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Abstract- Conjugate gradient algorithm is one of the effective optimization algorithms used in 
solving logistic regression problems. This paper is focused on comparing some existing learning 
rate methods to reduce the objective function value of the logistic regression model with a limited 
number of iterations and reduced processing time. Fletcher-Reeves (FR) conjugate gradient 
method was run in python program using admission and iris flowers dataset to examine the 
performance of each learning rate. The numerical results of each step size were compared. The 
result shows that Armijo step size performs better in terms of number of iterations and processing 
time with good model accuracy. 
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I. INTRODUCTION 

Logistic regression is a supervised machine learning-based binary classification algorithm. The 
model is commonly used in tasks like recommender systems, click rate estimation (CTR) and 
Computational ads (Yuan et al., 2019). The logistic regression algorithm’s key concept is to non-
linearize the multiple linear regression equation using the logistic function, i.e. the sigmoid 
function, to be able to reap the impact of data classification and model generalization. Minimizing 
error in the optimal parameters of the objective function makes the logistic regression classification 
as correct as possible. Objective function of logistic regression can be constructed as a nonlinear 
unconstrained minimization problem which can be solved using the conjugate gradient approach.  
As long as the current iterate point is not a fixed point, the gradient method search along the 
negative gradient function will ensure that the objective function is reduced (Yuan, 2008). Many 
researches have been conducted in the hopes of discovering a better and more appropriate search 
direction method that will have an effect on minimizing objective functions.  

LITERATURE REVIEW 

A. LOGISTIC REGRESSION 

Logistic regression is a machine learning classification algorithm that is used to predict 
the chance of a categorical variable. The model is employed to model the probability of a category 
like pass/fail or win/lose. This could be extended to model many classes of 
events like determining whether or not an image contains a goat, cat, lion and so on. The logistic 
regression model is used in a lot of fields such as statistics, mathematics, machine learning, medical 
fields, social sciences and so on. 
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The simple logistic regression can be modeled as: 

i. The outputs is always either 0 or 1 
ii. Hypothesis: Z = wx + B              (1)  
iii. h𝜃(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍)                                                                                                             (2) 

iv.       sigmoid (Z) = 
ଵ

ଵାషೋ
                                                                                                                 (3) 

B. COST FUNCTION OF LOGISTIC REGRESSION MODEL 

The cost function of the logistic regression is called the logistic loss. 

                        𝑐𝑜𝑠𝑡൫ℎ𝜃൫𝑥൯, 𝑦൯ = ቊ
−𝑙𝑜𝑔൫ℎ𝜃(𝑥)൯                  𝑖𝑓        𝑦 = 1

−𝑙𝑜𝑔൫1 − ℎ𝜃(𝑥)൯            𝑖𝑓     𝑦 = 0
                                       (4) 

The cost function of the logistic regression is the summation from all training data samples: 

                             𝐽(𝜃) =
1

𝑚
 𝑐𝑜𝑠𝑡൫ℎ𝜃൫𝑥൯, 𝑦൯



ୀଵ

                                                                                   (5) 

                  𝐽(𝜃) =
1

𝑚
 −𝑦𝑙𝑜𝑔 ቀℎ𝜃൫𝑥൯ቁ + ൫1 − 𝑦൯𝑙𝑜𝑔 ቀ1 − ℎ𝜃൫𝑥൯ቁ



ୀଵ

൩                                   (6) 

C. THE FLETCHER-REEVES (FR) CONJUGATE GRADIENT METHOD 
Conjugate Gradient Method (CGM) can solve both linear and nonlinear optimization problems 
(Yu-Hong, 2010).  
Unconstrained optimization problem can be modeled as: 
 
                                                         𝑚𝑖𝑛{𝑓(𝑥)|𝑥 ∈ 𝑅}                                                                             (7)                                        
 
where 𝑓: 𝑅 → 𝑅 is continuously differentiable, 𝑓(𝑥) is an objective function and 𝑥 ∈ 𝑅 is a 
vector with independent variables. The Conjugate Gradient Methods are usually solved using an 
iterative approach which is defined as follows: 
 

                                   𝑥 = 𝑥ିଵ +∝ିଵ 𝑑ିଵ,         𝑘 = 1,2,3, …                                                     (8) 
 
where 𝑥ିଵ is the present iterative point, ∝ିଵ is the learning rate and 𝑑 is the search direction of 
conjugate gradient method. 𝑑 can be defined as follows: 
 

                                  𝑑 = ൜
−𝑔                                           ୀ

−𝑔 + 𝛽𝑑ିଵ                       ୀଵ,ଶ,…
                                                                   (9) 
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where 𝑔 is the gradient at point  𝑥. 𝛽 is FR conjugate gradient (CG) coefficient of 𝑓(𝑥) which 
is given as follows: 
 

                                                    𝛽
ிோ =

𝑔
்𝑔

‖𝑔ିଵ‖ଶ
                                                                                    (10) 

𝛽 ∈ 𝑅 is a scalar while 𝑔 = 𝛻𝑓(𝑥) at point 𝑥. 
______________________________________________________________________________  
FR conjugate gradient (CG) Algorithm 
_____________________________________________________________________________ 
1: Set initial point  𝑥 ∈  ℝ, 𝑘 = 0. 

2: Compute 𝛽 based on 𝛽
ிோas (10).  

3: Compute dk as (9). 
If ‖𝑔‖ = 0, then stop, otherwise go to step 4. 

4: Compute step size ∝. 
5: Update a new point by (8) 
6: Stopping criteria. 

If 𝑓(𝑥 + 1) < 𝑓(𝑥) and ‖𝑔‖ < 𝜖, then stop.  
else goto step 1, then set k = k + 1. 

______________________________________________________________________________ 
 

III. LEARNING RATE (STEP SIZE) 

The aim of any CGM is to find the minimum value of an unconstrained function (Yuan et al., 
2019, Hamoda et al., 2015). The learning rate plays a great part in minimizing the objective 
function. The step size can be solved in two ways using the exact and the inexact line search 
approaches. 

Some step sizes have been proposed by many researchers such as Forshyte (1968), Armijo (1966), 
Barzilai and Borwein (1988) and Jorge and Stephen (2006) as detailed below: 

1. Cauchy Rule (C step size): This step size was introduced by Cauchy (1847) which was 
computed using the exact line search technique [5]. 

                                                      𝛼 =  
𝑔

்𝑔

𝑔
்𝐻𝑔

                                                                                      (11) 

2. Armijo Rule (A step size): This step size uses the inexact line search technique [6]. 

Given that 𝑠 > 0, 𝛽, 𝜎 ∈ (0,1), let 𝛼 be the largest 𝛼 in {𝑠, 𝑠𝛽, 𝑠𝛽ଶ, … } such that 

𝑓(𝑥 +  𝛼𝑑)  ≤ 𝑓(𝑥) +   𝜎𝛼𝑔
்𝑑   

3. Backtracking Rule (B step size) [8]: 
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Given that 𝛽, 𝜎 ∈ (0,1), 𝛼෮ = 1. 

                                                             𝛼 =  𝛽𝛼෮                                                                                       (12) 

such that 

𝑓(𝑥 +  𝛼𝑑)  ≤ 𝑓(𝑥) +   𝜎𝛼𝑔
்𝑑   

 

4. Barzilai-Borwein1 Rule (BB1 step size) [7]: 

                                                   𝛼 =  
𝑠ିଵ

் 𝑦ିଵ

‖𝑦ିଵ‖ଶ
ଶ                                                                                        (13) 

 

where 𝑠ିଵ = 𝑥 − 𝑥ିଵ and 𝑦ିଵ = 𝑔 − 𝑔ିଵ. 

5. Barzilai and Borwein 2 Rule (BB2 step size) [10]: 

                                                   𝛼 =  
‖𝑠ିଵ‖ଶ

ଶ

𝑠ିଵ
் 𝑦ିଵ

                                                                                       (14) 

 

where 𝑠ିଵ = 𝑥 − 𝑥ିଵ and 𝑦ିଵ = 𝑔 − 𝑔ିଵ. 

IV. NUMERICAL EXPERIMENTS 

This section is devoted to test and compare all step sizes in (11) - (14) with the procedure of FR 
conjugate gradient (CG) algorithm. Python programming language is used for the implementation 
of the logistic regression problem. 

A. Description of the problems 
i. Problem 1 

This data was collected from the admission office of The Gateway (ICT) Polytechnic Saapade, 
Ogun State, Nigeria for candidates seeking admission into the institution.  
From the dataset in table 1, observation shows that the problem is a binary classification problem 
which contains 10 features. 
 

ii. Problem 2 
Iris flowers dataset was downloaded from github.com. The Iris flowers data involves predicting 
the flower species given measurements (in cm) of the iris flowers. The attributes information are: 

1. Sepal length 
2. Sepal width  
3. Petal length  
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4. Petal width  
5. Class (iris Setosa (1) and iris virginica (0)) 

 
sepal_length sepal_width petal_length petal_width Species 
5.1 3.5 1.4 0.2 Iris-setosa 
4.9 3 1.4 0.2 Iris-setosa 
4.7 3.2 1.3 0.2 Iris-setosa 
4.6 3.1 1.5 0.2 Iris-setosa 
5 3.6 1.4 0.2 Iris-setosa 
5.4 3.9 1.7 0.4 Iris-setosa 
4.6 3.4 1.4 0.3 Iris-setosa 
5 3.4 1.5 0.2 Iris-setosa 
4.4 2.9 1.4 0.2 Iris-setosa 

 
Table 2: Sample of dataset for problem 2 
Logistic regression was built for both problem 1 and problem 2. 
 

B. Parameters settings 

The following parameters are stated for some line search conditions: 

𝑠 = 1, 𝛽 = 0.0075, 𝜎 = 0.38 for the Armijo rule (A) to solve problem 1. 𝑠 = 1, 𝛽 = 0.01, 𝜎 =

0.38 for the Armijo rule (A) to solve problem 2. 𝜎 = 0.001 for Backtracking rule (B). The initial 
step size 𝛼 = 0.001 for the Barzilai-Borwein step size 1 (BB1) and Barzilai-Borwein step size 2 
(BB2).  All other logistic regression parameters are set to 0. The numerical result was compared 
based on: time of execution, total number of iterations, accuracy and the most decreased value of 
objective function obtained. The stopping criteria is set to ‖𝑔‖ ≤ 10ି. 

C. Results and Discussion 

Abbreviations: 
F1 = Fixed learning rate, set as 0.0001 
F2 = Fixed learning rate, set as 0.001 
A = Armijo learning rate 
B = Backtracking learning rate 
BB1 = Barzilai and Borwein learning rate 1 
BB2 = Barzilai and Borwein learning rate 2 

                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                  (15) 

                                  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                           (16) 

True Positive (TP): Correctly predict positive (1) 
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True Negative (TN): Correctly predict negative (0) 
False Positive (FP): Predict negative (0) class as positive 
False Negative (FN): Predict positive (1) class as negative 
 
Problem 
No. 
 

Learning 
rate 
methods 

Numbers of 
Iteration 

Processing 
Time 
𝜇s 

Accuracy 
% 

Precision 
% 

𝑓 
 

1. F1 541 6.57 88.10 87.57 1259.106 
F2 169 1.87 88.10 87.57 1259.106 
A 19 0.11 87.23 87.63 1260.809 
B 22 0.14 88.01 87.87 1264.87 
BB1 - - - - - 
BB2 - - - - - 

       
2. F1 1304 10.57 92 92.59 7.42248 

F2 440 3.66 92 92.59 7.42248 
A 109 0.9 92 92.59 7.42248 
B 147 1.55 92 92.59 7.42248 
BB1 - - - - - 
BB2 - - - - - 

 
Table 3: Numerical Results 
The numerical result obtained in all experiments shows that Armijo method reaches the optimal 
values (minimum cost) faster than other methods with 19 iterations and 109 iterations for problem 
1 and 2 respectively. Table 3 also show that Armijo method has the least processing time with 
 0.11𝜇𝑠 and 0.9𝜇𝑠 for problem 1 and problem 2 respectively. All methods are highly competitive 
in terms of accuracy and precision except for BB1 and BB2 methods which fails to solve both 
problem 1 and 2. Therefore, from the experiment Armijo rule is a better learning rate method than 
others in terms of number of iterations and processing time.  
V. CONCLUSION 
This paper, we applied different learning rate (step size) methods to solve real-life binary logistic 
regression problems. According to the results Armijo (A) and Backtracking (B) rules perform well 
in solving the problems in terms of number of iterations and processing time. A and B methods 
are also competitive with the fixed learning rate in terms of accuracy and precision. A and B  rules 
are better with the initial conditions given for each problem. 
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Appnum SexName Age StateName PName SessionName JambNumber JambScore PUTMEScore 

GTS1912706 MALE 19 ABIA ACCOUNTANCY 2019/2020 96479912BJ 192 26 

GTS1915164 FEMALE 17 ABIA ACCOUNTANCY 2019/2020 96460260JG 173 26 

GTS1919950 MALE 23 ABIA ACCOUNTANCY 2019/2020 96655844JH 168 23 

GTS1921099 FEMALE 21 ABIA ACCOUNTANCY 2019/2020 96937039CE 186 21 

GTS1920264 FEMALE 22 AKWA-IBOM ACCOUNTANCY 2019/2020 95137630AH 182 19 

GTS1918711 MALE 24 AKWA-IBOM ACCOUNTANCY 2019/2020 96590011AH 165 32 

GTS1915094 FEMALE 21 AKWA-IBOM ACCOUNTANCY 2019/2020 96400526EC 172 25 

GTS1915576 FEMALE 22 AKWA-IBOM ACCOUNTANCY 2019/2020 99999999AA 150 28 

GTS1916734 MALE 23 AKWA-IBOM ACCOUNTANCY 2019/2020 96936124FD 188 30 

GTS1919901 FEMALE 20 ANAMBRA ACCOUNTANCY 2019/2020 96527252AH 201 25 

GTS1920829 MALE 24 BENUE ACCOUNTANCY 2019/2020 96911414HF 186 18 

GTS1915872 MALE 24 BENUE ACCOUNTANCY 2019/2020 96910259EI 169 27 

: 
.         

         

Table1: Sample of dataset for problem 1 

 
 
 
 
 
 
 
 
 
 
 
 


