143 491.1896 46.3182
1035.767 | 49.891 36.0527 489.7770 46.0168
1001.466 | 49.2899 35.6325 488.4833 45.7370
969.9377 | 48.7374 35.2555 487,2862 45.4835
940.8592 | 48.2280 34.9023 486.1826 45.2499
913.9555 | 47.7567 34.5769 485.1757 45.0336
888.9915 | 47.3194 34.2763 484.2281 44.8300
865.7646 | 46.9125 33.9978 483.3528 44.6435
844.0990 | 46.5331 33.7439 482.9528 44.4695

The unstandardized regression coefficients and the standard errors of the regression
parameters f,..,[,, were obtained from the linear regression analysis statistics
obtained in Table 1 and the critical values of the parameters were also obtained from
the student’s t statistical table. These values were substituted into equation (8) to
obtain the lower and upper limits for the prior means of the regression parameters.



2020 RSS-NLG Conference Proceedings

The prior means for the 9 grids points of the regression parameters are presented
below in Table 8

TABLE 8: THE PRIOR MEANS OF THE PARAMETER ESTIMATE B,

LB UB Dy D; Prior mean of
_Us—1Ls Bo,
- 10

0.4089 | 0.5538 | 0.01449 Dy =LB + D, |0.42339

D, = D, + D, | 0.43788

Dy =D, + D, |0.45237

D, =Dy + D, | 0.46686

Ds=D,+ D, | 0.48135

Dg = Ds + D, | 0.49584

D, = Dg+ D, | 0.51033

Dg =Dy + D, | 0.52482

D9 = D8 + DO 0.53931
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TABLE 9: THE PRIOR MEANS OF THE PARAMETER ESTIMATE £

LB UB _UB—-LB D; Prior mean of
°T 10 B,

-0.3069 0.7887 0.10956 Dy =LB+ D, |-0.19734
D, = D, + D, | -0.08778
Dy =D, + D, | 0.02178
D,=Ds;+ D, | 0.13134
Ds = Dy + Dy | 0.24090
Dy = Ds + Dy | 0.35046
D, = Dg + Dy | 0.46002
Dy = D, + Dy | 0.56958
Dy = Dg+ D, | 0.67914
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TABLE 10: THE PRIOR MEANS OF THE PARAMETER ESTIMATE g,

LB UB _UB—-LB D; Prior mean of
710 Bs,

-0.1459 1.20094 0.13468 Dy =LB+ D, |-0.01122
D, = D; + D, | 0.12346
D3 =D, + D, | 0.25814
D, =D3+ D, |0.39282
Ds =Dy + Dy | 0.52750
Dg = D5+ D, | 0.66218
D; =Dg+ Dy | 0.79686
Dg =D, + Dy | 0.93154
Dg = Dg+ D, | 1.06622
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TABLE 11: THE PRIOR MEANS OF THE PARAMETER ESTIMATE g3

LB UB _UB—LB D; Prior mean of f3
°7 10

0.3692 1.1154 0.07462 D; =LB+ D, | 0.44382
D, = Dy + D, | 0.51844
Dy =D, + Dy | 0.59306
D, = Ds + D, | 0.66768
Ds = D, + D, | 0.74230
Dy = Ds + Do | 0.81692
D, = Dg + D, | 0.89154
Dg =D, + D, | 0.96616
Dy = Dg + D, | 1.04078
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TABLE 12: THE PRIOR MEANS OF THE PARAMETER ESTIMATE g,

LB UB _UB—LB D; Prior mean of
710 Ba,

-0.4713 1.14413 0.16154 Dy =LB + D, |-0.30975
D, = D+ Dy |-0.14182
D3 =D, + D, | 0.01332
Dy,=D3+ D, |0.17486
Ds =Dy + Dy | 0.33640
Dg = D5+ D, | 0.49794
D; =Dg+ Dy | 0.65948
Dg =D, + D, | 0.82102
Dg = Dg+ D, | 0.98256

The prior precision, posterior precision, observation precision, prior mean and

ordinary least squares estimates of the regression parameters f3, .., 54, obtained were
substituted into equations (23-27) to derive the 9 Bayes Estimates.

The posterior mean (Bayes Estimates) and OLS estimates of the regression

parameters for the 9 grids points were presented below in Table 13
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TABLE 13: THE BAYES ESTIMATES OF THE PARAMETER ESTIMATES

BAYES BAYES BAYES BAYES BAYES
ESTIMATES | ESTIMATES | ESTIMATES | ESTIMATES | ESTIMATES OF
OF B,, OF B, OF 3, OF B3 Ba
0.4353 0.1117 0.3821 0.72270 0.2434
0.4471 0.1470 0.4224 0.72826 0.2682
0.4587 0.1802 0.4598 0.73330 0.2858
0.4770 0.2115 0.4947 0.73797 0.2942
0.4814 0.2409 0.5275 0.74232 0.3364
0.4923 0.2686 0.5583 0.74632 0.3564
0.5031 0.2949 0.5873 0.75090 0.3711
0.5137 0.3198 0.5991 0.75417 0.3974
0.5240 0.3435 0.6407 0.76052 04111

Table 14: Ordinary Least Squares Estimates of the Parameters.

Regression Bo, b1 B2 B3 Ba
Parameters

OLS 0.4814 0.2409 0.5275 0.7423 0.3364
Estimates

From the Table 13 and 14 above, the posterior means produced at the average
quantile level were the same as the ordinary least squares estimates of the parameters.
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Average Absolute Deviation for the Grids Points

The Bayes estimates for each grid point derived were used to estimate new dependent
Variables(?). Average absolute deviation is determined between the simulated
dependent variable (Y) and the Bayes estimated dependent(?). For each data set 9
Average absolute deviations were derived from which least Average absolute
deviation is chosen. Table 15 presented the 9 Average absolute deviation values
derived respectively for the data set.

TABLE 15: Average Absolute Deviation (AAD) of related quantiles

Quantile 1 2 3 4 5 6 7 8 9
Average 0.8825 | 0.8159 | 0.7996 | 0.7947 | 0.7036 | 0.7292 | 0.7145 | 0.8039 | 0.8193
Absolute

Deviation

From Table 15 above, the least Average Absolute Deviation was located at 5%
quartiles of the simulated dependent variables.

Table 16: Frequency of the Quantiles with the Least Average Absolute
Deviation.

Quantile 12|13 (4 5 6 7 8 |9

Average Absolute | 0 | 0 | 35| 268 | 4059 | 2193 | 3384 | 61 | 0
Deviation

Table 16 above revealed the frequency of the quantiles with the Least Average
Absolute Deviation for all the 10000 simulations. From Table 16, the optimal quantile
range was located between quantiles 5 and 7, this implies that the optimal
hyperparameters of the study lied mostly within 5 and 7"quantiles.
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CONCLUSION.

This study worked on determining the quantile range at which optimal
hyperparameters could be obtained when Bayesian estimation is employed to solve
regression analysis of normally distributed data with vague information. The prior
parameters were determined from ordinary least squares confidence intervals and the
optimal quantiles were determined using the prior parameters. The least Average
Absolute Deviations of the studyrevealed that the best model from 10000 exhaustive
trials were within 5™ and 7" grid points when the confidence intervals were divided
into 10 quantiles.

The study, however revealed the following: the possibility of obtaining the prior
distribution from data and distribution parameters from quantiles of the confidence
intervals of OLS estimates; the optimal quantile range, where prior hyperparameter
that produce the best model in regression analysis could be found. The research work
minimizes the difficulties involved in identifying prior distribution when the true
information of the data is vague. This is a valuable focus for research, given the
increasing availability of alternative estimation methods within software packages.
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