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ABSTRACT: 

A new class of nonlinear Time Series model called Symmetric Nonlinear State-
Space Model (SNSSM) was developed using Kalman filter technique. Some 
important components for estimating the SNSSM were successfully derived. These 
components are estimate of the state, prediction and updating equations which in 
turn served as system updates of the developed model. 
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1.0 INTRODUCTION 

A State-Space model consists of a transition/state equation and a measurement 
equation. The transition equation formulates the dynamics of the state variables and 
the measurement equation relates the observed variables to the unobserved transition 
vector. The state vector can contain trend, seasonal, cyclical and regression 
components together with an error term also known as innovation. However, the 

2020 RSS-NLG Conference Proceedings



35 
 

stochastic behavior of the state variable, its association to the data and the covariance 
structure of the errors depend on parameters that are almost always unknown,(Sascha, 
2009).  
The goal of the State-Space model is to infer information about the states, given the 
observations/measurements, as new information arrives. A well-known algorithm for 
carrying out this procedure is known as Kalman filter (Anons, 2020). A Kalman filter 
is an optimal recursive estimator which infers parameters of interest from indirect, 
inaccurate and uncertain measurements. It is recursive so that new measurements can 
be processed as they arrive (Lindsay, 2017).  Thus, Kalman filter is a set of recursion 
equations for determining the optimal estimates of the state vector given information 
available at time t . The filter consist of two sets of equations: prediction equations 
and updating equations (Shyamet al., 2015). Kalman filter and State-Space model 
formulation together, provide a very powerful tool for the recursive treatment of 
dynamic systems, (Amoldet al., 2008). 
The purpose of filtering is to update our knowledge of the state vector as soon as a 
new observation becomes available (Raphael, 2016) and (Robertet al., 2016). Note: in 
this research, we refer to the original linear State-Space models as Classical State-
Space Models (CSSM). However, the CSSMs are related to hidden Markov Models; 
the distinction between the two is that the underlying Markov process (the State) is 
continuous in the former and discrete in the later. 
Researchers from different fields across the world are contributing immensely to the 
development of the State-Space/Kalman filter models both theoretically and 
emphatically. Theoretically for example, Hamilton (1994) gave a State-Space 
representation of a linear dynamic system. The wisdom behind this representation is 

to capture all the dynamics of the unobserved measurement vector tY  in terms of 

unobserved state vector, say tX . He imposed some restrictions on the parameters of 

the measurement vector that would ensure the stability of the process. He further 
proposed a general form of linear State-Space model with a constant parameter; and 
he derived an optimal forecast of the system via a well-established result for normal 
variables; all the needed components of the linear Kalman filter algorithm have been 
derived. The major limitation of the Hamilton’s work on the State-Space modeling 
and Kalman filtering is the assumption of linearity, the frame work was designed to 
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handle a linear or approximately linear system, and therefore, it cannot handle any 
nonlinear system.  
 
It was observed that the CSSMs had a strong limitation of linearity in its state 
equation: the model frame work was designed to handle linear or approximately 
linear systems alone; and majority of real life situations followed nonlinear system! 
As an improvement, Raphael (2016), proposed a Modified State-Space Model 
(MSSM). The MSSM allows for the introduction of nonlinear function: Logistic 
Smooth Transition Autoregressive (LSTAR) model in the state equation of the CSSM 
and this transformed the CSSM from linear to nonlinear model. The basic limitation 
of the Raphael’s work is the asymmetric behaviour of its state equation as 
claimed/stated in the Liew (2002) and Olukayode’s (2010) arguments.  
We seek to address the above limitation by proposing a new class of nonlinear Time 
Series Model in State-Space form with symmetric nonlinear state equation which is 
expected to model any symmetric nonlinear series. 
 

2.0 METHODOLOGY 

2.1 CLASSICAL STATE-SPACE MODELS (CSSM) 

The State-Space model is a system of two equations as given in (1) and (2): 

11 1 tt t VY HX            (1) 

1 1tt tX X            (2) 
The first equation called measurement (observation) equation, describes the relation 

between the observed Time Series, 1tY   and the (possibly unobserved) state 1tX  . The 

second equation called the (State) transition equation, describes the evolution of the 

state variables as being driven by the stochastic process of innovations t . 

The terms 1tV and 1t  are the measurement and the process noise respectively. 

Usually one assumes normal innovations, such that  2
1 0,t VV N   and
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 2
1 0,t N    . Similarly, these error terms 1tV  and 1t   are assumed to 

be serially independent and independent of each other at all time periods as well as 

uncorrelated with the initial state. The role of 1tV in the output equation (1) is to 

account for any uncertainty in the measurement of the output (i. e. it tells us how 
much or little we can trust the equation).  

The parameter H is an unknown that links the unobservable variables and regression 
effects of the state equation with the observation equation,   is an unknown 

parameter that determines how the observation and state equations evolve (change) in 
time. 

Moreover, one can decides to look at (1) and (2) as vectors/matrices which can 
subsequently be written as 

 
      

1
11 1

1 1 t
mm m n n

t t 
  

   VY H X       (3) 

 
      

1
1 1 1

1t
n n n n n

t t
   

 X ψ X ω       (4) 

In this case,  
m m

E t+ 1 t+ 1 
 V V L and  1 1 n nt tE

   Zω ω  

However, the matrices 1tV and 1tω are not really implemented/included in 

evaluations of (3) and (4) because they are assumed to be random innovations with 
zero mean, but instead are always used in determination of any information about the 
observation and state error covariance matrices L and Z .  

The system matrices H and ψ are in general vary with time, but would not change 

with respect to states/transitions. In most cases, they are regarded as constants. ψ
Contains the coefficients of the transition terms in the state equation (4) and H
performs similar task in the measurement equation (3). 

The above system of equations has a basic limitation in Kalman filter theory as it is 
linear in parameter. Hence this linearity problem makes it inadequate to handle any 
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nonlinear system; and majority of real life problems in our modern world followed 
nonlinear system. This necessitates the need for a nonlinear model to overcome this 
great challenge. 

The Extended Kalman Filter (EKF) proposed by Stanley F. Schmidt (1926-2015) and 
Uncented Kalman Filter (UKF) developed by Jeffrey K. Uhlmann (1965- ) were part 
of the efforts initiated to address the linearity problem of the CSSM. Additionally, 
Raphael (2016) proposed a modification of the CSSM with the aid of Smooth 
Transition Autoregressive (STAR) model. This modification is also regarded as a 
good development in the areas of Time Series as well as Kalman filter literature. 

The STAR model is a nonlinear Time Series model that allows for state-dependent or 
regime-switching behavior. For example, changes in government policy may instigate 
a change in regime. With a view to modeling this type of Time Series data, a family 
of Smooth Transition Autoregressive (STAR) models has been proposed by 
Terasvirta (1994). 

The data-generating process to be modeled is viewed as a linear process that switches 
between numbers of regimes according to some rules. It has been assumed that there 
is a continuum of switches, that is, there is a smooth transition from one extreme 
regime to the other. It consists of three stages: specification, estimation and 
evaluation; Iquebal (2016). The STAR model of order p is given as, 

      1 1 1 2 1; ,; 1 ; , tt t tt t tX G X cx G x x G c x       
 
                    (5) 

where      

 ; ,tG X c is bounded between 0 and 1, which realizes the “smooth transition” 

between regimes dynamically rather than an abrupt/sudden jump from one regime to 
the other.  C is the threshold value and the parameter   determines the speed and 

smoothness of the transition.  

Note that when ,   ; ,tG X c = 1 then the propose model becomes linear which 

also happens when 0  .Transition Function,  ; ,t dXG c causes the nonlinear 

dynamics in the model, and can have different functional choices. For each choice of 
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transition function, we get different regime switching behavior. The most common 
choices are logistic and exponential forms as given in equation (6) and (7) 
respectively. 
 

   
; ,

1
1 exp[ ]t d

t d

X
X

G c
c







  

    (6) 

 

   2
; , 1 exp[ ]t d t dG X c X c        (7) 

Note: If (6) is considered as  ; ,t dXG c in (5), then (5) is called Logistic Smooth 

Transition Autoregressive (LSTAR) Model. Similarly, if (7) is considered as 

 ; ,t dXG c  in (5), then (5) is called Exponential Smooth Transition 

Autoregressive (ESTAR) Model. 

Comparing between the two transition functions: (6) and (7), the logistic is changing 

monotonically with tX , while the exponential is changing symmetrically at C  with

tX . To visualize the asymmetric and symmetric features of the two transition 

functions: logistic and exponential, see figure 1. 

 

Figure 1: Logistic and Exponential transition functions with varying values of gamma 
( ). 
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3.3     DERIVING THE ESSENTIAL COMPONENTS OF THE PROPOSE 

SNSSM MODEL 

The essential components of the proposed model are Predicted State (PS), and 
optimal forecast (system update). These would be derive sequentially. 
 
3.3.1  DERIVING THE PREDICTED STATE 
Note: equation (7) is known as exponential transition function; if appeared in the 
STAR model, the result is called an Exponential-STAR (ESTAR) model as in (5) 
above which is also symmetric in nature. The symmetrical property of equation (5) 
makes it capable of handling/modeling any symmetric nonlinear series such as 
exchange rate. 

Substituting (7) in (5) we have 

 

     
    

2 2

2 2

1 1 2 1

1 2 1

1 1 1

1

t t

t t

X C X C
t tt t

X C X C
t t t

X X e X e

X e X e

 

 

  

  

   
 

   


 
 
 

     

   
  (8) 

Now, the focus is to get the predicted state estimate which is an important component 

in the development of the Kalman filter algorithm. To achieve that we differentiate 

(8) with respect to the current state, 

       

      2

2 2

2

1
11

2 2

2

2 1t

t t

t

t
t

t

X C
t

X C X C
t

X C
t

X
X C

X

X C e

X e e

X e

 



 





 



 

   

  
 
 

    


   

  (9) 

Which gives 

 
         

  2

2 2 2

1 1 2

2

2

1

2

t

t t

X C

t t tX C X C X C
t tX C X C

e

X e e X e


     

  

        

 


          (10) 

expanding and equation to zero, we have
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       2
1 2 22 21 1 0tt tCG X X X           (11) 

Simplifying further we have
 

    
 22

2

1 2

2
2

2 21
t

t

CC
X

G X



 

   
 

 
 

  (12) 

Taking the L. C. M. of the R. H. S. of (12) and simplifying further gives

 

 

      
    

2
2 1 2

1 2

2 2 1

1

2
ˆ

t

t

t

C G X
C

G X
X

   

  

   
 

 
    (13) 

Note that (13) is the predicted state estimate with the following regularity conditions: 

 1 2 1 20, 0, , and, 1.0, 0 0 tC G X            

Recall that       2; 1,t t d
t dX cG X G X c 
 

     

One would ask whether the predicted state: equation (13) inherited the symmetrical 
feature of the exponential transition function given in (7) or not? To answer this, we 
need to visualize (13) to see if it is really symmetric; even though it will give us two 

graphs because of the presence of   signs, the two graphs are given in figures2a and 

2b. 
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Figure 2a and 2b clearly show that the symmetrical properties of equation (7) were 
inherited by (13); hence the system of equation: equations: (1) and (2) is now 
nonlinear as well as symmetric. The system is therefore capable of handling/modeling 
any symmetric nonlinear series such as exchange rate. 

 
3.4 DERIVATION OF THE OPTIMAL FORECAST 

We can get the optimal forecasts from an established marginal and conditional 
property of the multivariate normal distribution; [see, Rencher (2002), Timm (2002) 
and Hamilton (1994) for more details]. It should be noted that the easiest way to 
derive the recursive equations (Kalman recursion) is by using normality assumption. 
The wisdom behind using the normality assumption is indeed for robustness; that is 
the solution that may be obtain is optimal in the class of all possible solutions (be it 
linear and/or nonlinear). We can recall our system of equations (our State-Space 

equations given in (3) and (4) above) and let 1tY and 1tX denote  1m and  1n

subvectors respectively whose joint normal distribution is given as 

 yy yxy
n + r

xy xxx

t+1

t+1

     
            

τ τμ
J N ,

τ τμ

Y

X
     (14) 
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Similarly, whenever 1tX becomes available, we use the above normality property to 

update the distribution of 1tY . 

Hence, the conditional distribution of 1tY given 1tX is also multivariate normal with 

mean μ and variance-covariance matrix τ ; i. e.  t + 1 t + 1| ,N μ τY X  ; where  

  1
y y x x x xt+1

  μ μ τ τ μX       (15) 

 
1

y y y x x x x y
 τ τ τ τ τ       (16) 

Now, the optimal forecast value of 1tY conditional on having known 1tX is given as   

    1
y y x x x xt+1 t+1 t+1|E   μ τ τ μY X X      (17) 

It is important to point out that the quantity 1
y x x x

τ τ is called a matrix of regression 

coefficient as it facilitate the role of relating the  t+1 t+1|E Y X  to t+1X ; Rencher, 

(2002). and the MSE of the forecast is given as   

     1
yy yx x x x yt+1 t+1 t+1|E    μ μ τ τ τ τY Y X    (18) 

Now, for us to apply equations (15) through (18) in our developed methodology, we 

need to find y x y y y x x y xx, , , , andμ μ τ τ τ τ  

Now, we can let 

  tt+1 t+1|t| ˆ
y E μ Y X HX       (19)  

Since we already know that   0E t+1V   

Considering (3) and (19), we can write the forecast error as  

       1tt+1 t+1 1 t+1|t| ˆ
ttE   Y Y X HX + V HX     
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which resulted to  

      1tt+1 t+1 1 t+1|t| ˆ
ttE    Y Y X H X X V     (20)  

where 1tV is as previously defined and it is independent of both 1tX and t+1|tX̂ . 

   

We can now write the conditional variance of the forecast error given in (20) as  

       y y t t tt+1 t+1 t+1 t+1| | |E E E   τ Y Y X Y Y X X   (21) 

by substituting (20) into (21), we have 

     y y 1 11 1t+1|t t+1|t
ˆ ˆ

t tt tE   

         
   

 τ H X X V H X X V    

by expanding and setting all cross products to zero, we have 

     y y 1 11 1t+1|t t+1|t
ˆ ˆ

t tt tE E   
 

   
 

 τ H X X X X H V V     

which finally gives  

 y y 1|1| t tt t    τ Q FH H L       (22) 

Furthermore, we can write the conditional covariance between the errors in 
forecasting the observation vector (20) and the state vector as  

       y x t t tt+1 t+1 1 1| | |t tE E E 
  τ Y Y X X X X X   (23)  

by substituting (20) into (23), we have 

    yx 1 t1 1t+1|t t+1|t |ˆ ˆ
tt tE  

 
    

 
τ H X X V X X X     

by expanding and setting all cross products to zero, we have 
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    y x 1 1t+1|t t+1|t
ˆ ˆ

t tE  
 

   
 

τ H X X X X      

  

therefore 

 y x 1|t tτ FH         (24)  

Now, we can easily write an updated form of J by substituting the functional forms 

of y x y y y x x y, , , ,μ μ τ τ τ and xxτ into (14) as 

 
1| 1|

1| 1|

1|1

1 1|

|

|

ˆ

ˆ
t t t t

n r
t t t t

t ttt

tt t t

 


 



 

                   

 


F F
J N ,

F F

HX H H L HY X
HX X X

  (25)  

Note that everything about the previous/pass that is needed for the determination of 

the future values of the observation vector t+1Y have been summarized and captured 

by tX . 

With this; we can generalize using the facts from (15) and (16) that

11 1 t+1| |tt t   X X X Y is distributed   r 11,ˆ
tt N FX , where 1

ˆ
tX   is given below 

    1

1| 1| 1|t+11| 1 1|
ˆ ˆ ˆ

t t t t t tt t t t



       F FX X H H H L Y HX   (26)  

Note: we can write (26) as  

  1 t+11| 1 1| 1|
ˆ ˆ ˆ

tt t t t t t     KX X Y HX      (27)  

Note: Equation (27) is called blending equation; which is obtained by expressing the 

estimate of the current state 1
ˆ

tX  as a linear combination of predicted state ˆ
tX plus 

the difference between the actual measurements 1tY  and the predicted state ˆ
tX  

2020 RSS-NLG Conference Proceedings2020 RSS-NLG Conference Proceedings



46 
 

multiply by some gain factor called the Kalman gain 1tK  . The quantity 

 t+1 1|
ˆ

t tY HX  is called a correction term. 

So, the whole idea is if a predicted state is really good, it will be equal to the actual 
measurement, so the correction term will be zero; and a predicted state will be exactly 
the estimated state (that is a perfect prediction). On the other hand, if a predicted state 
is not so good, then the correction term will return a value greater than zero, and the 
role of the Kalman gain to tellhow much information is needed from the actual 
measurement to correct a predicted state estimate to get a final more accurate state 
estimate. 

Note: The MSE of the forecast given in (18) can now be updated as 

   1

1| 1 1| 1| 1| 1|t t t t t t t t t t



        F F F F FH H H L H     (28) 

which can be written (28) as 

1| 1 1| 1 1|t t t t t t t      F F K FH       (29)  

Hence, (29) finally becomes 

  1| 1 1 1|t t t t t     F I K FH       (30)  

4.0 FINDINGS AND CONCLUSION 

4.1 FINDINGS: KEY EQUATIONS OF THE PROPOSED SNSSM 

As stated earlier, the Kalman filter consists of two sets of equations: prediction 
equations and updating equations. These were derived in the previous section and 
presented here for crystal clear. 
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Prediction equations: 

 
     

         

1| |
1 1
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t t t t

t t t t
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 

   



 

X ψ X

F ψ F ψ Z
    (31) 

where |t tX is as given in (13) 

Updating equations: 
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 
 
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 



X X Y YK

F I K H F
   (32) 

where 1|t tY and 1tK were given in (19) and (26) respectively. 

 

4.2 CONCLUSION 

It is very important to note that (31) and (32) are the system updates developed 

SNSSM. Running the algorithm at 0t  gives one complete Kalman filter’s iteration 
also known as the Kalman recursion. Repeating the same process at 1, 2,...,t T  

(where T is the number of observations) yields the Kalman recursions in Kalman 
filter literature. 

It is customary to initializes/starts the filter with some arbitrary values (a prior 
information) say 0|0μ  and 0|0F , use it to predicts 1|0Y and 1|0Q ; whenever the 

observation 1Y becomes available, it will be use in the updating equations and 

compute 1|1μ  and 1|1F  which at the same time considered as prior for the subsequent 

observation. This process completes one Kalman recursion. It is very important to 
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note that the effect of initial prior 0|0μ  and 0|0F  is decreasing with the increase of time

t . This is also consistent with (Yu, 2015), (Tsay, 2010) and (Shyam et al., 2015). 
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