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ABSTRACT %?

The Conjugate Gradient (CG) and Quasi-Newton methods are famous methods for solution
to optimization problems involving large variables such as problems in opti

minimal cost, maximal profit, minimal error, optimal design and many more.
we propose a modification of the hybrid Davidon-Fletcher-Powell-Con L@e Gradient (DFP-
CG)methods developed by Wan Osman et.al (2017) by adapting a sp é—scalmg memory less
DFP-update. The numerical implementation of the proposed% d on a some selected
unconstrained optimization test problems by adopting the per, nce profile by Dolan et al.
(2002) indicates that the newly suggested method is competft& ust and in most instances more

S presentatzon

efficient when compared with some existing CG methods i iterature.

Keywords: DFP update, unconstrained optimizat%@.)earch Direction, Conjugate Gradient

Method. &@

1. INTRODUCTION

Optimization comes from the word opti ich 51mply means "best". The word optimize simply
means to make or take the best ision/choice among several available options under some
conditions that must be satlsﬁec%%ﬂlzatlon could be described as a methdod of determining the
best solution to certain mathe ly defined problems which are often models of physical reality
Awatif et al. (2005). Mat atlcal Optimization is process that involves maximization (or
minimizing) an objecfivegalso known as cost) function by finding the desirable available values

across set of choiges nd. i.e. mathematical optimization involves maximizing or minimizing
mathematical s of several variables, representing a stretch of choices available in the
concerned si . Common applications of mathematical optimization are found in optimal

inﬂation% machme and deep learning, neural network, minimal cost, maximal profit, minimal

error, ience and machine intelligence.

&zation as a field of science is gaining wide range of adoption in the field of science as a
result of its numerous ambit of application, as well as its usefulness in decision science and in the
analysis of physical science systems. Al-Baali (1985) came up with the conclusion that optimization
helps in determining the factors that gives the maximum (or minimum) value of a function, which
often helps in making scientific decisions. The mathematical formulation for optimization problem
is then given as
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Optimize f(x)
xeQ
( D;(x) =0, ieP
subject to: z (1)
l F;(x) =0, ieqQ
Where optimize stands for minimize or maximize, @d
nd

f:R™ = R, n > 1, denotes the objective or cost function, which is continuously diffgre$
Q & R™ is the feasible set containing admissible choices of x, P and Q are two ﬁnit& indices.
D; i € P are the equality constraints and F; i € Q are the inequality constraints. @

The optimization methods based on line search utilizes the next iteration sck&

Xp+1 = X T dy 2) *Q

Where x;, represent the current iterative point, x;,, is the next itéggtive point, dj is the search
direction and «;, denotes the step length. &

2. REVIEW OF RELATED WORKS Q

In an attempt to solve large-scale optimization pro& s, it is more convenient, efficient and
effective to use an iterative method compare x ng a direct method which could be time
consuming and computationally difficulty. 'I?t rative scheme for unconstrained optimization
problems is given by (2). Various iterati e@ mes has been suggested by numerous researcher
using different approaches such as hy@caled and parametric. Ahmed et al. (1989), Nocedal
(2006), Dai et al. (2000) for more.% idea of combining Quasi-Newton and Conjugate Gradient
methods was started by BuckleV §1978). Luo et al. (2008) also combined Quasi-Newton and the
Cauchy descent methods t t the Quasi-Steepest Descent method. Jinkui (2014) proposed a
new hybrid method which sglves the system of non-linear equations by combining the Quasi-
Newton method Wit@ Chaos Optimization. Furthermore, Ibrahim et al.(2014) proposed a
hybridization of Quasi=Newton method and the Conjugate method with the search direction given

w‘che Broyden-Fletcher-Goldfarb-Shanno (BFGS) and conjugate gradient
methods. Using the same idea, Wan-Osman et.al (2017) proposed a similar hybridization Quasi
G methods with the Davidon-Fletcher-Powell (DFP) method adopted. Other recent
conju! adient methods can be found in Liu-Storey (LS) method, Liu et al (1991), Rivaie-
N% smail-Leong (RMIL) method Rivaie, et al. (2012), Kamilu et al. (KMAR) method, Kamfa
(2018), Saleh et al. (SM) method (2019), Sulaiman-Mustafa (SM1), Sulaiman, (2018), Usman et
al. (2018) and Adeleke et al. (2018).

3. Motivation and the proposed Conjugate Method

We consider the quasi-Newton methods with the search direction (d},) given by:

dy = —Higy (3)
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Here, Hj, denotes the inverse Hessian approximation updated by the Broyden class. There exist
several updating scheme for this update, some of which includes Symmetric Rank-one (SR1),
Davidon-Fletcher-Powell (DFP), and Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates.

If Hy, is updated by DFP method, then,

T T
SkSk HrYiHi Vi

Hk+1 = Hk + T - T (4)
Sk Vie Heyie

with the secant equation Hy, Yy = S, been satisfied

Memoryless quasi-newton approach is another way of solving an unconstrained.o?\ ion
problem, where at each step of the iteration process, the Hessian approximation is using a
multiple of an identity matrix and a spectral parameter 6;. Thus the search dire¢tiq®is computed
with no matrix computation nor its storage. In order enhance improv, %p computational
performance of the classical DFP, the inverse Hessian is computed as @Act of the identity
FP updating scheme

matrix / and scaling parameter 6, which is always positive, the re t%
according to Arzuka et al. (2016) and Mamat ef al. (2018) is give&

T T

SkSk 10kYilOx Yk @

Hipr = 16, + = — Q (5)
SkYk Yk 16,y

Furthermore, Wan Osman et al.(2017) proposed a n of descent titled “Hybrid-DFP-CG”,
this idea merges the attractive qualities of quas method and CG method. Wan Osman et

al. (2017) came up with a descent direction d by:
( —Hy gk ‘f g
dy = 4 (6)

I
L - Hygr — gk + Q}
Where 8, = % Es (0,1]
Ik-1

Le.dgiq = — = Gr+1 + Br+1d (7)
Motivate b good performances of (5) and (6) above, we propose our search direction by
the restarted DFP updating scheme (5) within the HDFP-CG (6) to have:

1ncor;%
T T
SkS Ok Yry
Q!' diy1 = —( T—k -7 k> ie+1 — Gk+1 + Brdk 8

S Yk ViVk

and after some algebraic simplifications, we have that:

dis1 = —(Ok 1) grr1 — @15k + Q2% + Brdy (3.10)
where
_ SkT9k+1 _ kY, Tk _ 9K (k—gk-1) _ 9k (Gk—Gr-1)
b1 =" P2 =Ty ' Br gkl bre = I gk-1I2
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Various scaling parameter ), can be considered, we prefer the following due to Mamat ez al.(2008),

T
given by ), = ZkXk
Yi Sk

Consider the following steps:
Step 1:  Given any initial point x, € R™, determine f (x,) and g(x,), setdy, = —go and k =0

Step 2:  Stop if ||gk|| < €, otherwise go to step 3

Step 4: Compute Xy = X + X dj; ox
Step 6:  Put k = k + 1, then go to step 2. &

*Q

The numerical result of the suggested algorithm against sigghell known conjugate gradient

Step3  Compute the step length o, using the Strong-Wolfe condition :6

Step 5:  Calculate dj, using (3.10)

4. NUMERICAL RESULTS AND DISCUSSION

methods is reported. We test all these algorithms by usin to solve fifteen (5) test problems
of dimensions 2, 80, 500, 1000,and 15600, which g@ otal of 25 problems so as to evaluate
the computational strength of the proposed method d-Davidon-Fletcher-Powell (SDFP-CQG)
with Davidon-Fletcher-Powell (DFP), Wan Os al. (2017), Polyak, (1969), Andrei (2018),
Zhang et al. (2007) and Arzuka et al.(2016) n@;ds.

The parameter taken are ¢ = 0.9, 820.0@ and the stop criterion as (i) || gx || < 107° (ii) Number
of iteration (NI) < 1000. All codegof the computer procedures were written in MATLAB R2018a
with CPU 1.30GHz and 4.00G , Memory on HP650 and windows 7 operating system. We
report the computational f@nces of the algorithms on some set of 50 unconstrained
optimization test problem%r ed from Andrei[20]. The performance profile of Dolan E. et
al.(2002) was adoptﬂthe process of analyzing the computational strength of the proposed
method Scaled-Davi letcher-Powell -(SDFP-CG) with Davidon-Fletcher-Powell - (DFP),
Wan Osman et al, 7)-HDFP-CG, Polyak (1969)-PRP, Andrei (2018)-AN, Zhang et al. (2007)
- ZH and Ar@k al.(2016) - AZ methods. The comparison is done by considering the number
of iterationig®nd the CPU time for each algorithm. Table 1 in the Appendices depicts the
perfo of the methods with respect to the number of iterations and the CPU time consumed.

osed method (SDFP-CG), PRP, A, ZH And AZ solves 100% of the test problems while
HDHEP-CG method solves 84% of the test problems. From the results, it can also be seen that the
proposed method (SDFP-CG), AZ, and AN are competitive and could be seen in their various
numbers of iterations and CPU time. Although, DFP-CG methods seems not to be competitive with
other algorithms. However, it solves lower dimensional problems better than the other algorithms.
Furthermore, SDFP-CG outperforms all other algorithms in most cases especially when the
dimension goes higher.
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S. CONCLUSION

We have been able to propose a modification of hybrid DFP-CG method, by adopting the DFP
updating scheme of the inverse Hessian approximation in the frame of a memory-less quasi-Newton
Approach.

Furthermore, we establish the effectiveness and efficiency of the proposed method in solving some
selected large-scale unconstrained optimization test problems when compared with some classical
and hybrid methods.
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PROBLEM | DIVENSION |SDFP-CG_[HDFP—|PRP ——Jzi — JaN — Jaz

SINQUAD
FUNCTION

80
500
1000
15600

HIMMELBG
FUNCTION

80
500
1000

15600

TRIDIA

FUNCTION 80

500
1000

15600

RAYDAN 1
FUNCTION

80
500
876
1000

15600
2

50

80
500
1000
15600

EXTENDED
ROSENBROCK
FUNCTION

0.042636/4
0.042643/5
0.045504/5
0.050193/5
0.141963/6
0.044182/5
0.044464/5
0.046283/5
0.049663/5

0.125323/5

0.411783/1000
0.044984/5
0.047842/5
0.050704/5

0.124298/5
0.044252/5
0.049317/5
0.048438/5
0.049676/5
0.490887/5

0.126606/5
0.03824/4

0.037949/4
0.038509/4
0.040042/4
0.041602/4
0.094491/4

0.003817/14
0.057942/14
0.083721/14
0.181617/14
NAN

0.056163/27
0.056143/30
0.419828/30
1.076584/32

NAN

0.034559/4
0.025402/8
0.044132/9
0.104889/9

NAN

0.02623/4
0.01523/3
0.05941/3
0.14103/3
0.13625/3

NAN
0.045213/4
0.031355/4
0.029384/4
0.088658/5
0.230987/5
14.876543/8

0.047863/4
0.165632/1000
0.546488/1000
0.048894/6
0.145502/6
0.474556/1000
0.520648/1000
0.918514/1000
1.403584/1000

18.416172/1000

0.450142/1000
0.536231/1000
1.011438/1000
1.723969/1000

15.884321/1000
0.474206/1000
0.534604/1000
1.623386/1000
3.601714/1000
5.381667/1000

23.641612/1000
0.038743/4
0.038483/4
0.038219/4
0.039503/4
0.041878/4
0.094916/4

0.042676/4

0.154767/1000
0.523253/1000
0.059143/1000
0.158343/7

0.409021/1000
0.435109/1000
0.809783/1000
1.317489/1000

18.11461/1000

0.045244/5
0.476592/1000
0.980848/1000
1.70667/1000

15.085847/1000
0.409467/1000
0.673533/1000
1.253386/1000
3.601714/1000
5.381667/1000

20.649092/1000
0.037977/4
0.038206/4
0.038227/4
0.040058/4
0.041338/4
0.096476/4

0.041612/4
0.042983/5
0.046243/5
0.052211/5
0.145436/6
0.044204/5
0.044983/5

0.047282/5

0.049406/5

0.135562/5

0.021584/5
0.044723/5
0.047325/5
0.050851/5

0.124543/5
0.043944/5
0.044521/5
0.048751/5
0.049923/5
0.050704/5

0.127142/5
0.037964/4
0.037965/4
0.038246/4
0.039536/4
0.041338/4
0.095164/4

0.043123/4
0.042903/5
0.045506/5
0.943436/1000
15.334324/1000
0.044217/5
0.044466/5
0.046284/5
0.049681/5

0.128701/5

0.021844/5
0.044986/5
0.047901/5
0.049993/5

0.130004/5
0.044464/5
0.044738/5
0.048531/5
0.049923/5
0.057036/5

0.136264/5
0.037703/4
0.037963/4
0.037962/4
0.040043/4
0.041346/4
0.096737/4

Table 1: Num Mesults showing the CPU time and the number of iterations of each method

S

and the dimensions.
=
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