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Abstract &

The Bayesian as a statistical approach is a method applied in statistical infe

researchers to incorporate prior information surrounding the population pa

from information embodied in a sample to guide the inference proce om the Bayesian

viewpoint, the choice of prior depends on the one’s wide knowled h&subject matter, since
apLi

there is no obvious approach from which one can decisively concldde that one prior has edge
over the other. This paper aim at studied the parameter g of Weibull-exponential
distribution via classical and the Bayesian approach. Di estimates of the parameter
(shape) were obtained from the Bayesian approach us@si and extended Jeffery priors,
under various loss functions. The results shows that th ratic loss functions under extended
Jeffrey prior and quasi prior outperformed the squared etror loss function and the precautionary
loss function across different sample sizes. T %w t also reveals that the Bayesian estimate
of the parameter (shape) under extended Jef d quasi prior using quadratic loss function
is better than the maximum likelihood es'ﬁAa . Finally, it was deduced that, an increment in
the sample size, makes the error to feduce’and the estimates approach the real value of the
parameter (shape).

Keyword: Weibull-exponential wution, Classical approach, Bayesian method, Quasi prior,
extended Jeffrey prior. Posteriofi distribution.

1. Introducti(@

In the stud;%ybility and statistics, the weibull-exponential distribution (WED) is one of

the form o generalization of exponential distribution. The generalization of exponential
distri ‘% is as a result of its constant failure rate. This feature of the exponential distribution

out incompatibility of the distribution to model real life problem. The weibull-
ntial distribution is more flexible and suitable in modeling some real life problem.
ntunde ef a/ (2015) studied the weibull-distribution, and applied it to real life scenario. The
classical method of estimating parameter of any distribution requires no prior information
about the parameter to be estimated. The Bayesian approach needs suitable choice of prior
information for the parameters. According to Arnold & Press (1983) they opined thatt, from a
Bayesian point of view, there is no enough evidence to claim that one prior is better than any
other. In presumption, one has one’s opinion on the chosen prior and living with all of its
lumps and bumps become compulsory. However, if enough information is generated about the
parameter(s) then it is reasonable enough to usef the informative prior(s) which is better over
other choices. Otherwise vague priors or non informative prior may be considered . This paper
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aim at using quasi and extended Jeffery prior as against the uniform and Jeffery priors
previously used for the same parameter estimation.

2. Literature Review

Series of paper have been published in parameters estimation of exponential distribution.
Oguntunde et al (2015) estimate the parameters of weibull-exponential distribution using
Maximum likelihood method. Recently leren and Oguntunde (2018) estimate the parameter
(shape) of the weibull exponential distribution based on uniform and Jeffery prior under square
error, quadratic and precautionary loss functions. This paper intends to estimate the para
(shape) of this distribution under extended Jeffery and quasi prior and obtain the estim:
well as the relative posterior risk. Abdalla and Junping (2019) estimate the paramet:
and reliability function of one-parameter Burr-X distribution using The eﬁ&

Bayesian estimate method and the maximum likelihood method. Isha Gupta a u

1 Gupta

(2018) Investigate the Bayesian and Non-Bayesian estimation methods s arameter of
Gamma distribution. Afaq et al. (2015)in their paper, compare the priors fi exponentiated
exponential distribution considering different loss functions. Aliyu an ya (2016) studied

the estimation of parameter (shape) of Generalized Rayleigh di
non-informative prior under squared error, Entropy and Precau
and Tang (2015) estimate the Fréchet distribution paramet
consideration. Many authors have made their contributi
bayesian method, which includes but not limited to (1983), Terma and Oguntunde
(2018), Terna and Angela (2018), Fatima and Ahma 7), Tahir et al (2016). The focus of
this paper is to apply the Bayesian method of estiméting the parameter of Weibull exponential
distribution using quasi and extended jeffery § der different loss function. The compare

ion with assumption of
ary loss functions. Abbas
ufting reference priors into
owards the development of

the results of the estimators with the maxi ikelihood method using mean square error
criteria.

3. Materials and Method Cj

This section considered thg'estimation of the parameter (shape) of weibull-exponential
distribution using maxi thood approach and Bayesian approach. Under the Bayesian
approach, two main prior distributions are considered in estimating the posterior distribution
of the parameter ); thus extended Jeffery prior and quasi prior. After deriving the
posterior distributio ree loss functions, thus the square error loss function, quadratic loss
function, precau ry loss function were employed to derived the estimators through which
the best es‘@t is selected using mean square error (MSE) criteria. With this, the estimator

with t lest estimate is considered to be the best estimator of the parameter (shape) of the
Wei onential distribution. The approach is under listed in the subsection three (3)
Estimation Method

3.1 Maximum Likelihood Estimation

The pdf is expressed as

f(x) = aﬁﬂeiﬁx (1 _e )ﬂ*l e,a(ezx,l )/f

and the cdf is also expressed

(1)
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)
where a and [ are the parameter (shape)s and A is the scale parameter of the distribution.

The log likelihood function for «,f,Ais obtained from probability density function as
expressed as follow;

/lﬂixi n

LK Ko X po2) () ¢ 5 S 1 ol a3 (e 1) |

i=1

Q%

and the Maximum likelihood estimator of the parameter (shape) is obtained as i x

[

Ax; s
e -1
i=1 ( ) c 3)

3.2. Bayes Estimation Using Extended Jeffrey Prior unde *us Loss Function and
Its Correspondent Risk

Posterior distribution assuming extended Jeffrey prior &

The extended Jeffrey prior is given as p *%> 0

And  the  posterior  distribution & parameter a is  obtained as

s
p(“/ﬁ):a (n 2%( u 5)
@»

i.  Squared Er(mgﬁ%unctlon (SELF) using extended Jeffrey prior.

The square loss function associated with the parameter « is defined as;
w a aSELF (6)
Whete o, - 1s the estimator of the parameter using SELF and it is obtained as;
(n—2c+2)
SELF B
I'(n —2c+l)2(eﬂx' —1)
™
And the risk is

[(n—2c+1)[(n—2c+3)~(T(n—2c+1))

(r(n=2c+1)) _(Zn:(eb’t _l)ﬁ]z

i=1

p (aSELF ) =
(8)

ii.  Quadratic Loss Function Using Extended Jeffrey Prior.
The quadratic loss function (QLF) associated with the parameter « is defined as;

184



Royal Statistical Society Nigeria Local Group 2021 Conference Proceedings

o

L(O,,%LF):(WJ
(€))

Where a,, . is the estimator of the parameter using QLF and it is obtained as;

I'(n-2c
o - ( ,, )

r(n—zc—l);(e“t -1)’ o e

F(n—2c+1)l“(n—2c—1)—1ﬁ(n—2c)2

p(aQLF): [(n=2c+1)T(n-2c-1) ®§~l)Q

and the risk is

iii.  Precautionary Loss Function Using extended Jeffrey Prior. ?

The precautionary loss function associated with the parameter o ned as;

2

a—-a
L(atpyma) = (@=apr)
@ (12)
Where «,,,. is the estimator of the parameter using I@nd it is obtained as;
[ [(n-2c+3)

e \/r(n—2c+1)(i(e“f —1)"]2

i=1

&@ (13)
And the risk is
NS

—F(n—20+2)

(1Y
W

33 Bayes Esti@n Using Quasi Prior Under Various Loss Function And Its
Corresponding Ri
Posterior g@n assuming Quasi prior
LY 1
The rior is givenas p(a)oc—, a>0
a

% the  posterior  distribution  of  parameter a is obtained  as

oS (Y /o n—c+1
a"“e Zl:( ! (Z(eix'—l)ﬁj

i=1

F(n—c+1)

p(aPLF) =2

(14)

pla/x)=
(15)

i.  Squared Error Loss Function (SELF) using quasi prior.
The squared error loss function associated with the parameter « is defined as;
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ii.

iii.

L(a’aSELF):(a_aSELF)Z (16)
Where oy, . is the estimator of the parameter using SELF and it is obtained as;
I(n-c+2)
Xsprr = n 5
I'(n-c +1)Z(eﬂx‘ —l)
i1 (17)
And the risk is

F(n—c+1)F(n—c+3)—(F(n—c+1))2

: S
(r(n—c+1))2—(znl(e“f —1)ﬁj . Qq@

i=1

p (aSELF ) =

Quadratic Loss Function Using Quasi Prior. q&
The quadratic loss function (QLF) associated with the parameter « i@ ned as;

L(a,ay, )= (a o jz *Qg

o

(19)

Where a,, . is the estimator of the parameter using QLE an@it is obtained as;

Corr = F(n n—c) ~ : QQQ
F(n—c—l)lz:l:(e —1) &%‘ 0

and the risk is ?
T(n-c+1)T(n- (n-c))

)

p(eor) = S
e F(n—c+l —c—1
Precautionary Loss FL@U sing extended Jeffrey Prior.

ction associated with the parameter « is defined as;

The precautionary 1§
2
a
L (aPLF > 0() 7 ( -
(22)
WI@ e estimator of the parameter using PLF and it is obtained as;

21)

a
F(n—c+3)

%%? \/F(n—c+1){ ; (e —1)ﬂJ2

(23)
% and the risk is

F(n—c+3)F(n—c+l)—F(n—c+2)

r(n—c+1)2(i(e“x —1)/’]

i=1

p(aPLF) =2

(24)
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4. Results

Table 1. The maximum likelihood and Bayesian analysis

Sampl | Measures | MLE | Extended Jeffrey’s prior Quasi prior

e sizes SELF | QLF PLF SELF | QLF PLF

25 Estimates | .4437 | .4437 4082 | 4525 | 4526 | 4171 |.4613
Biases .0840 | .0840 .0818 |.0866 |.0866 |.0811 |.0899
MSE .0123 | .0123 .0105 |.0133 |.0133 |.0106 |.0145 (g

50 Estimates | .4398 | .4398 4222 | 4442 | 4442 | 4266 | .448

Biase .0580 | .0580 0575 |.0589 |.0589 |.0572

MSEs .0056 | .0056 .0052 | .0059 |.0059 |.0052
100 Estimates | .5447 | .5447 5284 | 5475 | 5475 | .536€» 5502
Biases .0403 | .0403 .0402 | .0406 | .0406 Q& .0410
MSEs .0027 | .0027 0026 |.0027 [.0027 %02 .0027
150 Estimates | .4595 | .4595 4534 | 4611 |. %.4549 4626
Biase .0327 |.0327 0326 |.0329 99329 | .0325 |.0331
MSE .0017 |.0017 .0017 |.0017 4 .0017 |.0017 |.0018

square error (MSE) were obtained under different samp, s across the different estimators
(maximum likelihood, SELF, QLF, PLF under exte effery and quasi prior). where a =
0.5 assuming 8, A and c are known, given f_= 1 and ¢ = 0.5. It is observed that, at
sample size 25, the QLF has the smallest MS .0105 and 0.0106 under extended Jeffery
and Quasi prior among other MSE from ot mators. Also at sample size 50, the QLF has
the smallest MSE of 0.0052 and 0.00 extended Jeffery and Quasi prior among other
MSE from other estimators. Similarly, the same apply to sample size 100. However, at the
sample size 150, the MSE of all the estimators converges and are almost the same. This
indicates that at a very large m size the MSE of all the estimators converge and are the

same. Q
6’\»

$V
%/
S

Table 1. Shows the results obtained from the simulation. S ayes estimates, biases, mean
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Table 2. The maximum likelihood and Bayesian analysis

Sampl | Measures | MLE Extended Jeffrey’s prior Quasi prior

e sizes SELF | QLF PLF SELF | QLF PLF

25 Estimates | 1.3311 | 1.3311 | 1.2247 | 1.3575 | 1.3578 | 1.2513 | 1.3841
Biases 2521 2521 2454 | 2598 | .2600 | .2433 | .2698
MSE 1106 | .1106 | .0945 | .1197 |.1198 |.0955 |.1308

50 Estimates | 1.3195 | 1.3195 | 1.2667 | 1.3325 | 1.3327 | 1.2799 | 1.3458
Biases 1740 | .1740 | .1724 |.1765 |.1766 |.1715 |.1800 ¢
MSE .0506 | .0506 |.0468 |.0527 |.0526 |.0470

100 Estimates | 1.6342 | 1.6342 | 1.6016 | 1.6424 | 1.6424 | 1.6097
Biases 1210 | .1210 | .1206 |.1218 |.1218 |.1202
MSE .0238 |.0238 |.0230 |.0243 |.0243 |.02300>|®

150 Estimates | 1.3786 | 1.3786 | 1.3602 | 1.3832 | 1.3832 lgé 1.3878
Biases .0981 .0981 0977 1.0986 | .0986 976 |.0992
MSE .0154 | .0154 |.0150 |.0156 |.0156 150 |.0159

Table 2. Shows the results obtained from the simulation. Th¢’Bayes estimates, biases, mean
square error (MSE) were obtained under different sample s%ep across the different estimators

(maximum likelihood, SELF, QLF, PLF under extend ery and quasi prior). where @ =
1.5 assuming f3, A and c are known, given § = 4 and ¢ = 0.5. It is observed that, at
sample size 25, the QLF has the smallest M 945and 0.0955 under extended Jeffery

and Quasi prior among other MSE from othegeStumators. Also at sample size 50, the QLF has
the smallest MSE of 0.0468 and 0.0470@'[611(16(1 Jeffery and Quasi prior among other
MSE from other estimators. Similarl@ e apply to sample size 100 and 150.

éV
%/
S
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Table 3. The maximum likelihood and Bayesian analysis

Sampl | Measures | MLE Extended Jeffrey’s prior Quasi prior

e sizes SELF | QLF PLF SELF | QLF PLF

25 Estimates | 2.2186 | 2.2185 [2.0410 | 2.2625 |2.2629 |2.0855 |2.3069
Biases 4202 | 4202 | .4090 | .4330 |.4332 |.4056 | .4497
MSE 3073 | 3073 | .2625 | .3324 | .3327 | .2653 | .3633

50 Estimates | 2.1991 | 2.1551 |2.0672 | 2.1770 |2.1991 |2.1111 |2.2210
Biases 2899 | .2859 |.2947 | .2872 |.2900 |.2874 |.2942 (g
MSE 1404 | 1326 | .1328 | .1358 |.1404 |.1300 |.1463

100 Estimates | 2.7237 [ 2.6965 |2.6420 | 2.7101 |2.7237 [2.6693 | 2.
Biases 2016 | .2003 |.2038 |.2007 |.2016 |.2010
MSE 0662 | .0643 | .0645 |.0651 |.0662 | .0638~M0675

150 Estimates | 2.2977 | 2.2824 | 2.2517 |2.2900 |2.2977 |2.2 2.3053
Biases 0427 | .0419 |.0419 |.0422 |.0427 |. .0434
MSE 0427 | .0419 | .0419 |.0422 | .0427 ,\,,0416 | .0434

Table 3. Shows the results obtained from the simulation. Th
square error (MSE) were obtained under different sample sf
(maximum likelihood, SELF, QLF, PLF under extend ery and quasi prior). where @ =
2.5 assuming £, A and c are known, given f§ = 4 nd ¢ = 0.5. It is observed that, at
sample size 25, the QLF has the smallest MS 25 and 0.2653 under extended Jeffery
and Quasi prior among other MSE from other tors. Also at sample size 50, the QLF has
the smallest MSE of 0.1328 and 0.1300 un xtended Jeffery and Quasi prior among other
MSE from other estimators. Similarly@@me apply to sample size 100 and 150.

ases estimates, biases, mean

cross the different estimators

Conclusion
The table 1, 2 and 3 above %he estimates, biases and mean square errors of the classical
method of estimating th eter (shape) of the distribution (maximum likelihood) and the

and quasi prior Ogftpegformed the squared error loss function and the precautionary loss
function across t sample sizes. The result also reveals that the Bayesian estimates of
the paramete ) under extended Jeffrey and quasi prior using quadratic loss function is

Bayesian analysis. Tée restts show that quadratic loss functions under extended Jeftfrey prior

quasi pror performed better than the quadratic loss function under the extended Jeffery prior.
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