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Biological network analysis is a rapidly growing field which is increasing our ur& ing of
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biological process. The study and modeling of biological networks are import. science
today. A wide range of scientists are interested in quantifying the link betwee s in a system,
however the linkage is not as straight forward as it might seem. The cha 1s, how to extract

¢cs of networks topology
can, in principle, be used to design new experiments that test t ghts in a broad context. In
this work, a newly derived discretised Power probability dens% ction is proposed for in-degree
distribution of gene regulatory networks. A statistical ¢ 1son of the newly proposed degree
distribution was made with alternative degree distribu {@ literature.

relevant information and translate this information to knowle e can yield clinically
actionable results. Insights gained from successful computa‘uonaé
1
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1.0. INTRODUCTION ‘ Q

Gene Regulatory Networks

GRN’s is the mathematical an. utational representations describing the logic fundamental
regulatory occurrences am s when a specific cell program is operating.

Biological system can be reprgsented by network which are compound sets of binary interactions
between different eutiti asically, every single biological unit has interactions with other
biological umts molecular to the ecosystem level, affording us with the opportunity to
model biolog everal different types of networks such as molecular interaction, metabolic,
neurologlcaI%ologlcal networks.

An nding of biological networks is crucial to make biological sense of much of the
data that is now being generated. This growing importance of biological networks is also
shown by the increase in publications about network associated topics and the increasing number

of research groups dealing with big data like that of biological networks.

One significant property of biological networks that has raised much interest is their heterogeneous
topology which are mostly more difficult to analyze; inferring their detailed topology requires
wide-ranging statistics. On assumption Power-law distributions habitually provide a good estimate
to such network's degree distribution, nonetheless empirical studies have led to some debate
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concerning their adequacy. Hence, a detailed analyses of network topologies and modeling the
degree distribution is still one bottleneck in biological networks connectivity.

Topological Measures

To distinguish biological networks, it is important we identify some features that are numerical
measures unfolding the pattern of connectivity in the networks. The criteria are ref ed

topological features or measures %
e Degree distribution &
e The diameter and characteristic path length Q

e C(Clustering coefficient

e the network robustness and presence of hubs Q‘Q

1.1 Aim and Objectives of the study @
To proposed a Discretized Power Law for modeling the ¢ Distribution of Gene Regulatory
Networks
1. To derive some of the statistical propert e newly proposed distribution such as its
cumulative distribution, reliability functi ong others
ii. To make a statistical comparison proposed distribution and some other existing

assumed degree distribution ofb10l8gical network using the Akaike Information Criteria
(AIC) and other 1nf0rmat10n crt

2.0 REVIEW OF LITE

The studied literature schr s of Jing-Dong et al. (2005) on ‘, Guelzim et al (2002) , Ravasz
et al (2002) and Bargbasi and Oltvai (2004) concluded that the degree distribution of biological
networks follow% -law distribution and also that the hubs are at the tail of the distribution.

However, %
In the study ofRandom networks The work of Erdos P and Renyi (1960), the result of their
empiri y shows that the distribution of nearest neighbor follows a Poisson distribution. The
%Lethality and Centrality in Protein Networks by Jeong et al (2001) reported that
c 1vity distribution in some biological networks might be better described by a truncated
power law. Moreso, Przytycka and Yu (2004) studied ‘Scale free networks versus evolutionary
drift’ their conclusion is that scale free networks contradict Power law distribution. Eric. E et al
(2017) also in their study titled ‘Network Enabled Wisdom in Biology, Medicine and Healthcare’
discussed how molecular networks are central into wisdom that can yield clinically actionable
results. Eric. E et al, however assumed biological networks are sparse and therefore followed a
power law distribution on assumption.

\%Y
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The work of Khanin and Wit (2006) on ‘How Scale Free are Biological Networks’ gave much in
-dept on the degree distribution of biological networks in general. The result of their
comprehensive study of degree distribution of different 10 published biological networks found
out that degree distribution pointedly deviates the assumed power-law distribution also not in
the form of scale-free . In the study, Khanin and Wit suggested four other distributions;
‘generalised pareto-law’, stretched exponential’ ‘geometric’ and ‘truncated power-law’
distribution as alternative distributions that may best describe the indegree distributi f
biological networks . These suggested alternative distributions was further studied by Vi d
Omolola (2016). W/

Discrete Analogues of Continuous Probability Distribution &

In recent times, many research papers reviewing discrete distributions obtag gby discretising a
continuous distribution have been seen in many statistical studies. In publj iterature we found
two articles that studied discrete analogues of continuous distri s, that is, the work of
Bracquemond and Gaudoin (2003) who extensively studied a ete life-time distributions
derived from continuous and also Lai (2013) presented @struction of discrete life-time
distributions from continuous one in his paper concerning . s of construction of discrete life-
time distribution’. Our studies also reviewed the worlg brata Chakraborty, on survey of
different ways of obtaining a probability mass funo& as analogues of continuous probability
distribution. (%4)

Discrete Concentration Approach, a method Qﬁed by Roy (2003) and Kemps (2004) is applied
in this work. If we denote the con@cérandom variable to be discretized as x while the
discrete analogue by y and the resul continuous random variable x, the survival function
Sy (x), thus the random variabl

Q P(y=k) =
C;» Plk<x<k+1)
=F,(k + 1) — k)
=S, (k) —Iég))where k=0,1,2...... (1)

¢ P(X=x)=0and E,(k) =1-S5,(k)

”@Qod will preserves the survival function such that Sy (k) = Sy (k)

3.0 " METHODOLOGY

Discretized Generalised Pareto Distribution (DGPD)

A random variable Y is distributed as Discrete Generalised Pareto (DGP) Distribution with
parameters y, o and € , denoted by dDGP ( u, g, € ), then the cumulative distribution function,
survival function and probability mass function is defined by eq (1) as defined:
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l

F(x)_1—[1+e( ;”)]
Let9=e_§ =>9"1=e§ =>ln9‘1=§

£ Eix—

g(x — ) = Ing~C-1w %?
Let(x —u) =y 0,1, 2, oreeve e ‘&Q

s <

Hence F(x) =1 — [1+€ (x?Tﬂ)] € in discrete form becomes Q@

Fly)=1-[1+ lne‘y]‘é ; 0<06<1 Q&Q

Also, the survival function in the discrete analogues is expresse@s

S)=1-F()
Q ,
sm=|1-(1 Qéney] E

S)=[14+n6" y] ;=0 Q 3)

Defining the survival at point y + 1 we&yha

Sy +1) =[1+ o>+ 0, )

Now we can define the%mf a Discrete Pareto distribution by the approach in eq (1),
Y~DPGD (u,0,€)

PY=y)=S(— +1); y=0,1,2,.............

fy; €1, 0), + MmO Y] e—[1+mO Y y=0,12....... )

S
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Figl: The PMF and CDF of Discretized Generalised Pareto Di Rﬁ'm (DGPD)

Statistical Properties of DGPD)
Residual Reliability Function &

1
R(i|x) = [1+ o] ‘ (6)

[1+ In6x]"¢ &@
Q‘Q
[1+ lne‘x“]@

e %
[1+ lﬂ\;‘ €
The Quantile functi@ :

X = [1-FM)I™“-1) ®)

The lik%&d unction is given as
‘;;;E:!:, L 1 1
% LogL(x;) = z log[1 — (x; + 1)InB]€ — [1 — x;InB]€

=1

Hazard Rate

h(x)=1- 7

n n
1 1
- EZ log[1 — (x; + 1)In6] — EZ log[1 — x;In0]
i=1 i=1

)

r'" moments about the origin
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Using the expression given by .............. in Eq (2.)

k-1
E(x™) = Z [+ 17 — x7]S(x) + [S(x = 0)]7 (10)

Where S(x) is the survival function

when r = 1, equation (10) will be

EGD =) [+ D' =250 + [Sx = OF LD
x=1 x
Note: S(x=0)=0 b'

Therefore equation (11) becomes &

n

E(x) = ) S(x) Q‘Q

x=1

c@
E(x) = Zeta [logG -1 % (12)

(In6~ 1)6

Corollary &@‘

é@ -
VS
%Q 1[1+ n6~ ]
G eta(g,[lnﬁl_l]_l); 1< 6< 1’l> .
(InB-1)e €
&
4

E(x?) = Z (x + 12 — x2]S(x) + [S(x = 0)]?

S

E(x?) = E() + 2551 x[1 + In6 ] =
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E(x®) =k —(In6"1)€

1Zeta

(L)

2
1
(In8-1)**er

€

T
(InB—1)€
1 1
[lne‘lZeta (E -2, (lne‘l)‘1>] [lne‘1 + - 1]
1

)

- [Zeta (é -1, (lnG"l)_l)]

3.1 Data and Results

In the study, six real datasets of human diseases interactions are studied. The
from OMIM “Online Mendelian Inheritance in Man database” . Cytoscape

and generate the degree and other quantifiable measures.
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(13) )
&
c@ e extracted

@Jsed to visualize

A

4.0  Summary and Findings

Data 1

Probability AIC BIC &c HQIC

Distribution &

GEO 1009.6 1043.21 QJ 1277.88 1933.25

SED 994.30 1118.@ 2178.80 2051.16

GPD 1113.45 1z7¢ 1929.92 1925.30

DGPD 16.42 P 277.71 334.14
Data 2 )

Probability AIC IC CAIC HQIC

Distribution \

GEO 8 Q’ 977.09 799.37 808.82

SED ﬁ}' 581.33 410.00 465.36

GPD £§11.4 618.05 774.65 690.08

DGPD x) 109.2 199.19 229.31 355.73
Data 3

Probability é AIC BIC CAIC HQIC

e 4

Dlstg,b

GEO»™ ™ 199.6 221.61 187.88 293.25

%‘ 464.30 409.13 995.80 405.16

G 899.45 893.27 929.92 1925.30

DGPD 211.61 324.57 277.71 334.14
Data 4

Probability AIC BIC CAIC HQIC

Distribution

GEO 125.62 186.34 399.37 208.82
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SED 482.69 652.46 410.00 46536
GPD 198.42 234.00 274.65 290.08
DGPD 100.02 164.34 129.31 355.73
Data 5
Probability AIC BIC CAIC HQIC
Distribution
GEO 221.62 186.34 29937 258.61
SED 382.69 352.46 417.23 365.43
GPD 208.87 234.00 186.75 17
DGPD 21136 26434 117.00 11
Data 6 ‘9
Probability AIC BIC CAIC C%IQIC
Distribution 0
GEO 163.42 129.34 32@ 108.22
SED 211.60 292.43 200.0 337.26
GPD 12941 22391 Rados 290.08
DGPD 104.22 101.71 931 108.33

Goodness of Fit test result
GEO- Geometric Distribution, SED- Stretch nential Distribution GPD- Generalised
Pareto Distribution, DGPD — Discretised Geneg ised Pareto Distribution

The result analysis of the Goodness of fit.t oF) shows different best fit depending on the test
used. However, in our studied cases, Discretised Generalised Pareto Distribution (DGPD) stands
out as the best fitted degree distri%(;n of the selected Gene Regulatory networks. It is observed
that the Discretised Generalise%e Distribution (DGPD) would give the closest estimates of
the empirical data. Amo parametric distribution the Discretised Generalised Pareto
Distribution (DGPD) is 1 in AIC and has relatively low BIC, CAIC & HQIC.

4.1 Conclusion and @c’nmendation

The aim of thi$'study”1s to establish a PDF that can model the degree distribution of biological
networks — e Regulatory Networks (GRN’s) in particular . In the study, we have proposed a
Discreti%wer law density function for the degree distribution of GRN and also compared with
alte 1stributions has suggested in literature. Our new distribution provide a more accurate

cribe the degree distribution of GRN. With more details in the calculations, we arrived at
the $6llowing conclusion that: the degree distribution of the studied GRN’s does not follow Power
law nor any of the alternative distribution as suggested by Khanin and Wit but rather a Discretised
Generalised Pareto distribution is proposed as the probability distribution to model the degree
distribution of GRNS.

Progress can be possible if numerical and analytical studies are blended with proper empirical
studies, we recommend an extension on the study of topological measures of different biological
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networks to divulge more unforeseen window for further review and convincing conclusions. Also,
for extension of the work , other types of biological networks such as; Metabolic, cell signaling
pathways and Protein Interaction networks should be studied by focusing more on the degree
distribution.
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