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Abstract 

The Bayesian as a statistical approach is a method applied in statistical inference which helps 
researchers to incorporate prior information surrounding the population parameter with support 
from information embodied in a sample to guide the inference process. From the Bayesian 
viewpoint, the choice of prior depends on the one’s wide knowledge of the subject matter, since 
there is no obvious approach from which one can decisively conclude that one prior  has edge 
over the other.  This paper aim at studied the parameter (shape) of Weibull-exponential 
distribution via classical and the Bayesian approach. Different estimates of the parameter 
(shape) were obtained from the Bayesian approach using quasi and extended Jeffery priors, 
under various loss functions. The results shows that the quadratic loss functions under extended 
Jeffrey prior and quasi prior outperformed the squared error loss function and the precautionary 
loss function across different sample sizes. The result also reveals that the Bayesian estimate 
of the parameter (shape) under extended Jeffrey and quasi prior using quadratic loss function 
is better than the maximum likelihood estimate. Finally, it was deduced that, an increment in  
the sample size, makes the error to reduce and the estimates approach the real value of the 
parameter (shape).  
Keyword: Weibull-exponential distribution, Classical approach, Bayesian method, Quasi prior, 
extended Jeffrey prior. Posterior distribution. 

 

1. Introduction  

 
In the study of probability and statistics, the weibull-exponential distribution (WED) is one of 
the form of the generalization of exponential distribution. The generalization of exponential 
distribution is as a result of its constant failure rate. This feature of the exponential distribution 
brought about incompatibility of the distribution to model real life problem. The weibull-
exponential distribution is more flexible and suitable in modeling some real life problem. 
Oguntunde et al (2015) studied the weibull-distribution, and applied it to real life scenario. The 
classical method of estimating parameter of any distribution requires no prior information 
about the parameter to be estimated. The Bayesian approach  needs suitable choice of prior 
information for the parameters. According to Arnold & Press (1983) they opined thatt, from a 
Bayesian point of view, there is no enough evidence to claim that  one prior is better than any 
other. In presumption, one  has one’s opinion on the chosen prior and living with all of its 
lumps and bumps become compulsory. However, if enough information is  generated about the 
parameter(s) then it is reasonable enough to usef the informative prior(s) which is better over 
other choices. Otherwise vague priors or non informative prior may be considered . This paper 
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aim at using quasi and extended Jeffery prior as against the uniform and Jeffery priors 
previously used for the same parameter estimation.  

 
2. Literature Review 

Series of paper have been published in parameters estimation of exponential distribution.  
Oguntunde et al (2015) estimate the parameters of weibull-exponential distribution using 
Maximum likelihood method.  Recently Ieren and Oguntunde (2018) estimate the parameter 
(shape) of the weibull exponential distribution based on uniform and Jeffery prior under square 
error, quadratic and precautionary loss functions. This paper intends to estimate the parameter 
(shape) of this distribution under extended Jeffery and quasi prior and obtain the estimates as 
well as the relative posterior risk. Abdalla and Junping  (2019) estimate the parameter (shape) 
and reliability function of one-parameter Burr-X distribution using  The expectation of 
Bayesian estimate method and the maximum likelihood method. Isha Gupta and Rahul Gupta 
(2018)  Investigate the Bayesian and Non-Bayesian estimation methods scale parameter of 
Gamma distribution. Afaq et al. (2015)in their paper, compare the priors for the exponentiated 
exponential distribution considering different loss functions. Aliyu and Yahaya (2016) studied 
the estimation of parameter (shape) of Generalized Rayleigh distribution with assumption of 
non-informative prior under squared error, Entropy and Precautionary loss functions. Abbas 
and Tang (2015) estimate the Fréchet distribution parameter putting reference priors into 
consideration. Many authors have made their contributions towards the development of 
bayesian method, which includes but not limited to Arnold (1983), Terma  and Oguntunde 
(2018), Terna  and Angela (2018), Fatima and  Ahmad (2017), Tahir et al (2016). The focus of 
this paper is to apply the Bayesian method of estimating the parameter of Weibull exponential 
distribution using quasi and extended jeffery prior under different loss function. The compare 
the results of the estimators with the maximum likelihood method using mean square error 
criteria.  

 
3. Materials and Method 

This section considered the estimation of the parameter (shape) of weibull-exponential 
distribution using maximum likelihood approach and Bayesian approach. Under the Bayesian 
approach, two main prior distributions are considered in estimating the posterior distribution 
of the parameter (shape); thus extended Jeffery prior and quasi prior. After deriving the 
posterior distribution, three loss functions, thus the square error loss function, quadratic loss 
function, precautionary loss function were employed to derived the estimators through which 
the best estimator is selected using mean square error (MSE) criteria. With this, the estimator 
with the smallest estimate is considered to be the best estimator of the parameter (shape) of the 
Weibull exponential distribution. The approach is under listed in the subsection three (3)  

3.1 Estimation Method 

3.1 Maximum Likelihood Estimation 

The pdf is expressed as  

     11
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and the cdf is also expressed
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where 𝛼 and 𝛽 are the parameter (shape)s and 𝜆 is the scale parameter of the distribution. 

The log likelihood function for , ,   is obtained from probability density function as 

expressed as follow; 
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and the Maximum likelihood estimator of the parameter (shape) is obtained as  
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3.2. Bayes Estimation Using Extended Jeffrey Prior under Various Loss Function and 
Its Correspondent Risk 

Posterior distribution assuming extended Jeffrey prior 

The extended Jeffrey prior is given as   2

1
, 0

c
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And the posterior distribution of parameter   is obtained as 
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i. Squared Error Loss Function (SELF) using extended Jeffrey prior. 
The squared error loss function associated with the parameter  is defined as; 

   2
, SELF SELFL     

        (6)
 

Where SELF is the estimator of the parameter using SELF and it is obtained as; 
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And the risk is  
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ii. Quadratic Loss Function Using Extended Jeffrey Prior. 
The quadratic loss function (QLF) associated with the parameter  is defined as; 
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Where QLF is the estimator of the parameter using QLF and it is obtained as; 
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and the risk is 
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iii. Precautionary Loss Function Using extended Jeffrey Prior. 
The precautionary loss function associated with the parameter  is defined as; 
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Where PLF is the estimator of the parameter using PLF and it is obtained as; 
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And the risk is 
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3.3 Bayes Estimation Using Quasi Prior Under Various Loss Function And Its 
Corresponding Risk 

 Posterior distribution assuming Quasi prior 

The Quasi prior is given as   1
, 0

c
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and the posterior distribution of parameter   is obtained as 
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i. Squared Error Loss Function (SELF) using quasi prior. 
The squared error loss function associated with the parameter  is defined as; 
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   2
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       (16)
 

Where SELF is the estimator of the parameter using SELF and it is obtained as; 
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And the risk is  
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ii. Quadratic Loss Function Using Quasi Prior. 
The quadratic loss function (QLF) associated with the parameter  is defined as; 
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Where QLF is the estimator of the parameter using QLF and it is obtained as; 

 

 

   
1

1 1i

QLF n
x

i

n c

n c e






 

   

      (20)

 

and the risk is 

        
   

2
1 1

1 1QLF

n c n c n c
p

n c n c


        


          (21)
 

iii. Precautionary Loss Function Using extended Jeffrey Prior. 
The precautionary loss function associated with the parameter  is defined as; 
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Where PLF is the estimator of the parameter using PLF and it is obtained as; 
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and the risk is 
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4. Results 

Table 1. The maximum likelihood and Bayesian analysis 
 

Table 1. Shows the results obtained from the simulation. The Bayes estimates, biases, mean 
square error (MSE) were obtained under different sample sizes across the different estimators 
(maximum likelihood, SELF, QLF, PLF under extended Jeffery and quasi prior). where 𝛼 =

0.5 assuming 𝛽, 𝜆 𝑎𝑛𝑑 𝑐 are known, given 𝛽 = 𝜆 = 1 and 𝑐 = 0.5 . It is observed that, at 
sample size 25, the QLF has the smallest MSE of 0.0105 and 0.0106 under extended Jeffery 
and Quasi prior among other MSE from other estimators. Also at sample size 50, the QLF has 
the smallest MSE of 0.0052 and 0.0052 under extended Jeffery and Quasi prior among other 
MSE from other estimators. Similarly, the same apply to sample size 100. However, at the 
sample size 150, the MSE of all the estimators converges and are almost the same. This 
indicates that at a very large sample size the MSE of all the estimators converge and are the 
same. 

 

 

 

 

      

 

  

Sampl
e sizes  

Measures MLE Extended Jeffrey’s prior Quasi prior 
SELF QLF PLF SELF QLF PLF 

25 Estimates .4437 .4437 .4082 .4525 .4526 .4171 .4613 
 Biases .0840 .0840 .0818 .0866 .0866 .0811 .0899 
 MSE .0123 .0123 .0105 .0133 .0133 .0106 .0145 
50 Estimates .4398 .4398 .4222 .4442 .4442 .4266 .4486 
 Biase .0580 .0580 .0575 .0589 .0589 .0572 .0600 
 MSEs .0056 .0056 .0052 .0059 .0059 .0052 .0061 
100 Estimates .5447 .5447 .5284 .5475 .5475 .5366 .5502 
 Biases .0403 .0403 .0402 .0406 .0406 .0401 .0410 
 MSEs .0027 .0027 .0026 .0027 .0027 .0026 .0027 

150 Estimates .4595 .4595 .4534 .4611 .4611 .4549 .4626 
 Biase .0327 .0327 .0326 .0329 .0329 .0325 .0331 
 MSE .0017 .0017 .0017 .0017 .0017 .0017 .0018 
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Table 2. The maximum likelihood and Bayesian analysis   

 

Table 2. Shows the results obtained from the simulation. The Bayes estimates, biases, mean 
square error (MSE) were obtained under different sample sizes across the different estimators 
(maximum likelihood, SELF, QLF, PLF under extended Jeffery and quasi prior). where 𝛼 =

1.5 assuming 𝛽, 𝜆 𝑎𝑛𝑑 𝑐 are known, given 𝛽 = 𝜆 = 1 and 𝑐 = 0.5 . It is observed that, at 
sample size 25, the QLF has the smallest MSE of 0.0945and 0.0955 under extended Jeffery 
and Quasi prior among other MSE from other estimators. Also at sample size 50, the QLF has 
the smallest MSE of 0.0468 and 0.0470under extended Jeffery and Quasi prior among other 
MSE from other estimators. Similarly, the same apply to sample size 100 and 150. 

 

 

 

 

 

 

 

 

  

Sampl
e sizes  

Measures MLE Extended Jeffrey’s prior Quasi prior 
SELF QLF PLF SELF QLF PLF 

25 Estimates 1.3311 1.3311 1.2247 1.3575 1.3578 1.2513 1.3841 
 Biases .2521 .2521 .2454 .2598 .2600 .2433 .2698 
 MSE .1106 .1106 .0945 .1197 .1198 .0955 .1308 
50 Estimates 1.3195 1.3195 1.2667 1.3325 1.3327 1.2799 1.3458 
 Biases .1740 .1740 .1724 .1765 .1766 .1715 .1800 
 MSE .0506 .0506 .0468 .0527 .0526 .0470 .0553 
100 Estimates 1.6342 1.6342 1.6016 1.6424 1.6424 1.6097 1.6506 
 Biases .1210 .1210 .1206 .1218 .1218 .1202 .1229 
 MSE .0238 .0238 .0230 .0243 .0243 .0230 .0249 
150 Estimates 1.3786 1.3786 1.3602 1.3832 1.3832 1.3648 1.3878 
 Biases .0981 .0981 .0977 .0986 .0986 .0976 .0992 
 MSE .0154 .0154 .0150 .0156 .0156 .0150 .0159 
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Table 3. The maximum likelihood and Bayesian analysis 

 

Table 3. Shows the results obtained from the simulation. The Bayes estimates, biases, mean 
square error (MSE) were obtained under different sample sizes across the different estimators 
(maximum likelihood, SELF, QLF, PLF under extended Jeffery and quasi prior). where 𝛼 =

2.5 assuming 𝛽, 𝜆 𝑎𝑛𝑑 𝑐 are known, given 𝛽 = 𝜆 = 1 and 𝑐 = 0.5 . It is observed that, at 
sample size 25, the QLF has the smallest MSE of 0.2625 and 0.2653 under extended Jeffery 
and Quasi prior among other MSE from other estimators. Also at sample size 50, the QLF has 
the smallest MSE of 0.1328 and 0.1300 under extended Jeffery and Quasi prior among other 
MSE from other estimators. Similarly, the same apply to sample size 100 and 150. 

 
Conclusion 
The table 1, 2 and 3 above show the estimates, biases and mean square errors of the classical 
method of estimating the parameter (shape) of the distribution (maximum likelihood) and the 
Bayesian analysis. The results show that quadratic loss functions under extended Jeffrey prior 
and quasi prior Outperformed the squared error loss function and the precautionary loss 
function across different sample sizes. The result also reveals that the Bayesian estimates of 
the parameter (shape) under extended Jeffrey and quasi prior using quadratic loss function is 
better than the maximum likelihood Estimate. However, the quadratic loss function under the 
quasi prior performed better than the quadratic loss function under the extended Jeffery prior. 
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