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Abstract &

The main advantage of quantile regression modets had over OLS is their
robustness to outliers. This is because quantile r &Isron models are insensitive
to outliers and skewed distributions. This Ve&perty of quantile regression
model is the same with the sample q This work was done to examine the
robustness of quantile regression model to ou ]& ata analysis was done usingreal life
data set on fuel consumption (in @er gallon), in highway driving as the
response variable. Extreme vdlues where inserted to create outliers in the
response variable data set. weight, length, wheel base, width, Engine size and
horse power are the exp % variables used in the analysis with a sample size
of 91. The standar hy distribution was used to transform the quantile
regression model~TheWfesults show that the graphs of the mean square errors
clustered arou @ero line in all the study quantiles, also the descriptive results
show that dual means is equal to the residual medians and equal to zero.
The skewéof the residuals approximates to zero across all the study quantiles,
urtosrs approximates to 3, both the residual standard deviations, mean
errors and root mean square errors approximate to zero across all the study
tiles. From the results of the analysis, it can be concluded that quantile
regression model is insensitive to outliers.
Key words: Quantile Regression Model, Cauchit Quantile Regression
Model, robustness to outliers and Mean Square Error
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1 Introduction

A better alternative to conditional-mean modeling has the tendency of measuring the intercept
of the median regression which obviously happened to be a key theorem about minimizing sum
of the absolute deviation and a geometrical algorithm for constructing median regression and
this was proposed by Ruder Josip Boskovic, a Jesuit Catholic Priest from Dubrovnik in 1790.
Hence, the Conditional-median regression is type of quantile regression where the conditional
50th quantile is modeled as a function of dependent variable, other quantiles can obviously be
used to determine the none central positions of a distribution, Koenker & Bassett (1978).
Binary response quantile regression model came as a result of the deficiencies inherent i
linear regression models as well the quantile regression model, such as the problem o.f
two alternatives in the response variable or ratio response variables (Manski,
Some functions that can be used to form binary or ordinal quantile regressio 1 include
logit, probit, Negative log-log, Aranda-Ordaz, Complementary Log-log, Lo and Cauchit
regression, (Bonat, Ribeiro and Zeviani, 2012).

Using Cauchy function to transform quantile regression is a p iﬁle analysis, where the
dependent variable is ordinal (statistically it is polytomous or@inal) and the independent

variables are ordinal or continuous-level. Cauchy transfo quantile regression model is
applied for two major reasons which include causal 1&'51S and forecasting an effect.
Obviously the major aim of Quantile Regression mo to correct some of the anomalies

accompanied with Linear Regression such as strig@ef¥ assumption of the linear regression
model, difficulty in using the linear regression&@ on skewed distributed response data, and
data heavily distributed with outliers. Therefore, Cauchy transformed quantile regression
model is therefore proposed with the,ai manage outliers in the response variable at a
reduced error term. This study is thefeforg aimed at examining the robustness or otherwise of
the quantile regression model to &tlier using Cauchy transformation.

2.0 Methodology
The Cauchy distribution%”%common notation as X ~ Cauchy(6, ) where & is the location
parameter and (ﬂ. is the scale parameteris coined after Augustin Cauchy, and it belongs

to the family ofista istributions that is closed under the formation of sums of independent
random variableShits expected value, the variance, skewness and kurtosis do not exist but its

median is given as @ (Alzaatreh et. al; 2016). Cauchy distribution has been applied in various
field ectrical theory, physical anthropology, measurement problems, mechanical theory,
ris inancial analysis. It was applied by Stigler (1989) to derive an expression that is

%it for P (Z1 <0,Z, < 0), where (21,22 ), follows the standard bivariate normal

distribution, Johnson et al. (1994).also applied it to model the condition of effect of a fixed
straight line of particles released from a area source, in physics, it is called a Lorenzian
distribution, where it is defined as the energy of an unstable state distribution in quantum
mechanics. Generally, the general pdf of the Cauchy distribution is defined as:
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(ﬂ_a)—l 1+{y__€}2 , —0<Py<oo
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(Norman etal., 2005)
While the standard probability density function (PDF) of the Cauchy distribution is:

f(y) = ”71(1+y2)71,f0”49:0,05:1,—00<y<oo o

(Norman etal., 2005) %
The main characteristics of the Cauchy distribution can be said to be the non—exis‘gen@%
mean, variance, skewness and kurtosis. Normanetal.(2005) also stated that 1S no
standardized form of the Cauchy distribution, this is simply because, it is &s;ible to
standardize without using (finite) values of mean and standard deviation whij Q()

Cauchy distribution. In this case, however, a standard form need to be obtz@g by substituting

6=0, A=1 which makes it to be the same with the student’s t distri]{g with one degree of

freedom, Normanetal. (2005). From equation (1),
let

not exist in

3)

C)Q (Norman etal., 2005)

4}1 - (ﬂa)l{HZ—ZT
e

the tive density function of the Cauchy distribution is derived as:

% F(u) = J‘j:f(u)du

®)
o

at + u

a ¢m 1
=—I ——du
TV a + u
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AN 1 {tan_1 —(y _ 0) —tan™' (ﬁj} (6)
T« a a

R S S
F(y) - 2+ﬁtan[ 2140 %
F() = %+ltan‘l(oo)® ®)
T

Equation (8) is the general cumulative density functlon f the cauchy distribution.
Therefore Let,

a = 1land 9 — O in equation (8) , the s@& cumulative density function (cdf)of the

cauchy distribution becomes

=—+7r@ y —0o<y<ow ©
q> (Norman etal., 2005)

Let
Vo)
Then the cdf ingers - )function of the general Cauchy distribution becomes:
T R
% 2 a
: ﬁltanl{h[Qy(;)} 9} = Qy(T)_%
tan "' {h[Qy (;-)} _0} = ﬂ{Qy(r) —~ %}
o ()]-0 _ 1
" = tan{ﬁ{Qy (z‘) - EH
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o, (z)]-0 = atan{n{Qy(T)_%H
o)) - awsfo - 1] .

2.1 Cauchy Transformed Quatile Regression

Cauchy transformed quantile regression belong to the family of Cauchy distribution. Eugene
et al., (2002) introduced the beta — generated family of distribution where the authors use

beta distribution as the base line distribution, this was followed by Alshawarbeh etal; (

who introduced the beta — Cauchy distribution which was extended to 7' — R

Alzaartreh et. al; (2013), where the authors gave the 1 —R Cumulat stribution

W(F(x)
function as G(x ) = L ( )I”(l‘ ) dt wherer (t ) denotes the probability &y function of the
random variable T with support (a,b) for —co< g < b < 0. w ors used the random
oa

variable T as the transformer to modify the random variable int ntirely new family of the
generalize distribution of a random variable. In this arti @auchy transformed quantile
regression is introduced where the quantile function o chy distribution is used as the
transformer to transform the quantile regression into entj new model that can handle ordinal
response data and binary response data, as well
general probability density function of a Ca 1stribution is given in equation (1), the

general cdf is given in equation (8) while &f inverse (F _1) or the Probit function of the

Cauchy distribution that will be used for)data simulation is derived from the cdf of Cauchy
distribution in equation (11).
The next step is to equate the %rse (F - ) of the Cauchy function of equation (11) to the

nages outliers in any distribution. The

quantile regression mod% olve simultaneously for the cauchit quantile regression model.

6 no,(0)] =(87 + A7) (12)
é\) atan{ﬂ{gy(z) _%Hﬂg:( A+ A7)
%%/ atan{ﬂ{Qy(T) —%H _ (,Bé’) + ,31(’)?@-)_9
b3

an|r{. ()= g} ] = (s pin)-0
{0,001 = wnfa (s px)-0)
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0,(r)= #tan™ fa (g + i )-0) + =

-1<Q,(r)<1, —o<x,<0, 0<z<1

(14)

Qy (T) = the response variable and the cdf inverse (F _1) of the distribution to be
estimated

X. = the covariates to be simulated

J3 = the intercept parameter q?
3 = the unknown parameters '&
7 = specified quantiles of the model. This research examines the follo@ quantiles:

0.05, 0.25, 0.5, 0.75, 0.95 QQ

Equation (14) is the proposed Cauchy transformed quantile regressiq‘ el.

2.2 Data Simulation and Analysis e

The simulation experiments were adopted from the Ha&l\laiman (2007). The simulation
were performed as follows: a design matrix X, fort %p anatory variables which is an VIXk,

k=3 s a fixed number of explanatory variabl ample size n, drawn from the cdf inverse

error, the confidence interval and the fp-valtes, the simulation experiment by Efron (1979) was
followed by bootstrapping the s%
the R — code of X, =rnorm( fiNx ), where X, = (xl., X, )while x;= (1.24(1.5*xc)) where

function of independent normal distributi;%re 1n=150. In order to estimate the standard

alues 200 times. The data were generated using the

XcC iS rnorm (n, X, sd)f ean and standard deviation for the explanatory variables were
adopted from Nwa@ et. al (2019) which gave the mean and standard deviation for X, as

131.7143 andZ2 928419 respectively, mean and standard deviation of X, are given as 50.57143

and 1.361 ectively while the mean and standard deviation of XC are given as 145.6429
and 6. 7 respectively. The response variable for the experiment has the design matrix of

n ere n is 150 but in order to estimate the standard error, confidence interval and the

es, it was bootstrapped 200 times. Some degree of outliers were infused in the simulated

data using ), = 1 +3 X7 4errorbut in order to examine the equivariance of the location

parameter the response variable is simulated as Y, :Sample(c(errorl,err0r2))Where

r= (n, X, sd ), €rror are random numbers sampled without replacement from

(err0r1+err0r2), ervorl s (n—nxout. per) sample size, OUL.per =20and
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error?2 = rnorm (n xout.per,max (error l)x 8, 1) , nis 150 then bootstrapped 200 times
so as to estimate the standard error, the confidence interval and the p-values.
3.0 Results

The result of Cauchit Quantile Regression model shows that all the parameters in Tables 1 are
not significant for all the study quantiles except for the intercept of the 5%, 25" and

95"quantilesand x, of the 95" quantile. Figure 4, shows that the residual graphs cluster round

0 and are uniformly spread around the negative and positive axis.

Quantiles parameters coefficient Std error @ t-value = Pr(>|t|) Q%

0.05 intercept  -0.10582  0.03783  -2.79741 0.00585 &
Xi 0.00490 0.00594  0.82543 04104&1
Xz -0.02644  0.02362  -1.11965 02@'
X3 0.00255 0.00796 | 0.32018 'M929
4
0.25 intercept  -0.05300  0.01883 -2.8@ 0.00555
o
X1 0.00258 0.00279 GDM380 0.35711
Xz -0.01203 oo&w -0.83380  0.40575
X3 -0. 00228 &Zzs -0.4903 | 0.62467
0.5 intercept  -0. 01672 ,‘6'02250 -0.74326 | 0.45852
4N
Xi .0.00175 0.00410 042770 | 0.66950
A 4
Xz \L0°0327 0.01576  -0.20765  0.83579

q \ -0.00164 0.00401 -0.4101 | 0.68236

0.75 wbcﬁt 0.04291 0.02887 1.48633 | 0.13935
F\

(\ -0.00092  0.00458  -0.20186  0.84031

A
X -0.00803  0.01472  -0.54564 0.58615

A

kV X3 -0.00111  0.00692  -0.16052 0.87270
2 095 intercept  0.13181  0.04557  2.89237  0.00441
%b Xi 0.00370  0.00650  0.56902  0.57022
% X -0.02862  0.02447  -1.16996 0.24392
X3 -0.02182  0.00969  -2.25218  0.02580

Table 1: Estimated Parameters of 150 Simulated Data for the Cauchy transformed QR Model

Table 2, show that the skewness for all the study quantiles approximate to zero while the
kurtosis for all the study quantiles are a little above 3, the means are equal to the medians for
all the study quantiles, the mean square errors (MSE), the root mean square errors (RMSE) and
the standard deviation (SD) approximate to zero.
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quantiles Skewness kurtosis mean Median RMSE MSE SD

0.05 0.3853 3.4741 0.10293 0.092044  0.12328 0.0152 | 0.06810
0.25 0.0767 3.73875 0.04326 0.0473 0.0763 0.0058 | 0.0630

0.5 0.0556 3.7494 0.00000 0.0000 0.0628 0.0039  0.0630

0.75 -0.0773 3.7927 -0.0416 -0.0416 0.0756 0.0057 | 0.0634

0.95 -0.1531 3.5195 -0.0952 -0.0959 0.1156 0.0133 0.0658

Table 2: Descriptive Analysis for the Residuals of the Cauchit Quantile Regression 1\@
°
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Figure 44: Residual Plot of Quantile 0.05; %re 4g: Residual Plot of Quantile 0.25

resid .5
resid 75
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y
1gure 4c: ual Plot of Quantile 0.5; 1gure 1p: Residual Plot of Quantile O.
Fig idual Plot of Q ile 0.5 Fig 1p: Residual Plot of Q ile 0.75

resid 85

Seriel Number

Figure 1g: Residual Plot of Quantile 0.95
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—-— Q05 = Q25+ Q5 -~ Q75 Q.95]

04

y Estimates
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Seriel Number

Figure 2: Plot for the Estimate of the Cauchy transformed Quar&@ﬂ

3.0 Conclusion

Cauchy transformed Quantile Regression model shows ability tOmanage outliers when it is
applied to simulated data set in Table 2. Its residual graphs il Figures 1 shows little presence
of outliers, the summary results of the residuals for Cauchy transformed Quantile
Regression model in Tables 2, show that both its ske Qand kurtosis are closer to 0 and 3
respectively. Its median and mean are equal, its ro square error and standard deviation
are smaller and closer to zero. Based on the ab ﬁ;rks we therefore conclude that Quantile
Regression model can handle data with ou hen transformed with Cauchy distribution.
Hence it can be recommended for Ca @ sformed Quantile Regression model to be used
for data with outliers.
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