### **BRIDGING DEMOGRAPHIC DATA GAPS THROUGH POPULATION PROJECTIONS**

## Kalu, Samuel Irobinso and Atuejide, Christiana Odinma

Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria (samkalu@hotmail.com; viciosodinma@yahoo.com)

**Abstract:** The 2030 Agenda for Sustainable Development launched in 2015 aims to eradicate poverty and hunger, improve health and well-being, quality education, achieve greater gender equality among other goals in order to achieve sustainable development by 2030. Regrettably, the modest progress recorded prior to and since 2015 towards realizing the Sustainable Development Goals (SDGs) is being eroded by the covid-19 pandemic since 2020. Moreover, the adverse economic impact of the pandemic is likely to undermine the supply of funds for timely collection of good quality data required to guide policies and development planning. Using the 2006 Nigeria Census and the 2018 Nigeria Health and Demographic Survey data, this paper provides reliable population estimates and projections for Nigeria for the period 2015-2035. The data are also disaggregated into special population groups to provide requisite denominators to support calculation of appropriate indicators for effective tracking of progress towards achievement of the SDGs.

**Keywords:** Sustainable development, Data, Disaggregated, Special population groups, Indicators.

### Introduction

Achievement of the 2030 Agenda for Sustainable Development launched in 2015 requires reduction in unemployment rate, gender inequality among other things, in other to eradicate poverty and hunger to achieve sustainable development by 2030.

To realize this important agenda requires timely and disaggregated data to guide policies and planning. The modest progress recorded prior to and since 2015 towards realizing the Sustainable Development Goals (SDGs) is being eroded by the covid-19 pandemic since 2020; while the worsening economic impact of the pandemic undermines the capacity of nations to fund timely collection of good quality population data for development planning to support achievement of the SDGs.

This paper therefore provides reliable population estimates and projections for Nigeria for the period 2015-2035. The data are also disaggregated into special population groups to provide requisite denominators to support calculation of appropriate indicators for effective tracking of progress towards achievement of the SDGs.

## Background

Population projection is an important tool that enables production of reliable data on the probable future size, structure and distribution of a population. The process draws from the knowledge of the past trends in the three components of population change, namely fertility, mortality and migration, and plausible assumptions about their future trends, using the most recent population census data as base (Keyfitz and Caswell 2005; United Nations 2018:6).

Thus, population projections complement other sources of demographic data, such as population censuses in providing reliable disaggregated data required for effective planning and optimum allocation of scarce resources (Dunstan and Ball 2016).

By their very nature, population projections are subject to uncertainties. The accuracy of projection results is improved by developing a stochastic forecasting model that attaches explicit statements of probability to population projections outputs (Alho 1990).

## **Data and Methods**

The data used in this study were sourced from the 2006 Nigeria Population Census, and the 2018 Nigeria Demographic and Health Survey (NPC and ICF 2019) conducted by the National Population Commission.

The age-sex distribution of the 2006 Nigeria population census was evaluated using Arriaga smoothing method (Arriaga *et al.* 1994). The smoothed population was then moved from the census date (March 21 2006) to the middle of the launch-year 2005 (i.e., July 1, 2015). This provides a more convenient projection starting point. Results are however presented for the period 2015-2035.

The base population used for projection in this paper is presented in Table 1.

| Table 1: Adjusted Age-Spe | ecific Distribution of the Base-Year Population | : Nigeria, mid-2005 |
|---------------------------|-------------------------------------------------|---------------------|
| Age Group                 | Male                                            | Female              |
| 0-4                       | 11,601,365                                      | 11,039,088          |
| 5–9                       | 10,010,263                                      | 9,277,967           |
| 10-14                     | 8,486,752                                       | 7,702,539           |
| 15–19                     | 7,301,188                                       | 7,055,566           |
| 20–24                     | 6,264,003                                       | 7,303,710           |
| 25–29                     | 5,322,399                                       | 6,352,034           |
| 30–34                     | 4,347,857                                       | 4,753,915           |
| 35–39                     | 3,689,708                                       | 3,742,945           |
| 40-44                     | 3,219,267                                       | 2,841,530           |
| 45–49                     | 2,643,825                                       | 2,168,954           |
| 50–54                     | 1,975,517                                       | 1,549,113           |
| 55–59                     | 1,522,160                                       | 1,169,102           |
| 60–64                     | 1,117,860                                       | 904,410             |
| 65–69                     | 842,393                                         | 679,890             |
| 70–74                     | 621,372                                         | 484,853             |
| 75–79                     | 454,793                                         | 319,296             |
| 80+                       | 799,888                                         | 652,131             |
| All Ages                  | 70,220,610                                      | 67,997,043          |
| Source: Derived from the  | adjusted 2006 Nigeria Census data.              |                     |

Table 1: Adjusted Age-Specific Distribution of the Base-Year Population: Nigeria, mid-2005

the adjusted 2006 Niger encel

## Methods

## **Projection Assumptions**

## Fertility assumptions

The level of fertility measured in terms of TFR remained constant at 5.7 children per woman from 2005 to 2008, but decreased marginally from 5.7 in 2008 to 5.5 in 2013 and further to 5.3 in 2018 (NPC and ICF 2014 and 2019). This implies an annual decline in TFR of 0.04 child assuming a constant rate of decline between 2008 and 2018.

Three variants of fertility assumptions were made (Low, Medium, and High).

Given the rising trend of contraceptive prevalence rate (CPR) among currently married women from 14.6% in 2008 to 16.6% in 2018 and also the increase in school enrolment, especially among girls (NPC and ICF 2009, 2014; 2019), which is likely to delay entry into marriage for most of the girls attending school; the following fertility assumptions were made:

(i) fertility would maintain a gradual but steady declining trend during the projection period. The TFR in present five-year period  $(I_{c,t+1})$  is modeled using equation(1)

$$\mathbf{I}_{c,t+1} = \mathbf{I}_{c,t} - \mathbf{d}_{c,t} \tag{1}$$

where

 $I_{c,t}$  = the TFR in previous five-year period in Nigeria d<sub>c,t</sub> = five-year decline in TFR in Nigeria

Assuming the observed annual rate of decline of 0.04 child in TFR prevails until 2020, and thereafter the annual rate of decline increases slightly to 0.05 child for the rest of the projection period, then TFR would decline to 4.47 by 2035. This represents the medium variant TFR.

Assuming further that the high and low variant levels of TFR are higher or lower by +0.5 or -0.5 child respectively, than the medium variant at any given time, then the TFR trajectory would be as given in Panel A of Table 2.

The age-specific fertility rates (ASFR) corresponding to the projected TFRs were obtained by interpolation using the average UN Model Age Distribution of fertility available in Spectrum Manual (UN 1977 cited in Spectrum Manual, p.57). The interpolation was done using the Waring Lagrange formula for two points which is given as:

$$Y = \left(\frac{X - X_2}{X_1 - X_2}\right) Y_1 + \left(\frac{X - X_1}{X_2 - X_1}\right) Y_2$$
(2)

where,

Y = interpolated Age-specific percentage share of the projected TFR, X.

X = projected TFR, while

Y<sub>1</sub> and Y<sub>2</sub> are the Age-specific percentage shares of the model TFRs (X<sub>1</sub> and X<sub>2</sub>), respectively in the average UN Model Age Distribution of fertility that bracket the projected TFR, X. The interpolated age-specific percentage shares of fertility rates are then converted to agespecific fertility rates. The projected age-specific fertility rates, corresponding to the assumed TFR for the three variants (High, Medium and Low) are also presented in Panel A of Table 2.

# Mortality assumptions

Life expectancy at birth for males were estimated at 54.50 years in 2010 and 55.53 years in 2015 from the 2018 NDHS data. The corresponding values for females were 58.30 years in 2010 and 59.40 years in 2015. These figures implied an improvement rate of 1.03 years for males and 1.10 years for females, respectively, for the five-year period between 2010 and 2015. These rates of improvement were adopted as the medium variant mortality assumption throughout the projection period for males and females respectively.

Thus, using the 2015 life expectancy at birth a base, the rest of the medium variant life expectancies were projected using equation (3).

 $e_{c,t+1} = e_{c,t} + g_{c,t}$ 

(3)

where,

e<sub>c,t</sub> = the life expectancy of the previous five-year period g<sub>c,t</sub> = five-year gain in life expectancy

For the high and low mortality assumptions, respectively, for any given year after the base year, we assumed a moderate increment or decrement of 0.5 year of the medium variant life expectancy as appropriate. The projected life expectancies for the three mortality

assumptions are shown in Panel B of Table 2. Migration assumptions
Data on historical migration are scarce for Nigeria. In this work, we adopted and assumed
that the data ige .tions are confidential that the data on net international migrants reported for Nigeria (100) (2015) would prevail during the projection period. The migrations assumptions are presented in Panel C of Table

|              | High, Medium and Low Fertlity Scenerios, Nigeria:2005-2035<br>ASFR |                  |                  |                |                          |                  |                |                |  |  |  |  |  |
|--------------|--------------------------------------------------------------------|------------------|------------------|----------------|--------------------------|------------------|----------------|----------------|--|--|--|--|--|
| Year         | 15-19                                                              | 20-24            | 25-29            | 30-34          | 35-39                    | 40-44            | 45-49          | TFR            |  |  |  |  |  |
| . cui        |                                                                    | 20 2 1           | 25 25            | High           | 00 00                    | 10 11            |                |                |  |  |  |  |  |
| 2005         | 0.1183                                                             | 0.2652           | 0.2785           |                | 0.1560                   | 0.0755           | 0.0148         | 5.70           |  |  |  |  |  |
| 2010         | 0.1389                                                             | 0.2826           | 0.2906           | 0.2426         | 0.1664                   | 0.0838           | 0.0191         | 6.12           |  |  |  |  |  |
| 2015         | 0.1206                                                             | 0.2759           | 0.2900           | 0.2415         | 0.1622                   | 0.0784           | 0.0154         | 5.92           |  |  |  |  |  |
| 2020         | 0.1185                                                             | 0.2661           | 0.2795           | 0.2326         | 0.1565                   | 0.0757           | 0.0149         | 5.72           |  |  |  |  |  |
| 2025         | 0.1158                                                             | 0.2540           | 0.2665           | 0.2217         | 0.1494                   | 0.0724           | 0.0142         | 5.47           |  |  |  |  |  |
| 2030         | 0.1129                                                             |                  |                  |                | 0.1423                   | 0.0691           |                | 5.22           |  |  |  |  |  |
| 2035         | 0.0876                                                             | 0.2346           | 0.2503           |                | 0.1375                   | 0.0644           | 0.0128         | 4.97           |  |  |  |  |  |
|              |                                                                    |                  |                  | Medium         |                          |                  |                |                |  |  |  |  |  |
| 2005         | 0.1183                                                             | 0.2652           | 0.2785           | 0.2318         | 0.1560                   | 0.0755           |                | 5.70           |  |  |  |  |  |
| 2010         | 0.1175                                                             | 0.2613           | 0.2743           |                | 0.1537                   | 0.0744           |                | 5.62           |  |  |  |  |  |
| 2015         | 0.1153                                                             | 0.2515           | 0.2639           |                | 0.1480                   | 0.0718           |                | 5.42           |  |  |  |  |  |
| 2020<br>2025 | 0.1129<br>0.0876                                                   | 0.2418<br>0.2346 | 0.2535<br>0.2503 |                | 0.1423<br>0.1375         | 0.0691<br>0.0644 |                | 5.22<br>4.97   |  |  |  |  |  |
| 2025         | 0.0878                                                             |                  |                  |                | 0.1373                   | 0.0644           |                | 4.72           |  |  |  |  |  |
| 2030         | 0.0803                                                             |                  |                  |                | 0.1231                   | 0.0586           |                | 4.72           |  |  |  |  |  |
| 2035         | 0.0848                                                             | 0.2097           | 0.2221           | 0.1842<br>Low  | 0.1251                   | 0.0586           | 0.0116         | 4.47           |  |  |  |  |  |
| 2005         | 0.1183                                                             | 0.2652           | 0.2785           | 0.2318         | 0.1560                   | 0.0755           | 0.0148         | 5.70           |  |  |  |  |  |
| 2010         | 0.1116                                                             |                  |                  |                | 0.1395                   | 0.0678           |                | 5.12           |  |  |  |  |  |
| 2015         | 0.0874                                                             |                  |                  |                | 0.1361                   | 0.0638           |                | 4.92           |  |  |  |  |  |
| 2020         | 0.0863                                                             | 0.2221           |                  |                | 0.1303                   | 0.0615           |                | 4.72           |  |  |  |  |  |
| 2025         | 0.0848                                                             |                  | 0.2221           |                | 0.1231                   | 0.0586           |                | 4.47           |  |  |  |  |  |
| 2030         | 0.0828                                                             | 0.1974           | 0.2082           | 0.1731         | 0.1160                   | 0.0556           |                | 4.22           |  |  |  |  |  |
| 2035         | 0.0613                                                             | 0.2201           | 0.2320           | 0.1678         | 0.0840                   | 0.0261           | 0.0026         | 3.97           |  |  |  |  |  |
| Panel B:     | Mortality A                                                        |                  |                  | pectancy a     | t Birth e <sup>o</sup> ) | by Sex and       | l Year, Nig    | geria: 2005 -  |  |  |  |  |  |
|              |                                                                    | 2005 -2035       |                  |                |                          |                  |                |                |  |  |  |  |  |
|              |                                                                    | /ariant          | -                |                | n Variant                |                  |                | Variant        |  |  |  |  |  |
| Year         | Male                                                               | Female           |                  | Male           | Female                   |                  | Male           | Female         |  |  |  |  |  |
| 2005         | 53.59                                                              | 57.30            |                  | 53.59          | 57.30                    |                  | 53.59          | 57.30          |  |  |  |  |  |
| 2010         | 55.09                                                              | 58.84            |                  | 54.59          | 58.37                    |                  | 54.09          | 57.87          |  |  |  |  |  |
| 2015<br>2020 | 56.09<br>57.09                                                     | 59.94            |                  | 55.59<br>56.59 | 59.44<br>60.51           |                  | 55.09          | 58.94          |  |  |  |  |  |
| 2020         | 58.09                                                              | 61.01<br>62.08   |                  | 57.59          | 61.58                    |                  | 56.09<br>57.09 | 60.01<br>61.08 |  |  |  |  |  |
| 2023         | 59.09                                                              | 63.15            |                  | 58.59          |                          |                  | 58.09          | 62.15          |  |  |  |  |  |
| 2035         | 60.09                                                              | 64.22            |                  | 59. <u>5</u> 9 |                          |                  | 59.09          | 63.22          |  |  |  |  |  |
|              | Net Migrat                                                         |                  | and Year         |                |                          |                  | 35.05          | 05.22          |  |  |  |  |  |
|              | Male                                                               | ,                |                  |                |                          |                  |                | Female         |  |  |  |  |  |
| 2005         | -37167                                                             |                  |                  |                |                          |                  |                | -24778         |  |  |  |  |  |
| 2010         | -36519                                                             |                  |                  |                |                          |                  |                | -24346         |  |  |  |  |  |
| 2015         | -36517                                                             |                  |                  |                |                          |                  |                | -24345         |  |  |  |  |  |
| 2020         | -36487                                                             |                  |                  |                |                          |                  |                | -24324         |  |  |  |  |  |
| 2025         | -36530                                                             |                  |                  | <u> </u>       |                          |                  |                | -24353         |  |  |  |  |  |
| 2030         | -36530                                                             |                  |                  | /              |                          |                  |                | -24353         |  |  |  |  |  |
| 2035         | -36530                                                             |                  |                  |                |                          |                  |                | -24353         |  |  |  |  |  |

Panel A: Fertility Assumptions Panel A: Fertility Assumptions about TFR and Age-Specific Fertility Rates (ASFRs) for, High. Medium and Low Fertlity Scenerios. Nigeria:2005-2035

Source: 1. TFRs were generated from survey reports after evaluation of relevant extant policies. 2. The ASFRs are interpolated from the Average UN Model Age Distribution of Fertility available in Spectrum .p57. 3. Life Expectancy at Birth were generated from the 2018 NDHS data. 4. Net Migration data were obtained from UN World Population Prospect, 2015.

## Projection Method

The cohort component method (CCM) of projection is adopted. It entails updating the population of each age- and sex specific group according to assumptions about fertility, mortality and migration. Each cohort survives forward to the next age group according to the assumed age-specific survival rates. The formula used in the projection model for age groups 0-4, by sex is shown below:

$$P_{0-4}^{m} = (B_{c+5} * MR^{f}) * S_{0-4}^{m(c+5)} * (1 + M_{0-4}^{m(c+5)})$$
(4)

$$P_{0-4}^{f} = (B_{c+5} * MR^{m}) * S_{0-4}^{f(c+5)} * (1 + M_{0-4}^{f(c+5)})$$
(5)

Where  $P_{0-4}^{m}$  and  $P_{0-4}^{f}$  are the projected male and female populations, 0-4 years old in the five-year projection period.

 $B_{c+5}$  is the total births in the five-year time interval, t+5.

 $MR^m$  and  $MR^f$  are the ratio of males to total births and ratio of females to total birth respectively (i.e. the masculinity ratio for male and female).

 $S_{0-4}^{m(c+5)}$  and  $S_{0-4}^{f(c+5)}$  are the survival rates for males and females aged 0-4 in the five -vear time interval.

 $M_{0-4}^{m(c+5)}$  and  $M_{0-4}^{f(c+5)}$  are the net migration rates for males and females 0-4 years old in the ference five-year time interval.

# **Projecting Population Aged 5-79 Years Old**

$${}_{5}P_{x,t+5} = {}_{5}P_{x,t} * {}_{5}S_{x,t} * (1 + {}_{5}M_{x,t})$$

(6)

where, x = 0.5, 10...and t = =0.5.10 ${}_{5}P_{x,x+5}$  is the projected population of 5-year age interval x (by sex), in the projection year t+5;  ${}_{5}P_{axt}$  is the population of 5-year age interval x (by sex), in year t; 55 at is the survival rate for persons in the 5-year age interval x (by sex) for the 5-year time

interval t;

 $_{5}M_{m}$  is the net-migration rate for persons in the 5-year age interval x (by sex) for the 5-year time interva

Projecting Population Aged 80+ Years Old  $P_{80,t+5} = ({}_{5}P_{75,t} + {}_{\infty}P_{80,t}) * {}_{80}S_{75,t} * (1 + {}_{\infty}M_{80,t})$ 

(7)

where,

 ${}_{\otimes P_{\otimes 0,t}}$  is the projected population in ages 80 and above (by sex) in the projection year t+5;

 ${}_{5}P_{\mu}$  and  ${}_{\infty}P_{BU,t}$  are the total populations in ages 75-79 and 80 and above (by sex) in year t; 80575t is the survival rate for age group 80 plus surviving to 80 and above in the 5-year time interval t (by sex);

 $\infty M_{80,r}$  is the total net migration rate for persons in ages 80 and above (by sex) in the 5-year time interval t. Aing

### Standard Error of the Mean of the Projected Populations

Consider the three projection results (high, medium and low variants) for each projection year as a random sample of three variables  $x_1$ ,  $x_2$ , and  $x_3$  drawn from a normal population with mean  $\mu$  and standard deviation  $\sigma$ . Then the mean ( $\vec{x}$ ) of the projected populations is erence given by:

$$\bar{x} = \frac{x_1 + x_2 + x_3}{3}$$

(8)

projected populations =  $\frac{5}{\sqrt{n}}$ The standard error of the mean ( $SE_{x}$ 

(10)

(11)

where n =3 and S = 
$$\sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2}{n-1}}$$

and the margin of error which is the statistic expressing the amount of random sampling error in the results is defined as MOE =  $t^* \frac{s}{\sqrt{s}}$ 

where  $t^*$  is the value for the t(n-1) density curve with area C between  $-t^*$  and  $t^*$ .

The confidence interval for the population mean  $\mu$  will then be set as:

$$\bar{x} \pm t^* \frac{s}{\sqrt{n}}$$

(12)

Thus, for t(2) and at 95 per cent confidence,  $t^* = 4.303$ , and the confidence interval will be

given by: 
$$\bar{x} \pm (4.303) \frac{s}{\sqrt{n}}$$
.

By plotting the relative error (defined as the margin of error as a percentage of the projected mean value for each projection year), the accuracy of the projection results can be evaluated.

# Results

The results presented here represent the mean of the outcomes of three projection variants for each projection year, and covering the period 2015-2035. The associated standard error (SE) of each projected demographic index is also provided.

The results in Table 3 indicate that during the projection period Nigeria's TFR would decline by 18.8 per cent , from 5.42 in 2015 to 4.40 (with a SE of 0.85) in 2035. Infant mortality rate is projected to decline from 75.9 to 59.9 infant deaths per thousand live births between 2015 and 2035, which is equivalent to a 21 per cent reduction during the period.

Life expectancy at birth for males and females respectively, are projected to improve during the projection period. Male life expectancy at birth would increase from 55.53 years from 2015 to 59.5 years (SE = 0.28) by 2035, a 7.1 per cent improvement during the period. Life expectancy at birth for females would similarly increase 7.1 per cent during the same period from 59.40 years in 2015 to 63.63 years (SE = 0.32) by 2035.

The projected changes in fertility and mortality among others are likely to translate to a modest 14.1 per cent reduction in the annual population growth rate from 2.81 per cent to 2.41 per cent during the twenty year period 2015-2035. Notwithstanding the reduction in the annual growth rate, the net reproduction rate (NRR) of 1.83 estimated for 2035 implies that the population of Nigeria has potential to over-replace itself beyond 2035.

Consequently, Nigeria's population is projected to increase by 66 per cent from 186 million in 2015 to 309 million by 2035(Table 4). The population under age 15 as a percentage of the total would decrease from 43.9 per cent in 2015 to 39.7 per cent by 2035.

With respect to young persons in ages 15-24, the corresponding percentage share would increase from 18.3 per cent in 2015 to 19.8 per cent by 2035. In absolute terms, the population of persons under age 15 would increase by 50 per cent, from 81.83 million in 2015 to 122.71 million by 2035. Correspondingly, the population of young persons in ages 15-24 would increase from 34.13 million in 2015 to about 61.4 million by 2035.

The school-going age population (6-24 years) would likely increase by 66.8 per cent from 77.31 million to 128.97 million between 2015 and 2035. This would require enormous investment in education to achieve the educational goal of the SDG Agenda.

The working-age population (15-59 years) is likely to increase from 96.54 million to 168.94 million, this would imply a 75.0 per cent increase between 2015 and 2035. These projected tremendous increases in Nigeria's population would present enormous developmental opportunities and challenges.



| A    |               | Standard    | 95% Confic              | ence Interval |  |  |  |  |
|------|---------------|-------------|-------------------------|---------------|--|--|--|--|
| Year | TFR           | Error(SE)   | Lower Limit             | Upper Limit   |  |  |  |  |
| 2015 | 5.42          | 0.29        | 4.18                    | 6.66          |  |  |  |  |
| 2020 | 5.22          | 0.29        | 3.98                    | 6.46          |  |  |  |  |
| 2025 | 4.97          | 0.29        | 3.73                    | 6.21          |  |  |  |  |
| 2030 | 4.72          | 0.29        | 3.48                    | 5.96          |  |  |  |  |
| 2035 | 4.40          | 0.35        | 2.91                    | 5.90          |  |  |  |  |
| в    |               | Standard    | 95% Confic              | ence Interval |  |  |  |  |
| Year | GR            | Error(SE)   | Lower Limit             | Upper Limit   |  |  |  |  |
| 2015 | 2.81          | 0.16        | 2.13                    | 3.49          |  |  |  |  |
| 2020 | 2.61          | 0.14        | 2.03                    | 3.19          |  |  |  |  |
| 2025 | 2.50          | 0.14        | 1.91                    | 3.10          |  |  |  |  |
| 2030 | 2.49          | 0.16        | 1.79                    | 3.20          |  |  |  |  |
| 2035 | 2.41          | 0.20        | 1.57                    | 3.26          |  |  |  |  |
| С    |               | Standard    | 95% Confidence Interval |               |  |  |  |  |
| Year | NRR           | Error(SE)   | Lower Limit             | Upper Limit   |  |  |  |  |
| 2015 | 2.13          | 0.12        | 1.60                    | 2.67          |  |  |  |  |
| 2020 | 2.08          | 0.12        | 1.55                    | 2.62          |  |  |  |  |
| 2025 | 2.01          | 0.12        | 1.49                    | 2.53          |  |  |  |  |
| 2030 | 1.93          | 0.12        | 1.40                    | 2.47          |  |  |  |  |
| 2035 | 1.83          | 0.15        | 1.19                    | 2.46          |  |  |  |  |
| D#   |               | Standard    | 95% Confic              | ence Interval |  |  |  |  |
| Year | e             | Error(SE)   | Lower Limit             | Upper Limit   |  |  |  |  |
| 2015 | 55.53 (59.40) | 0.31 (0.29) | 54.16 (58.16)           | 56.90 (60.64) |  |  |  |  |
| 2020 | 56.56 (60.47) | 0.26 (0.26) | 55.44 (59.35)           | 57.68 (61.59) |  |  |  |  |
| 2025 | 57.50 (61.50) | 0.28 (0.29) | 56.25 (60.26)           | 58.74 (62.74) |  |  |  |  |
| 2030 | 58.50 (62.69) | 0.28 (0.29) | 57.25 (61.36)           | 59.74 (63.84) |  |  |  |  |
| 2035 | 59.50 (63.63) | 0.28 (0.32) | 58.25 (62.27)           | 60.74 (65.00) |  |  |  |  |
| E    | 1             | Standard    | 95% Confic              | ence Interval |  |  |  |  |
| Year | IMR           | Error(SE)   | Lower Limit             | Upper Limit   |  |  |  |  |
| 2015 | 75.90         | 1.21        | 70.68                   | 81.12         |  |  |  |  |
| 2020 | 71.70         | 1.10        | 66.98                   | 76.42         |  |  |  |  |
| 2025 | 67.80         | 1.10        | 63.08                   | 72.52         |  |  |  |  |
| 2030 | 63.80         | 1.10        | 59.08                   | 68.52         |  |  |  |  |
| 2035 | 59.90         | 1.10        | 55.18                   | 64.62         |  |  |  |  |

Table 3: Projected TFR, Population Growth Rate(GR), Net Reproduction Rate(NRR), Expectation of Life at Birth(e<sup>0</sup>),Infant Mortality Rate (IMR), Standard Error(SE), and 95% Confidence Intervals by Year, Nigeria: 2015-2035

Derived from Projection outputs.

#: Figures in brackets in Panel D relate to expectation of at birth for females, those not in bracket are for males

Table 4 : Special and School-Going Populations (Thousands) by Age and Sex, Nigeria, 2015- 2035

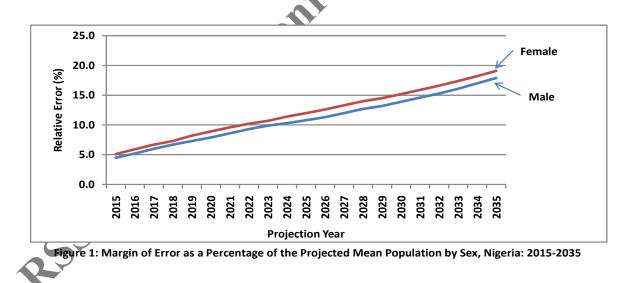
|                  | 20                  | 2015 201        |        |        | 16 2017               |                      | 20                  | 18                  | 2019                 | 2019      |         | 2020     |                     | 2021               |  |
|------------------|---------------------|-----------------|--------|--------|-----------------------|----------------------|---------------------|---------------------|----------------------|-----------|---------|----------|---------------------|--------------------|--|
| Age              | Male                | Female          | Male   | Female | Male                  | Female               | Male                | Female              | Male                 | Female    | Male    | Female   | Male                | Female             |  |
| Special A        | ge Groups           | 1.1.1.1.1.1.1.1 | 1.0152 |        |                       |                      | 2000                | to the state of the | 10206                | 5 2464122 | 7.50    | 2011/201 | 000000000           | 0.0250             |  |
| 0                | 3,280               | 3,074           | 3,363  | 3,140  | 3 <mark>,46</mark> 3  | 3,222                | 3,584               | 3,324               | 3,728                | 3,451     | 3,879   | 3,585    | 3,937               | 3,642              |  |
| 1-4              | 13,487              | 12,587          | 13,629 | 12,726 | 13,756                | 12,845               | 13,876              | 12,952              | 13,983               | 13,066    | 14,081  | 13,164   | <b>14,29</b> 3      | 13,355             |  |
| 0-14             | 42,086              | 39,747          | 43,221 | 40,780 | 44,399                | 41,838               | 45,628              | 42,928              | 46,880               | 44,099    | 48,191  | 45,300   | 48,971              | 46,029             |  |
| 15-24            | 17,644              | 16,487          | 18,163 | 17,068 | 18 <mark>,</mark> 645 | <mark>17,61</mark> 0 | 19,088              | <mark>18,104</mark> | 19,432               | 18,603    | 19,742  | 19,037   | 20,616              | 19,917             |  |
| 15-49            | 42,480              | 44,370          | 43,660 | 45,616 | 44,835                | 46,793               | 46,005              | 47,901              | 47,027               | 49,095    | 48,063  | 50,230   | 49,714              | 51,821             |  |
| 15-59            | 47,612              | 48,923          | 48,936 | 50,402 | 50,245                | 51,819               | 51,541              | 53,174              | 52,684               | 54,626    | 53,841  | 56,025   | 55,615              | 57,883             |  |
| 15-64            | 49,227              | 50,250          | 50,628 | 51,809 | 52,021                | 53,316               | <mark>53,407</mark> | 54,766              | 54,636               | 56,316    | 55,875  | 57,810   | 57,725              | 59,761             |  |
| 60+              | 4,323               | 3,617           | 4,464  | 3,759  | 4,621                 | 3,918                | 4,792               | 4,094               | 4,971                | 4,284     | 5,159   | 4,486    | 5,354               | 4,699              |  |
| <mark>65+</mark> | 2,708               | 2,289           | 2,773  | 2,351  | 2,845                 | 2,422                | 2,926               | 2,502               | 3,019                | 2,594     | 3,125   | 2,700    | 3,244               | 2,821              |  |
| 6                | 3,157               | 2,953           | 3,183  | 2,987  | 3,198                 | 3,006                | 3,199               | 3,011               | 3,183                | 3,004     | 3,162   | 2,990    | 3,215               | 3,035              |  |
| 6-24             | 39,475              | 37,350          | 40,934 | 38,764 | 42,431                | 40,203               | 43,957              | 41,653              | <mark>45,43</mark> 2 | 43,182    | 46,954  | 44,709   | 48,255              | 46,005             |  |
| 17+              | 47,896              | 48,724          | 49,247 | 50,204 | 50,635                | 51,677               | 52,058              | 53,141              | 53,374               | 54,744    | 54,731  | 56,334   | 56,384              | 58,158             |  |
| All Ages         | <mark>94,022</mark> | 92,287          | 96,621 | 94,941 | 99,265                | 97,575               | 101,961             | 100,196             | 104,535              | 103,009   | 107,192 | 105,811  | 109,940             | 108,611            |  |
| School G         | ioing Ages          |                 |        |        |                       |                      |                     |                     |                      |           |         |          |                     |                    |  |
| 6                | 3,213               | 3,045           | 3,183  | 2,987  | 3,198                 | 3,006                | <mark>3,19</mark> 9 | 3,011               | 3,183                | 3,004     | 3,162   | 2,990    | 3,215               | 3,035              |  |
| 7                | 2,918               | 2,790           | 2,949  | 2,787  | 3,021                 | 2,851                | 3,093               | 2,914               | 3,163                | 2,978     | 3,237   | 3,045    | <mark>3,272</mark>  | 3,079              |  |
| 8                | 2,675               | 2,575           | 2,751  | 2,615  | 2,863                 | 2,711                | 2,985               | 2,815               | 3,114                | 2,929     | 3,253   | 3,053    | 3,279               | 3,082              |  |
| 9                | 2,478               | 2,397           | 2,585  | 2,469  | 2,722                 | 2,585                | 2,874               | 2,715               | 3,039                | 2,860     | 3,218   | 3,018    | 3,243               | 3,048              |  |
| 10               | 2,183               | 2,133           | 2,356  | 2,258  | 2,569                 | 2,430                | 2,818               | 2,640               | 3,101                | 2,885     | 3,414   | 3,161    | 3,382               | 3,157              |  |
| 11               | 2,170               | 2,108           | 2,313  | 2,220  | 2,478                 | <mark>2,361</mark>   | 2,665               | 2,521               | 2,869                | 2,703     | 3,092   | 2,900    | 3,118               | 2,934              |  |
| 12               | 2,147               | 2,073           | 2,265  | 2,175  | 2,392                 | 2,289                | 2,528               | 2,411               | 2,670                | 2,542     | 2,822   | 2,678    | 2,892               | 2,742              |  |
| 6-12             | 17,784              | 17,121          | 18,401 | 17,511 | 19,243                | 18,233               | 20,162              | 19,027              | 21,139               | 19,901    | 22,198  | 20,846   | 22,403              | 21,077             |  |
| 13               | 2,115               | 2,029           | 2,213  | 2,122  | 2,310                 | 2,217                | 2,407               | 2,308               | 2,501                | 2,400     | 2,598   | 2,491    | <mark>2,69</mark> 9 | 2,576              |  |
| 14               | 2,075               | 1,979           | 2,157  | 2,063  | 2,232                 | 2,143                | <mark>2,300</mark>  | 2,213               | 2,359                | 2,277     | 2,416   | 2,335    | 2,537               | 2,435              |  |
| 15               | 2,055               | 1,954           | 2,113  | 2,018  | 2,148                 | 2,066                | 2,163               | 2,093               | 2,158                | 2,105     | 2,143   | 2,100    | 2,317               | 2,230              |  |
| 16               | 1,983               | 1,871           | 2,041  | 1,939  | 2,083                 | 1,994                | 2,112               | 2,034               | 2,123                | 2,062     | 2,126   | 2,076    | 2,268               | 2,193              |  |
| 17               | 1,914               | 1,795           | 1,971  | 1,862  | <mark>2,019</mark>    | 1,923                | 2,057               | 1,971               | 2,082                | 2,013     | 2,099   | 2,043    | 2,216               | 2,148              |  |
| 13-17            | 10,142              | 9,629           | 10,494 | 10,004 | 10,792                | 10,342               | 11,039              | 10,619              | 11,223               | 10,857    | 11,383  | 11,045   | 12,036              | 11,583             |  |
| 18               | 1,848               | 1,725           | 1,904  | 1,789  | 1,955                 | 1,852                | 2,001               | 1,907               | 2,035                | 1,958     | 2,064   | 2,000    | 2,160               | 2,096              |  |
| 19               | 1,784               | 1,661           | 1,839  | 1,720  | 1,892                 | 1,783                | 1,943               | 1,841               | 1,984                | 1,900     | 2,021   | 1,951    | 2,101               | 2,038              |  |
| 20               | 1,723               | 1,669           | 1,778  | 1,727  | 1,837                 | 1,782                | 1,898               | 1,829               | 1,950                | 1,878     | 1,998   | 1,927    | 2,053               | 1,994              |  |
| 21               | 1,665               | 1,567           | 1,716  | 1,613  | 1,770                 | 1,669                | 1,826               | 1,724               | 1,876                | 1,785     | 1,925   | 1,844    | 1,979               | 1,915              |  |
| 22               | 1,609               | 1,491           | 1,657  | 1,525  | 1,707                 | 1,578                | 1,759               | 1,636               | 1,806                | 1,703     | 1,854   | 1,767    | 1,909               | <mark>1,839</mark> |  |
| 23               | 1,555               | 1,437           | 1,600  | 1,460  | 1,646                 | 1,507                | 1,695               | 1,564               | 1,740                | 1,631     | 1,787   | 1,697    | 1,840               | 1,766              |  |
| 24               | 1,503               | 1,402           | 1,545  | 1,414  | 1,589                 | 1,455                | 1,635               | 1,506               | 1,677                | 1,569     | 1,723   | 1,632    | 1,775               | 1,698              |  |
| 18-24            | 11,686              | 10,952          | 12,039 | 11,249 | 12,395                | 11,627               | 12,755              | 12,006              | 13,069               | 12,424    | 13,373  | 12,818   | 13,816              | 13,345             |  |
| 6-24             | 39,612              | 37,702          | 40,934 | 38,764 | 42,431                | 40,203               | 43,957              | 41,653              | 45,432               | 43,182    | 46,954  | 44,709   | 48,255              | 46,005             |  |

```
Table 4 : Special and School-Going Populations (Thousands) by Age and Sex, Nigeria, 2021- 2035 (Continued)
```

|           | 2022 20            |         |               | 023 2               |                      | 024 2025 |                     |          | 20                    | 26      | 2027    |                    | 2028                  |                     |
|-----------|--------------------|---------|---------------|---------------------|----------------------|----------|---------------------|----------|-----------------------|---------|---------|--------------------|-----------------------|---------------------|
| Age       | Male               | Female  | Male          | Female              | Male                 | Female   | Male                | Female   | Male                  | Female  | Male    | Female             | Male                  | Female              |
| Special A | ge Groups          |         | 379.0         |                     | 5<br>                | 1        | - and               | i teteto |                       | 2:02.99 | - 22.55 |                    |                       |                     |
| 0         | 4,004              | 3,706   | 4,071         | 3,768               | 4,133                | 3,829    | <mark>4,20</mark> 4 | 3,898    | 4,295                 | 3,983   | 4,386   | 4,066              | 4,481                 | 4,154               |
| 1-4       | 14,535             | 13,569  | 17,073        | 15,908              | 15,087               | 14,067   | 15,386              | 14,345   | 15,689                | 14,624  | 16,016  | 14,924             | 16,365                | 15,242              |
| 0-14      | 49,775             | 46,760  | 50,602        | 47,490              | 51,412               | 48,251   | 52,252              | 49,028   | 53,138                | 49,837  | 54,088  | 50,698             | 55,105                | 51,615              |
| 15-24     | 21,512             | 20,785  | 22,427        | 21,638              | 23,281               | 22,505   | 24,166              | 23,370   | 25,042                | 24,168  | 25,978  | 25,002             | 26,965                | 25,870              |
| 15-49     | 51,436             | 53,405  | 53,226        | 54,971              | 54,869               | 56,576   | 56,579              | 58,164   | 58,344                | 59,730  | 60,162  | 61,275             | 62,028                | 62,801              |
| 15-59     | 57,463             | 59,738  | 59,386        | 61,587              | 61,171               | 63,501   | 63,040              | 65,430   | 64,987                | 67,365  | 67,004  | 69,303             | 69,087                | 71,242              |
| 15-64     | 59,645             | 61,708  | 61,634        | 63,650              | 63,480               | 65,663   | 65,406              | 67,699   | 67,404                | 69,752  | 69,469  | 71,816             | 71,598                | 73,888              |
| 60+       | 5,555              | 4,925   | 5,761         | 5,164               | 5,968                | 5,420    | 6,173               | 5,694    | 6,379                 | 5,986   | 6,584   | 6,297              | 6,791                 | 6,624               |
| 65+       | 3,374              | 2,955   | 3,513         | 3,102               | 3,658                | 3,259    | 3,808               | 3,425    | 3,962                 | 3,599   | 4,119   | 3,783              | 4,279                 | 3,978               |
| 6         | 3,274              | 3,085   | 3,342         | 3,141               | 3,417                | 3,209    | 3,493               | 3,277    | 3,549                 | 3,329   | 3,614   | 3,388              | 3,684                 | 3,451               |
| 6-24      | 49,547             | 47,246  | 60,482        | 57,355              | 52,010               | 49,614   | 53,216              | 50,777   | 54,527                | 51,965  | 55,927  | 53,214             | 57,418                | 54,530              |
| 17+       | 58,057             | 59,931  | 59,751        | 61,655              | 61,269               | 63,406   | 62,821              | 65,143   | 64,977                | 67,341  | 67,243  | 69,607             | 69,617                | 71,936              |
| All Ages  | 112,794            | 111,422 | 115,749       | 114,241             | 118,550              | 117,173  | 121,466             | 120,151  | 124,503               | 123,188 | 127,676 | 126,297            | 130,982               | 129,481             |
| School G  | ioing Ages         |         |               |                     |                      |          |                     |          |                       |         |         |                    |                       |                     |
| 6         | 3,274              | 3,085   | 3,342         | 3,141               | 3,417                | 3,209    | 3,493               | 3,277    | 3,549                 | 3,329   | 3,614   | 3,388              | 3,684                 | 3,451               |
| 7         | 3,305              | 3,110   | 3,337         | 3,138               | 3,368                | 3,168    | 3,397               | 3,194    | 3,451                 | 3,243   | 3,513   | 3,298              | 3,581                 | 3,359               |
| 8         | 3,298              | 3,102   | 3,311         | 3,115               | 3,317                | 3,124    | 3,319               | 3,127    | 3,371                 | 3,172   | 3,429   | 3,224              | 3,495                 | 3,282               |
| 9         | 3,259              | 3,067   | 3,266         | 3,076               | 3,264                | 3,076    | 3,256               | 3,072    | 3,305                 | 3,115   | 3,360   | 3,162              | 3,421                 | 3,217               |
| 10        | 3,318              | 3,119   | 3,223         | 3,047               | 3,097                | 2,945    | 2,953               | 2,822    | 3,034                 | 2,886   | 3,131   | 2,966              | 3,248                 | 3,066               |
| 11        | 3,132              | 2,954   | 3,133         | 2,959               | 3,119                | 2,951    | 3,099               | 2,937    | 3,152                 | 2,982   | 3,210   | 3,032              | 3,276                 | 3,090               |
| 12        | 2,963              | 2,805   | 3,035         | 2,868               | 3,104                | 2,930    | 3,177               | 2,996    | 3,212                 | 3,030   | 3,246   | 3,061              | 3,278                 | 3,090               |
| 6-12      | 22,551             | 21,241  | 22,647        | 21,344              | 22,686               | 21,403   | 22,695              | 21,426   | 23,076                | 21,757  | 23,503  | 22,131             | 23 <mark>,</mark> 983 | 22,556              |
| 13        | 2,811              | 2,671   | 2,932         | 2,774               | 3,058                | 2,885    | 3,195               | 3,007    | 3,222                 | 3,036   | 3,242   | 3,057              | 3,257                 | 3,071               |
| 14        | 2,673              | 2,549   | 2,825         | <mark>2,</mark> 678 | 2,985                | 2,820    | 3,161               | 2,975    | 3,186                 | 3,004   | 3,204   | 3,024              | 3,214                 | 3,034               |
| 15        | 2,529              | 2,400   | 2,777         | 2,607               | 3,052                | 2,848    | 3,358               | 3,119    | 3,328                 | 3,115   | 3,268   | 3,078              | 3,179                 | 3,009               |
| 16        | 2,433              | 2,331   | 2,619         | 2,489               | 2,817                | 2,667    | 3,035               | 2,861    | 3,061                 | 2,894   | 3,077   | 2,914              | 3,081                 | 2,921               |
| 17        | 2,342              | 2,261   | 2,478         | 2,379               | 2,615                | 2,507    | 2,763               | 2,641    | 2,832                 | 2,703   | 2,904   | <mark>2,766</mark> | 2,977                 | 2,829               |
| 13-17     | 12,788             | 12,212  | 13,632        | 12,927              | 14,528               | 13,726   | 15,511              | 14,603   | 15,629                | 14,753  | 15,695  | 14,839             | 15,708                | 14,864              |
| 18        | 2,256              | 2,188   | 2,353         | 2,277               | 2,444                | 2,366    | 2,538               | 2,455    | 2,637                 | 2,538   | 2,748   | 2,632              | <mark>2,86</mark> 9   | 2,735               |
| 19        | 2,174              | 2,115   | 2,243         | 2,182               | 2,299                | 2,244    | 2,354               | 2,299    | 2,472                 | 2,398   | 2,607   | 2,511              | 2,758                 | 2,638               |
| 20        | 2,087              | 2,039   | 2,103         | 2,064               | 2,097                | 2,073    | 2,081               | 2,067    | 2,251                 | 2,195   | 2,459   | 2,363              | 2,704                 | 2,568               |
| 21        | 2,021              | 1,968   | 2,049         | 2,004               | 2,059                | 2,029    | 2,061               | 2,042    | 2,200                 | 2,157   | 2,362   | 2,293              | 2,545                 | 2,450               |
| 22        | 1,955              | 1,897   | 1,993         | 1,943               | 2,015                | 1,980    | 2,032               | 2,007    | 2,146                 | 2,110   | 2,270   | 2,221              | 2,404                 | 2,340               |
| 23        | 1,890              | 1,827   | <b>1</b> ,935 | 1,879               | 1,967                | 1,925    | 1,995               | 1,964    | 2,088                 | 2,057   | 2,183   | 2,148              | 2,278                 | 2,238               |
| 24        | <mark>1,826</mark> | 1,758   | 1,876         | <mark>1,81</mark> 4 | 1, <mark>91</mark> 5 | 1,867    | 1,951               | 1,914    | 2,028                 | 1,999   | 2,100   | 2,075              | 2,168                 | <mark>2,14</mark> 3 |
| 18-24     | 14,209             | 13,793  | 14,553        | 14,162              | 14,796               | 14,484   | 15,010              | 14,749   | 15 <mark>,</mark> 821 | 15,455  | 16,728  | 16,244             | 17,727                | 17,111              |
| 6-24      | 49,547             | 47,246  | 50,832        | 48,434              | 52,010               | 49,614   | 53,216              | 50,777   | 54,527                | 51,965  | 55,927  | 53,214             | 57,418                | 54,530              |

```
Table 4 : Special and School-Going Populations (Thousands) by Age and Sex, Nigeria, 2021- 2035 (Continued)
```

|           | 2029 20    |                        |                      | 030 20              |         | 31                  | 31 2032             |                      |         | 33      | 20      | 34      | 2035    |                      |
|-----------|------------|------------------------|----------------------|---------------------|---------|---------------------|---------------------|----------------------|---------|---------|---------|---------|---------|----------------------|
| Age       | Male       | Female                 | Male                 | Female              | Male    | Female              | Male                | Female               | Male    | Female  | Male    | Female  | Male    | Female               |
| Special / | Age Groups |                        | 111107               |                     | 14004   |                     |                     | 0.000                | 20070   |         |         | 8040014 |         | 1010                 |
| 0         | 4,573      | 4,241                  | 4,666                | 4,327               | 4,763   | 4,417               | 4,863               | 4,509                | 4,963   | 4,601   | 5,062   | 4,690   | 5,151   | 4,772                |
| 1-4       | 16,708     | 15,565                 | 17,073               | 15,908              | 17,453  | 16,262              | 17,841              | 16,622               | 18,241  | 16,988  | 18,635  | 17,349  | 19,014  | 17,699               |
| 0-14      | 56,137     | 52,576                 | 57,215               | 53,578              | 58,354  | 54,632              | 59,560              | 55,742               | 60,828  | 56,903  | 62,119  | 58,086  | 63,425  | 59,287               |
| 15-24     | 27,916     | 26,755                 | 28,942               | 27,699              | 29,448  | 28,174              | 29,952              | 28,628               | 30,461  | 29,070  | 30,963  | 29,506  | 31,462  | 29,938               |
| 15-49     | 63,739     | 64,297                 | 65,527               | 65,832              | 67,369  | 67,365              | 69,262              | 68,902               | 71,212  | 70,466  | 73,185  | 72,081  | 75,181  | 73,765               |
| 15-59     | 71,018     | 73,164                 | 73,034               | 75,134              | 75,111  | 77,111              | 77,246              | <mark>79,</mark> 094 | 79,444  | 81,081  | 81,665  | 83,063  | 83,909  | 85,036               |
| 15-64     | 73,578     | 75,943                 | 75,648               | 78,043              | 77,785  | 80,144              | 79,984              | 82,248               | 82,254  | 84,363  | 84,555  | 86,494  | 86,890  | 88,645               |
| 60+       | 6,997      | 6,964                  | 7,208                | 7,315               | 7,421   | 7,675               | 7,639               | 8,047                | 7,864   | 8,438   | 8,099   | 8,859   | 8,347   | 9,317                |
| 65+       | 4,437      | 4,185                  | 4,593                | 4,406               | 4,748   | 4,642               | 4,901               | 4,893                | 5,054   | 5,156   | 5,209   | 5,428   | 5,365   | 5,708                |
| 6         | 3,753      | 3,516                  | 3,829                | 3,588               | 3,914   | 3,666               | 4,000               | 3,746                | 4,092   | 3,831   | 4,184   | 3,915   | 4,279   | 4,002                |
| 6-24      | 58,905     | 55,907                 | 60,482               | 57,355              | 61,559  | 58,355              | 62,691              | 59,386               | 63,873  | 60,444  | 65,079  | 61,526  | 66,322  | 62,643               |
| 17+       | 71,895     | 74,306                 | 74,282               | 76,760              | 76,916  | 79,433              | 78,636              | 81,213               | 80,873  | 83,435  | 83,111  | 85,649  | 85,379  | 87,883               |
| All Age   | 134,152    | 132,7 <mark>0</mark> 4 | 137,457              | 136,027             | 140,887 | 139,418             | 144,445             | 142,883              | 148,137 | 146,422 | 151,883 | 150,008 | 155,681 | 153,640              |
| School (  | Going Ages |                        |                      |                     |         |                     |                     |                      |         |         |         |         |         |                      |
| 6         | 3,753      | 3,516                  | 3,829                | 3,588               | 3,914   | 3,666               | 4,000               | 3,746                | 4,092   | 3,831   | 4,184   | 3,915   | 4,279   | 4,002                |
| 7         | 3,655      | 3,427                  | 3,732                | 3,499               | 3,810   | 3,571               | 3,893               | 3,648                | 3,981   | 3,729   | 4,070   | 3,812   | 4,164   | 3,898                |
| 8         | 3,567      | 3,348                  | 3,643                | 3,418               | 3,715   | 3,484               | 3,794               | 3,557                | 3,878   | 3,635   | 3,964   | 3,715   | 4,056   | 3,800                |
| 9         | 3,491      | 3,279                  | 3,562                | 3,344               | 3,628   | 3,406               | 3,703               | 3,474                | 3,782   | 3,548   | 3,864   | 3,624   | 3,953   | 3,706                |
| 10        | 3,389      | 3,189                  | 3,537                | 3,320               | 3,595   | 3,376               | 3,661               | 3,438                | 3,726   | 3,501   | 3,790   | 3,562   | 3,862   | 3,630                |
| 11        | 3,352      | 3,157                  | 3,429                | <mark>3,22</mark> 5 | 3,485   | 3,278               | 3,549               | 3,337                | 3,617   | 3,400   | 3,688   | 3,466   | 3,766   | 3,537                |
| 12        | 3,310      | 3,120                  | 3,339                | 3,148               | 3,393   | 3,197               | 3,455               | 3,252                | 3,523   | 3,313   | 3,598   | 3,381   | 3,676   | 3 <mark>,4</mark> 53 |
| 6-12      | 24,517     | 23,037                 | 25,072               | 23,541              | 25,541  | 23,977              | 26,055              | 24,454               | 26,600  | 24,957  | 27,159  | 25,474  | 27,755  | 26,026               |
| 13        | 3,263      | 3,080                  | 3,265                | 3,084               | 3,317   | <mark>3,13</mark> 0 | 3,376               | 3,182                | 3,442   | 3,240   | 3,516   | 3,306   | 3,592   | 3,375                |
| 14        | 3,210      | 3,035                  | 3,204                | 3,032               | 3,253   | 3,075               | 3,308               | 3,123                | 3,371   | 3,177   | 3,442   | 3,240   | 3,513   | 3,304                |
| 15        | 3,054      | 2,909                  | 2,912                | 2,789               | 2,993   | 2,853               | 3,091               | 2,932                | 3,208   | 3,032   | 3,349   | 3,154   | 3,495   | 3,282                |
| 16        | 3,066      | 2,913                  | 3,047                | 2,900               | 3,100   | 2,945               | <mark>3,15</mark> 9 | 2,995                | 3,227   | 3,053   | 3,304   | 3,120   | 3,382   | 3,188                |
| 17        | 3,044      | 2,891                  | 3,116                | 2,957               | 3,152   | 2,991               | 3,186               | 3,022                | 3,221   | 3,052   | 3,256   | 3,082   | 3,288   | 3,110                |
| 13-17     | 15,637     | 14,828                 | 15,544               | 14,762              | 15,815  | 14,993              | 16,119              | 15,253               | 16,468  | 15,553  | 16,866  | 15,901  | 17,269  | 16,258               |
| 18        | 2,992      | 2,844                  | 3,126                | 2,965               | 3,154   | 2,994               | 3,175               | 3,016                | 3,192   | 3,031   | 3,203   | 3,040   | 3,210   | 3,045                |
| 19        | 2,915      | 2,778                  | 3,087                | 2,932               | 3,113   | 2,961               | 3,132               | 2,981                | 3,144   | 2,992   | 3,146   | 2,994   | 3,144   | 2,991                |
| 20        | 2,974      | 2,805                  | 3,274                | 3,072               | 3,245   | 3,069               | 3,189               | 3,034                | 3,104   | 2,967   | 2,989   | 2,869   | 2,856   | 2,752                |
| 21        | 2,740      | 2,624                  | 2,954                | 2,816               | 2,981   | 2,850               | 2,998               | 2,870                | 3,003   | 2,877   | 2,996   | 2,871   | 2,982   | 2,858                |
| 22        | 2,539      | 2,464                  | 2 <mark>,68</mark> 5 | 2,597               | 2,754   | 2,660               | 2,825               | 2,722                | 2,898   | 2,785   | 2,969   | 2,846   | 3,045   | 2,911                |
| 23        | 2,368      | 2,325                  | 2,461                | 2,412               | 2,560   | 2,496               | <mark>2,66</mark> 9 | 2,588                | 2,788   | 2,690   | 2,915   | 2,799   | 3,051   | 2,917                |
| 24        | 2,224      | 2,203                  | 2,279                | 2,258               | 2,396   | 2,355               | 2,528               | 2,467                | 2,676   | 2,593   | 2,836   | 2,731   | 3,009   | 2,883                |
| 18-24     | 18,752     | 18,043                 | 19,866               | 19,053              | 20,203  | 19,385              | 20,516              | <mark>19,679</mark>  | 20,805  | 19,934  | 21,054  | 20,151  | 21,297  | 20,359               |
| 6-24      | 58,905     | 55,907                 | 60,482               | 57,355              | 61,559  | 58,355              | 62,691              | 59,386               | 63,873  | 60,444  | 65,079  | 61,526  | 66,322  | 62,643               |


Derived from Projection Outputs

## Accuracy of the Projection Results

The accuracy of projection results is fundamental to their reliability and usefulness. Therefore, the standard errors associated with the projected demographic indices are provided.

Figure 1, provides an evaluation of the associated margin of error as a percentage of the projected population for each year. It shows that relative error increases the further into the future projection goes. The associated error for each projection year is higher for females than for males. It ranged from 4.9 per cent in 2015 to 17.9 per cent in 2035 for the male population estimates, and from 5.1 per cent in 2015 to 19.1 per cent in 2035 for the female population estimates.

Evidence indicates that short-range (less than 10 years) to middle-range (10-25 years) projection results are accurate enough for economic analysis, as well as planning for educational and medical facilities and services. Long-range projections tend to be associated with large margin of error. Often, projections are revised to improve their accuracy as additional data for more recent periods and perhaps also more refined data for earlier years become available.



## DISCUSSION AND CONCLUSION

The changing size and structure of Nigeria's population, as well as the trends in the drivers of the population change have been analyzed. Evidence suggests potential improvements in the dynamics of population change. The projected modest decline in fertility rate and improvements in mortality indicators (IMR and  $e^0$ ) during the projection period (2015 – 2035), reflected in reduction of the annual growth rate of the population. Consequently, by 2035 the doubling time of Nigeria's population would likely increase to 28.8 years from 24.7 years as at 2015.

Notwithstanding the observed decline in the annual growth rate, evidence (NRR=1.8) indicates that Nigeria's population would still be over-replacing itself well beyond 2035. Consequently, the population would increase by 66 per cent, in just 20 years, between 2015) and 2035.

Apart from the large and growing size of the population, the age structure reveals a rapidly increasing number of young persons (15-24) and the working-age population (15-64). This portends a serious challenge to Nigeria's developmental efforts, more so with the rising unemployment rate, especially among the youth (15-24) reported by Nigeria National Bureau of Statistics (NBS 2020). High rate of youth unemployment breeds restiveness, violence, and criminality, which have continued to breach the peace and security of the country. The government of Nigeria can curb the rising youth unemployment and the associated negative consequences by deliberate investments in education, health, entrepreneurship development, establishment of effective skill acquisition centres, agriculture, and reviving weak industries (Onah and Okwuosa 2016). Such investments would produce a healthy workforce that is skilled, with opportunities to productively engage in economic activities to drive economic growth and deliver the *potential demographic dividend* the youth bulge represents.

The disaggregation of projected population into special population groups provides requisite denominators to support calculation of appropriate indicators for effective tracking of progress towards achievement of the SDGs.

Of relevance also is the provision of the standard error associated with each demographic indices generated in this paper to guide users of the data. By quantifying the errors associated with the projection results; the usefulness of the projection outputs is enhanced.

### REFERENCES

Alho, J. (1990). Stochastic Methods in Population Forecasting. International Journal of Forecasting, 6: 30-521.

Arriaga, E. E., Peter, D.J. and Allen, J. (1994). Population Analysis with Microcomputers. Volume II: Software and Documentation. US Bureau of Census USAID and UNFPA.

Dunstan, K and Ball, C (2016).Demographic Projections: User and Producer Experiences of Adopting a Stochastic Approach. Journal of Official Statistics, Vol. 32 (4): pp 947-962, <u>http://dx.doi.org/10.1515/JOS-2016-0050</u>.

Keyfitz, N. and Caswell, H.(2005). Applied Mathematical Demography. Third Edition, Springer.

National Bureau of Statistics (Nigeria), (2020). Labour Force Statistics: Unemployment and Underemployment Report. www.proshareng.com.

National Population Commission (Nigeria) and ICF Macro (2009). *Nigeria Demographic and Health Survey 2008*. Abuja, Nigeria: National Population Commission and IFC Marco.

National Population Commission (Nigeria) and ICF International (2014). *Nigeria Demographic and Health Survey 2013*. Abuja, Nigeria, and Rockville Maryland, USA: NPC and ICF International.

National Population Commission (Nigeria) and ICF International (2019). *Nigeria Demographic and Health Survey 2018*. Abuja, Nigeria, and Rockville Maryland, USA: NPC and ICF International.

Onah, N. and Okwuosa, L (2016). Youth Unempolyment and Peace in Nigerian Society. Mediterranean Journal of Social Sciences 7(1 SI) p.52.

United Nations (1977). World Population Prospects as Assessed in 1993. United Nations Publication, E.76.XIII.4 (UN Model Tables of Age Distribution of Fertility as presented in 1973 revision of global population projections prepared by the United Nations Population Division).

United Nations (2016). World Population Prospects: The 2015 Revision. United Nations, New York.

United Nations (2018). Recommendations on Communicating Population Projections. United Nations, Geneva, Switzerland. ECE/CES/STAT/2018/1. ISSN: 00698458.