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Biological network analysis is a rapidly growing field which is increasing our understanding of 
biological process. The study and modeling of biological networks are important in life science 
today. A wide range of scientists are interested in quantifying the link between nodes in a system, 
however the linkage is not as straight forward as it might seem. The challenge is, how to extract 
relevant information and translate this information to knowledge that can yield clinically 
actionable results. Insights gained from successful computational statistics of networks topology 
can, in principle, be used to design new experiments that test these insights in a broad context. In 
this work, a newly derived discretised Power probability density function is proposed for in-degree 
distribution of gene regulatory networks.  A statistical comparison of the newly proposed degree 
distribution was made with alternative degree distribution in literature.  

Keywords: Biological network, network topology, degree distribution, discrete power 
function 

1.0. INTRODUCTION 

Gene Regulatory Networks 
GRN’s is the mathematical and computational representations describing the logic fundamental 
regulatory occurrences among genes when a specific cell program is operating. 
Biological system can be represented by network which are compound sets of binary interactions 
between different entities. Basically, every single biological unit has interactions with other 
biological units, from the molecular to the ecosystem level, affording us with the opportunity to 
model biology using several different types of networks such as molecular interaction, metabolic, 
neurological and ecological networks.   

An understanding of biological networks is crucial to make biological sense of much of the 
complex data that is now being generated. This growing importance of biological networks is also 
shown by the increase in publications about network associated topics and the increasing number 
of research groups dealing with big data like that of biological networks. 

One significant property of biological networks that has raised much interest is their heterogeneous 
topology which are mostly more difficult to analyze; inferring their detailed topology requires 
wide-ranging statistics. On assumption Power-law distributions habitually provide a good estimate 
to such network's degree distribution, nonetheless empirical studies   have led to some debate 
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concerning their adequacy. Hence, a detailed analyses of network topologies and modeling the 
degree distribution is still one bottleneck in biological networks connectivity. 

 Topological Measures 

To distinguish biological networks, it is important we identify  some features that  are numerical 
measures unfolding the pattern of  connectivity in the networks. The criteria are referred  
topological features or measures 

 Degree distribution 

 

 The  diameter and characteristic path length  

 Clustering coefficient 

  the network robustness and presence of hubs  
 

1.1   Aim and Objectives of the study 
To proposed a Discretized Power Law for modeling the Degree Distribution of Gene Regulatory 
Networks 

i. To derive some of the  statistical properties of the newly proposed distribution such as its 
cumulative distribution, reliability function among others 

ii. To  make a statistical comparison of the proposed distribution and some other existing  
assumed degree distribution of biological network using the Akaike Information Criteria 
(AIC) and other information criterion. 

 
2.0  REVIEW OF LITERATURE 

The studied literature such  works of Jing-Dong et al. (2005) on ‘, Guelzim et al (2002) , Ravasz 
et al (2002) and  Barabasi  and Oltvai (2004) concluded that the degree distribution of biological 
networks follows a power-law distribution  and also that the  hubs are  at the tail of the distribution.  

However,  
In the study of Random networks The work of Erdos P and Renyi (1960), the result of their 
empirical study shows that the distribution of nearest neighbor follows a Poisson distribution. The 
work on Lethality and Centrality in Protein Networks by Jeong et al (2001) reported that 
connectivity distribution in some biological networks might be better described by a truncated 
power law. Moreso, Przytycka and Yu (2004) studied ‘Scale free networks versus evolutionary 
drift’ their conclusion is that scale free networks contradict Power law distribution. Eric. E et al 
(2017) also in their study titled ‘Network Enabled Wisdom in Biology, Medicine and Healthcare’ 
discussed how molecular networks are central into wisdom that can yield clinically actionable 
results. Eric. E et al, however assumed biological networks are sparse and therefore followed a 
power law distribution on assumption. 



Royal Statistical Society Nigeria Local Group  2021 Conference Proceedings 

 
 

86 

The work of Khanin and Wit (2006) on ‘How Scale Free are Biological Networks’ gave much in 
-dept on the degree distribution of biological networks in general. The result of their 
comprehensive study of degree distribution of   different   10 published   biological networks found 
out that  degree distribution pointedly deviates  the assumed power-law distribution  also  not  in 
the form of scale-free . In the study, Khanin and Wit suggested four other distributions;  
‘generalised pareto-law’, stretched exponential’ ‘geometric’ and ‘truncated power-law’ 
distribution  as alternative distributions that may best describe the  indegree distribution of  
biological networks . These suggested alternative distributions was further studied by Vilda and 
Omolola (2016).  

Discrete Analogues of Continuous Probability Distribution 

In recent times, many research papers reviewing discrete distributions obtained by discretising a 
continuous distribution have been seen in many statistical studies. In published literature we found 
two articles that studied  discrete analogues of continuous distributions, that is,  the work of  
Bracquemond and Gaudoin (2003) who extensively studied a discrete life-time distributions 
derived from continuous and also  Lai (2013)  presented construction of discrete life-time 
distributions from continuous one in his paper concerning ‘Issues of construction of discrete life-
time distribution’. Our studies also reviewed the work of Subrata Chakraborty, on  survey  of  
different ways of obtaining  a  probability  mass functions as analogues of continuous  probability 
distribution. 

Discrete Concentration Approach, a method proposed by Roy (2003) and  Kemps (2004)  is applied 
in this work. If   we denote the  continuous random variable to be discretized as 𝑥 while the   
discrete analogue by 𝑦 and the  resulting continuous random variable 𝑥,  the survival function 
𝑆௑(𝑥), thus the random variable 𝑦  

𝑃(𝑦 = 𝑘) = 

𝑃(𝑘 ≤ 𝑥 < 𝑘 + 1) 

=𝐹௫(𝑘 + 1) − 𝐹௫(k) 

= 𝑆௫(𝑘) − 𝑆௫(𝑘 + 1)  𝑤ℎ𝑒𝑟𝑒  𝑘 = 0,  1,  2 … … …              (1) 

𝑃(𝑋 = 𝑥) = 0 𝑎𝑛𝑑  𝐹௫(𝑘) = 1 − 𝑆௫(𝑘) 

This method  will preserves the survival function   such that  𝑆௑(𝑘) = 𝑆௒(𝑘) 

3.0    METHODOLOGY 
Discretized Generalised  Pareto Distribution  (DGPD) 
A random variable Y is distributed as Discrete Generalised Pareto (DGP) Distribution with 

parameters 𝜇,  𝜎 and 𝜖 , denoted by dDGP  𝜇,  𝜎, 𝜖 , then the cumulative distribution function, 
survival function  and  probability mass function is defined  by eq (1)  as  defined:  
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(𝑥 − 𝜇) = 𝑙𝑛𝜃ି(௫ିఓ) 

Let (𝑥 − 𝜇) = 𝑦         0,  1,  2,  … … … … … .. 

Hence 𝐹(𝑥) = 1 − ቂ1+∈ ቀ
௫ିఓ

ఙ
ቁቃ

ି
భ

∈
    in discrete form becomes 

𝐹(𝑦) = 1 − [1 + 𝑙𝑛θି௬]ି
భ

∈               ;   0 < θ < 1     (2) 

Also, the survival function in the discrete analogues is expressed as 

𝑆(𝑦) = 1 − 𝐹(𝑦) 

𝑆(𝑦) =  ൤1 − ൬1 − [1 + 𝑙𝑛θି௬]ି
ଵ
∈൰൨

ି
ଵ
∈
 

 𝑆(𝑦) = [1 + 𝑙𝑛θି௬]ି
భ

∈  ;  𝑦 ≥  0             (3) 

Defining the survival at point 𝑦 + 1 we have 

𝑆(𝑦 + 1) = [1 + 𝑙𝑛θି௬ାଵ]ି
భ

∈      ;     𝑦 > 0,         (4) 

Now we can define the pmf of a Discrete Pareto distribution by the approach in eq (1), 
Y~𝐷𝑃𝐺𝐷 (𝜇, 𝜎, ∈) 

𝑃(𝑌 = 𝑦) = 𝑆(𝑦) − 𝑆(𝑦 + 1) ;   y=0, 1, 2,…………. 

𝑓(𝑦; ∈, 𝜇, 𝜎) = [1 + 𝑙𝑛𝜃ି௬]ି
భ

∈ − [1 + 𝑙𝑛𝜃ି௬ାଵ]ି
భ

∈;       y = 0, 1,2……. (5)* 
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Fig1: The PMF and CDF of  Discretized Generalised  Pareto Distribution  (DGPD) 

Statistical Properties of DGPD)   
Residual Reliability Function 

𝑅(𝑖|𝑥) =
ൣ1 + 𝑙𝑛θି௫ା௜൧

ି
ଵ
∈
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∈

                                                                                 (6) 

Hazard Rate 
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The Quantile function 

𝑥 =
1

−𝑙𝑛𝜃
([1 − 𝐹(𝑥)]ିఢ − 1)                                                                         (8) 

The likelihood function is given as 

𝐿𝑜𝑔𝐿(𝑥௜) = ෍ 𝑙𝑜𝑔[1 − (𝑥௜ + 1)𝑙𝑛θ]
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1
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௡

௜ୀଵ

௡

௜ୀଵ

 

                (9) 

rth moments about the origin 
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Using the expression given by …………..in Eq (2.) 

𝐸(𝑥௥) = ෍ [(𝑥 + 1)௥ − 𝑥௥]𝑆(𝑥) +  [𝑆(𝑥 = 0)]௥                                             (10)
௞ିଵ

௫ୀଵ
 

Where 𝑆(𝑥) is the survival function 

𝑤ℎ𝑒𝑛 𝑟 = 1 , equation (10) will be  

𝐸(𝑥ଵ) = ෍ [(𝑥 + 1)ଵ − 𝑥ଵ]𝑆(𝑥) +  [𝑆(𝑥 = 0)]௥                                             (11)
௞ିଵ

௫ୀଵ
 

Note:     𝑆(𝑥 = 0) = 0 

Therefore equation (11) becomes 

𝐸(𝑥) = ෍ 𝑆(𝑥)               
௡

௫ୀଵ
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1
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1
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 ൰                                      (12) 

Corollary  
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ଵ
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)

−
2

(𝑙𝑛θିଵ)ଵା
ଵ
∈Γଵ

∈

൤𝑙𝑛θିଵ𝑍𝑒𝑡𝑎 ൬
1

∈
− 2, (𝑙𝑛θିଵ)ିଵ൰൨ ൤𝑙𝑛θିଵ +

1

∈
− 1൨

− ൤𝑍𝑒𝑡𝑎 ൬
1

∈
− 1, (𝑙𝑛θିଵ)ିଵ൰൨                                            (13) 

3.1 Data  and Results  

In the study, six real datasets of human diseases interactions are studied. The data are extracted 
from  OMIM “Online Mendelian Inheritance in Man database” . Cytoscape was used to visualize 
and generate the degree and other quantifiable measures. 

4.0  Summary and Findings 

Data 1 
Probability 
Distribution 

AIC BIC CAIC HQIC 

GEO 1009.6 1043.21 1277.88 1933.25 
SED 994.30 1118.0 2178.80 2051.16 
GPD 1113.45 1271.3 1929.92 1925.30 
DGPD 16.42 44.57 277.71 334.14 
 Data 2 
Probability 
Distribution 

AIC BIC CAIC HQIC 

GEO 888.0 977.09 799.37 808.82 
SED 112.6 581.33 410.00 465.36 
GPD 511.4 618.05 774.65 690.08 
DGPD 109.2 199.19 229.31 355.73 
 Data 3 
Probability 
Distribution 

AIC BIC CAIC HQIC 

GEO 199.6 221.61 187.88 293.25 
SED 464.30 409.13 995.80 405.16 
GPD 899.45 893.27 929.92 1925.30 
DGPD 211.61 324.57 277.71 334.14 
 Data 4 
Probability 
Distribution 

AIC BIC CAIC HQIC 

GEO 125.62 186.34 399.37 208.82 
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SED 482.69 652.46 410.00 465.36 
GPD 198.42 234.00 274.65 290.08 
DGPD 100.02 164.34 129.31 355.73 
 Data 5 
Probability 
Distribution 

AIC BIC CAIC HQIC 

GEO  221.62 186.34 299.37 258.61 
SED 382.69 352.46 417.23 365.43 
GPD 298.87 234.00 186.75 179.64 
DGPD 211.36 264.34 117.00 115.21 
 Data 6 
Probability 
Distribution 

AIC BIC CAIC HQIC 

GEO 163.42 129.34 322.11 108.22 
SED 211.60 292.43 200.01 337.26 
GPD 129.41 223.91 184.65 290.08 
DGPD 104.22 101.71 129.31 108.33 

Goodness of Fit test result 
GEO- Geometric Distribution ,    SED- Stretched Exponential Distribution    GPD- Generalised 
Pareto Distribution,  DGPD – Discretised Generalised Pareto Distribution 

The result analysis of  the Goodness of fit test (GoF) shows different best fit depending on the test 
used. However, in our studied cases, Discretised Generalised Pareto Distribution (DGPD)  stands 
out as the best fitted   degree distribution of the selected  Gene Regulatory networks. It is observed 
that the Discretised Generalised Pareto Distribution (DGPD)  would give the closest estimates of 
the empirical data. Among the parametric distribution the Discretised Generalised Pareto 
Distribution (DGPD)  is lowest in AIC and has relatively low BIC, CAIC  & HQIC. 

4.1 Conclusion and Recommendation 

The aim of this study is to establish  a PDF that can  model  the degree distribution of biological 
networks –  Gene Regulatory Networks (GRN’s)  in particular . In the study, we have proposed a 
Discretised Power law density function for the degree distribution of GRN and also compared with 
alternative distributions has suggested in literature. Our new distribution provide a more accurate 
fit to describe the degree distribution of GRN. With more details in the calculations, we arrived at 
the following conclusion that: the degree distribution of the studied GRN’s does not follow Power 
law nor any of the alternative distribution as suggested by Khanin and Wit but rather a Discretised 
Generalised Pareto distribution is proposed as the probability distribution to model the degree 
distribution of GRNS. 

Progress can be possible if numerical and analytical studies are blended with proper empirical 
studies, we recommend  an extension on the study of  topological measures of  different biological 
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networks to divulge more unforeseen window for further review and convincing conclusions. Also,  
for extension of the work , other types of biological networks such as;  Metabolic,  cell signaling 
pathways and  Protein Interaction networks  should be studied by focusing more  on the degree 
distribution. 
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