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ABSTRACT 

The Conjugate Gradient (CG) and Quasi-Newton methods are famous methods for finding solution 
to optimization problems involving large variables such as problems in optimal inflation rate, 
minimal cost, maximal profit, minimal error, optimal design and many more. In this presentation, 
we propose a modification of the hybrid Davidon-Fletcher-Powell-Conjugate-Gradient (DFP-
CG)methods developed by Wan Osman et.al (2017) by adapting a spectral-scaling memory less 
DFP-update. The numerical implementation of the proposed method on a some selected 
unconstrained optimization  test problems by adopting the performance profile by Dolan et al. 
(2002) indicates that the newly suggested method is competitive, robust and in most instances  more 
efficient when compared with some existing CG methods in the literature. 

Keywords: DFP update, unconstrained optimization, Search Direction, Conjugate Gradient 
Method. 

1. INTRODUCTION 

Optimization comes from the word optimal which simply means "best".  The word optimize simply 
means to make or take the best decision/choice among several available options under some 
conditions that must be satisfied. Optimization could be described as a methdod of determining the 
best solution to certain mathematically defined problems which are often models of physical reality 
Awatif et al. (2005). Mathematical Optimization is process that involves maximization (or 
minimizing) an objective (also known as cost) function by finding the desirable available values 
across set of choices at hand.  i.e. mathematical optimization involves maximizing or minimizing 
mathematical functions of several variables, representing a stretch of choices available in the 
concerned situation. Common applications of mathematical optimization are found in optimal 
inflation rate, machine and deep learning, neural network, minimal cost, maximal profit, minimal 
error, data science and machine intelligence. 

 Optimization as a field of science is gaining wide range of adoption in the field of science as a 
result of its numerous ambit of application, as well as its usefulness in decision science and in the 
analysis of physical science systems. Al-Baali (1985) came up with the conclusion that optimization 
helps in determining the factors that gives the maximum (or minimum) value of a function, which 
often helps in making scientific decisions. The mathematical formulation for optimization problem 
is then given as 
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𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) 

𝑥 ԑ Ω 

subject  to:  

⎩
⎪
⎨

⎪
⎧

𝐷௜(𝑥) = 0 ,                𝑖 ԑ 𝑃 

 
 
 

       𝐹௜ (𝑥) ≥ 0,               𝑖  ԑ 𝑄             

  (1) 

Where optimize stands for minimize or maximize, and 
𝑓: 𝑅௡ → 𝑅,   𝑛 > 1, denotes the objective or cost function, which is continuously differentiable and 
Ω ԑ 𝑅௡ is the feasible set containing admissible choices of 𝑥, P and Q are two finite set of indices. 
𝐷௜  𝑖 ԑ 𝑃 are the equality constraints and 𝐹௜  𝑖 ԑ 𝑄 are the inequality constraints.  

The optimization methods based on line search utilizes the next iteration scheme: 

𝑥௞ାଵ = 𝑥௞ +  ∝௞ 𝑑௞                                                       (2) 

Where 𝑥௞ represent the current iterative point, 𝑥௞ାଵ is the next iterative point, 𝑑௞ is the search 
direction and ∝௞ denotes the step length. 

2. REVIEW OF RELATED WORKS 

In an attempt to solve large-scale optimization problems, it is more convenient, efficient and 
effective to use an iterative method compare to using a direct method which could be time 
consuming and computationally difficulty.  The iterative scheme for unconstrained optimization 
problems is given by (2). Various iterative schemes has been suggested by numerous researcher 
using different approaches such as hybrid, scaled and parametric. Ahmed et al. (1989), Nocedal 
(2006), Dai et al. (2000) for more.  The idea of combining Quasi-Newton and Conjugate Gradient 
methods was started by Buckley (1978). Luo et al. (2008) also combined Quasi-Newton and the 
Cauchy descent methods to arrive at the Quasi-Steepest Descent method. Jinkui (2014) proposed a 
new hybrid method which solves the system of non-linear equations by combining the Quasi-
Newton method with the Chaos Optimization. Furthermore, Ibrahim et al.(2014) proposed a 
hybridization of Quasi-Newton method and the Conjugate method with the search direction given 
as a combination of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) and conjugate gradient  
methods. Using the same idea, Wan-Osman et.al (2017) proposed a similar hybridization Quasi 
Newton and CG methods with the Davidon-Fletcher-Powell (DFP) method adopted.  Other  recent 
conjugate gradient  methods can be found in Liu-Storey (LS) method, Liu  et al.(1991), Rivaie-
Mustafa-Ismail-Leong (RMIL) method Rivaie, et al. (2012), Kamilu et al. (KMAR) method, Kamfa 
(2018), Saleh et al. (SM) method (2019),  Sulaiman-Mustafa (SM1), Sulaiman, (2018), Usman et 
al. (2018) and Adeleke et al. (2018). 

3. Motivation and the proposed Conjugate Method 

We consider the quasi-Newton methods with the search direction (𝑑௞) given by: 

𝑑௞ = −𝐻௞𝑔௞                                                              (3) 
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Here, 𝐻௞ denotes the inverse Hessian approximation updated by the Broyden class.  There exist 
several updating scheme  for this update, some of which includes Symmetric Rank-one (SR1), 
Davidon-Fletcher-Powell (DFP), and Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates. 

If 𝐻௞ is updated by DFP method, then, 

     𝐻௞ାଵ = 𝐻௞ +
𝑠௞𝑠௞

்

𝑠௞
்𝑦௞

−
𝐻௞𝑦௞𝐻௞𝑦௞

்

𝑦௞
்𝐻௞𝑦௞

                                         (4) 

with  the secant equation 𝐻௞ାଵ𝑦௞ = 𝑠௞  been satisfied 

Memoryless quasi-newton approach is another way of solving an unconstrained optimization 
problem, where at each step of the iteration process, the Hessian approximation is updated using a 
multiple of an identity matrix and a spectral parameter 𝜃௞. Thus the search direction is computed 
with no matrix computation nor its storage. In order enhance improve the computational 
performance of the classical DFP, the inverse Hessian is computed as a product  of the identity 
matrix 𝐼 and scaling parameter 𝜃௞ which is always positive, the restarted DFP updating scheme 
according to Arzuka et al. (2016) and Mamat et al. (2018) is given by: 

𝐻௞ାଵ = 𝐼𝜃௞ +
𝑠௞𝑠௞

்

𝑠௞
்𝑦௞

−
𝐼𝜃௞𝑦௞𝐼𝜃௞𝑦௞

்

𝑦௞
்𝐼𝜃௞𝑦௞

                                           (5) 

Furthermore, Wan Osman et  al.(2017) proposed a direction of descent titled “Hybrid-DFP-CG”, 
this idea merges the attractive qualities of quasi-newton method and CG method. Wan Osman et 
al. (2017) came up with a descent direction 𝑑௞ given by: 

𝑑௞ =

⎩
⎪
⎨

⎪
⎧

−𝐻௞𝑔௞                           𝑘 = 0
 
 
 

       − 𝐻௞𝑔௞ − 𝑔𝑘 + 𝛽௞𝑑௞ିଵ,             𝑘 ≥ 1             

                  (6) 

Where 𝛽௞ =
ఎ௚ೖ

೅(௚ೖି௚ೖషభ)

ห|௚ೖషభ|ห
మ ,     𝜂 ԑ (0,1] 

i.e. 𝑑௞ାଵ = −𝐻௞ାଵ𝑔௞ାଵ − 𝑔௞ାଵ + 𝛽௞ାଵ𝑑௞                           (7) 

Motivated by the good performances of (5) and (6) above, we propose our search direction by 
incorporating the restarted DFP updating scheme (5) within the HDFP-CG (6) to have: 

𝑑௞ାଵ = − ቆ𝜃௞ +
𝑠௞𝑠௞

்

𝑠௞
்𝑦௞

−
𝜃௞𝑦௞𝑦௞

்

𝑦௞
்𝑦௞

ቇ 𝑔௞ାଵ − 𝑔௞ାଵ + 𝛽௞𝑑௞                                   (8) 

and after some algebraic simplifications, we have that: 

𝑑௞ାଵ = −(𝜃௞+1)𝑔௞ାଵ − 𝜑ଵ𝑠௞ + 𝜑ଶ𝑦௞ + 𝛽௞𝑑௞                                                 (3.10) 

where 

𝜑ଵ =
௦

ೖ೅ ௚ೖశభ

௦ೖ
೅௬ೖ

       , 𝜑ଶ =
ఏೖ௬

ೖ೅௚ೖశభ

௬ೖ
೅௬ೖ

 , 𝛽௞ =
௚ೖ

೅(௚ೖି௚ೖషభ)

‖௚ೖషభ‖మ
    𝛽௞ =

௚ೖ
೅(௚ೖି௚ೖషభ)

‖௚ೖషభ‖మ
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Various scaling parameter 𝜃௞ can be considered, we prefer the following due to Mamat et al.(2008), 

given by 𝜃௞ =
௬ೖ

೅௬ೖ

௬ೖ
೅௦ೖ

 

Consider the following steps: 

Step 1:     Given any initial point 𝑥଴ ԑ 𝑅௡, determine 𝑓(𝑥଴) and 𝑔(𝑥଴), set 𝑑଴ = −𝑔଴  and 𝑘 = 0 

Step 2:     Stop  if ||𝑔௞|| ≤ ԑ, otherwise go to step 3 

Step 3     Compute the step length ∝௞ using the Strong-Wolfe condition 

Step 4:      Compute 𝑥௞ାଵ = 𝑥௞ +  ∝௞ 𝑑௞  

Step 5:      Calculate 𝑑௞ using (3.10) 

Step 6:       Put 𝑘 = 𝑘 + 1, then go to step 2. 

 

4. NUMERICAL RESULTS AND DISCUSSION 

The numerical result of the suggested algorithm against some well known conjugate gradient 
methods is reported. We test all these algorithms by using them to solve fifteen (5) test problems 
of dimensions 2, 80, 500, 1000,and 15600, which makes a total of 25 problems so as to evaluate 
the computational strength of the proposed method Scaled-Davidon-Fletcher-Powell  (SDFP-CG)  
with Davidon-Fletcher-Powell (DFP), Wan Osman et al. (2017), Polyak, (1969), Andrei (2018),  
Zhang et al. (2007) and Arzuka et al.(2016)  methods. 

The parameter taken are σ = 0.9, δ=0.00001$ and the stop criterion as (i) ||𝑔௞|| < 10ି଺ (ii) Number 
of iteration (𝑁𝐼) < 1000. All codes of the computer procedures were written in MATLAB R2018a 
with CPU 1.30GHz and 4.00GB RAM, Memory on HP650 and windows 7 operating system. We 
report the computational performances of the algorithms on some set of 50 unconstrained 
optimization test problems curled from Andrei[20].  The performance profile of Dolan E. et 
al.(2002) was adopted in the process of analyzing the computational strength of the proposed 
method Scaled-Davidon-Fletcher-Powell -(SDFP-CG)  with Davidon-Fletcher-Powell - (DFP), 
Wan Osman et al. (2017)-HDFP-CG, Polyak (1969)-PRP, Andrei (2018)-AN,  Zhang et al. (2007) 
- ZH and Arzuka et al.(2016) - AZ  methods. The comparison  is done by considering the number 
of iterations and the CPU time  for each algorithm. Table 1 in the Appendices depicts the 
performances of the methods with respect to the  number of iterations and the CPU time consumed. 
The proposed method (SDFP-CG), PRP, A, ZH And AZ solves 100% of the test problems while 
HDFP-CG method solves 84% of the test problems. From the results, it can also be seen that the 
proposed method (SDFP-CG), AZ, and AN are competitive and could be seen in their various 
numbers of iterations and CPU time. Although, DFP-CG methods seems not to be competitive with 
other algorithms. However, it solves lower dimensional problems better than the other algorithms. 
Furthermore, SDFP-CG outperforms all other algorithms in most cases  especially when the 
dimension goes higher.  
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5. CONCLUSION  

We have been able to propose a modification of hybrid DFP-CG method, by adopting the DFP 
updating scheme of the inverse Hessian approximation in the frame of a memory-less quasi-Newton 
Approach.  

Furthermore, we establish the effectiveness and efficiency of the proposed method in solving some 
selected large-scale unconstrained optimization  test problems when compared with some classical 
and hybrid methods.  
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APPENDIX 1 

PROBLEM DIMENSION SDFP-CG HDFP PRP ZH AN AZ 

  
SINQUAD  
FUNCTION 

2 0.042636/4 0.003817/14 0.047863/4 0.042676/4 0.041612/4 0.043123/4 

80 0.042643/5 0.057942/14 0.165632/1000 0.154767/1000 0.042983/5 0.042903/5 

500 0.045504/5 0.083721/14 0.546488/1000 0.523253/1000 0.046243/5 0.045506/5 

1000 0.050193/5 0.181617/14 0.048894/6 0.059143/1000 0.052211/5 0.943436/1000 

15600 0.141963/6 NAN 0.145502/6 0.158343/7 0.145436/6 15.334324/1000 

  
HIMMELBG  
FUNCTION 

2 0.044182/5 0.056163/27 0.474556/1000 0.409021/1000 0.044204/5 0.044217/5 

80 0.044464/5 0.056143/30 0.520648/1000 0.435109/1000 0.044983/5 0.044466/5 

500 0.046283/5 0.419828/30 0.918514/1000 0.809783/1000 0.047282/5 0.046284/5 

1000 0.049663/5 1.076584/32 1.403584/1000 1.317489/1000 0.049406/5 0.049681/5 

15600 0.125323/5 NAN 18.416172/1000 18.11461/1000 0.135562/5 0.128701/5 

  
TRIDIA 
FUNCTION 

2 0.411783/1000 0.034559/4 0.450142/1000 0.045244/5 0.021584/5 0.021844/5 

80 0.044984/5 0.025402/8 0.536231/1000 0.476592/1000 0.044723/5 0.044986/5 

500 0.047842/5 0.044132/9 1.011438/1000 0.980848/1000 0.047325/5 0.047901/5 

1000 0.050704/5 0.104889/9 1.723969/1000 1.70667/1000 0.050851/5 0.049993/5 

15600 0.124298/5 NAN 15.884321/1000 15.085847/1000 0.124543/5 0.130004/5 

  
RAYDAN 1  
FUNCTION 

2 0.044252/5 0.02623/4 0.474206/1000 0.409467/1000 0.043944/5 0.044464/5 

80 0.049317/5 0.01523/3 0.534604/1000 0.673533/1000 0.044521/5 0.044738/5 

500 0.048438/5 0.05941/3 1.623386/1000 1.253386/1000 0.048751/5 0.048531/5 

876 0.049676/5 0.14103/3 3.601714/1000 3.601714/1000 0.049923/5 0.049923/5 

1000 0.490887/5 0.13625/3 5.381667/1000 5.381667/1000 0.050704/5 0.057036/5 

15600 0.126606/5 NAN 23.641612/1000 20.649092/1000 0.127142/5 0.136264/5 

  
EXTENDED 
ROSENBROCK 
FUNCTION 

2 0.03824/4 0.045213/4 0.038743/4 0.037977/4 0.037964/4 0.037703/4 

50 0.037949/4 0.031355/4 0.038483/4 0.038206/4 0.037965/4 0.037963/4 

80 0.038509/4 0.029384/4 0.038219/4 0.038227/4 0.038246/4 0.037962/4 

500 0.040042/4 0.088658/5 0.039503/4 0.040058/4 0.039536/4 0.040043/4 

1000 0.041602/4 0.230987/5 0.041878/4 0.041338/4 0.041338/4 0.041346/4 

15600 0.094491/4 14.876543/8 0.094916/4 0.096476/4 0.095164/4 0.096737/4 

 Table 1: Numerical Results showing the CPU time and the number of iterations of each method 
and the dimensions. 

 

 

 

 

 

 


