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Abstract 

             Some existing distributions are limited in shapes of Probability Density Function 

(PDF) and Hazard Function (HF) which constrains their use in analysis of certain types of data. 

Generalizing these distributions often deal with this constraints on usage by introducing 

flexibility. Generalized distributions were derived using the Generalized Pareto Distribution 

(GPD) as base distribution. Exponentiated GPDs called Lehmann Type II GPD (LIIGPD) and 

Lehmann Type I GPD (LIGPD) having an additional parameter each were obtained by applying 

Lehmann Alternative 1 (LA1) and Lehmann Alternative 2 (LA2) parameter induction methods 

respectively. Flexibility of generalized distributions was established by comparing the shapes 

of probability density and hazard functions of LIIGPD and LIGPD with those of the GPD. No 

new probability density or hazard shape was introduced by LIIGPD but the new shape 

introduced by LIGPD demonstrated flexibility of generalized distributions. Generalized 

distributions do not always introduce new density and hazard shapes but often improve 

flexibility of distributions. 

Keywords: Generalized distributions; Flexibility, Generalized Pareto Distribution; Probability 

Density Function; Hazard Function; Lehmann Alternative 1; Lehmann Alternative 2. 
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1. Introduction 

             Limitations in characteristics of some existing probability distributions motivate 

generalization of distributions to improve flexibility and goodness of fit. The process of 

parameter induction into an existing probability distribution is one technique for generating 

generalized distributions. GPD was introduced by Pickands (1975). The GPD is limited in the 

shapes of its probability density and hazard functions and is a skewed distribution 

parameterized with a shape, scale, and in some forms, location parameter, therefore, a suitable 

base distribution for generalization.    

Tahir and Nadarajah (2015) discussed some existing proven families of generalized 

distributions comprising of Marshall-Olkin extended family, exponentiated family, beta-

generated family, Kumaraswamy-generalized family, and McDonald-generalized family. 

Amongst the generalized families of distributions studied by authors is the exponentiated 

family having an additional parameter obtainable from applying Lehmann Alternatives 

(Lehmann, 1953).  

Let 𝑓(𝑥), 𝐹(𝑥), 𝑠(𝑥) = 𝐹ത(𝑥), ℎ(𝑥), and 𝑟(𝑥) be respective denotations of the following 

functions of a base continuous random variable, X; PDF, Survival Function (SF), HF, and the 

Reversed Hazard Function (RHF). The corresponding functions of the exponentiated family of 

distributions for a new continuous random variable Y, having an additional parameter (c > 0) 

obtained by applying LA1 are as follows; 

𝑓(𝑥) = 𝑐𝑓(𝑥)𝐹(𝑥)ିଵ            

 (1.1) 
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𝐹(𝑥) = (𝐹(𝑥))  

 (1.1a)                                            

𝑠(𝑥) = 𝐹ത(𝑥) = 1 − 𝐹(𝑥)  

 (1.1b) 

ℎ(𝑥) = 𝑐𝑓(𝑥)𝐹(𝑥)ିଵ(1 − 𝐹(𝑥))ିଵ    

 (1.1c)       

The corresponding functions of the exponentiated family of distributions for a new continuous 

random variable Y, having an additional parameter (c > 0) obtained from the application of 

LA2 are as follows;                               

𝑓(𝑥) = 𝑐𝑓(𝑥)൫1 − 𝐹(𝑥)൯
ିଵ

= 𝑐𝑓(𝑥)(𝐹ത(𝑥))ିଵ  

 (1.2) 

𝐹(𝑥) = 1 − (1 − 𝐹(𝑥)) = 1 − (𝐹ത(𝑥))  

 (1.2a)          

𝐹ത(𝑥) = [1 − 𝐹(𝑥)] = [𝐹ത(𝑥)]    

 (1.2b)                           

ℎ(𝑥) = 𝑐𝑓(𝑥)൫[1 − 𝐹(𝑥)൯
ିଵ

= 𝑐𝑓(𝑥)[𝐹ത(𝑥)]ିଵ  

 (1.2c)      

Gupta and Kundu (2009) presented alternative interpretations to these two exponentiated 

families obtainable from applying LA1 and LA2, observing them to be Proportional Reversed 

Hazard Model (PRHM) and Proportional Hazard Model (PHM) respectively. 

Adeyemi and Adebanji (2004) introduced a three-parameter Exponentiated Generalized Pareto 

(EGP) distribution as a generalization of the two-parameter base generalized Pareto distribution 
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(GPD). Matheson et al. (2017) described the flexibility of the Generalized Gamma distribution 

in terms of the relationship among its three quartiles. Another way of characterizing flexibility 

is a comparison of probability density and hazard shapes of distributions of interest. Alzaatreh 

et al. (2013) introduced Weibull-Pareto distribution, a special case of the Weibull-X family by 

extending the base Pareto distribution. The distribution improved flexibility by introducing 

unimodal and left skewed shapes. Ghitany et al. (2018) proposed Generalized Truncated Log-

Gamma distribution (GTLG) which generalized the log-gamma as well as the Pareto 

distribution. The distribution was derived from a monotonic transformation of the classical 

Gamma distribution. GTLG added flexibility as was observed in the decreasing and unimodal 

probability density and hazard shapes.   

The Marshal-Olkin Alpha Power Pareto distribution (MOAPP) introduced by Almetwally and 

Haj Ahmad (2020) using the Marshall Olkin and Alpha Power transformation methods is 

another extension of Pareto distribution. The PDF shape of MOAPP is either decreasing or 

upside down bathtub curve and the hazard shape is either decreasing or upside down curve 

where the curve is right skewed. MOAPP also improved flexibility. T- Pareto(Y) families 

(Hamed et al., 2018) belonging to families of generalized Pareto distributions is yet another 

flexible distribution obtained from the T-R(Y) framework. The PDFs of these generalized 

families can have unimodal shapes and can also be skewed to both left and right with heavy 

tails.  Lee and Kim (2019) proposed Exponentiated GPD (exGPD) created via log-transform 

of the GPD variable, which has less sample variability. This Study targets describing flexibility 

of generalized distributions by assessing the probability density and hazard shapes of 

generalized distributions derived from parameter induction into the probability distribution of 

the GPD.  

2. Materials and Methods 
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            Generalized distributions introducing an additional shape parameter each was first 

derived by applying LA1 and LA2 parameter induction methods to obtain two exponentiated 

GPDs; LIGPD and LIIGPD respectively. These generalized distributions generalized the GPD 

used as base distribution. Subsequently, to establish flexibility of generalized distributions, 

visual presentations of the shapes of probability density and hazard functions of LIGPD and 

LIIGPD were compared with those of the parent distribution (GPD). Introduction of new 

probability density and hazard shapes established flexibility of distributions.   

3. Results and Discussions 

3.1 Exponentiated Generalized Pareto Distributions 

The base distribution (GPD) has the following functions;  

𝑓(𝑥) = ቐ
𝜎ିଵ(1 +

௫

ఙ
)ିଵିଵ/;    𝑘 ≠ 0

𝜎ିଵ exp ቀ−
௫

ఙ
ቁ ;            𝑘 = 0

  

 (3a) 

𝐹(𝑥) = ൞
1 − ቀ1 +

௫

ఙ
ቁ

ି
భ

ೖ
;    𝑘 ≠ 0

1 − exp ቀ−
௫

ఙ
ቁ ;       𝑘 = 0

  

 (3b)  

𝐹ത(𝑥) = ൝
(1 + 𝑘𝑥/𝜎)ିଵ/;  𝑘 ≠ 0

exp ቀ−
௫

ఙ
ቁ ;            𝑘 = 0

  

 (3c) 

𝑥 < ∞ when k ≥ 0, and 0 < 𝑥 < −𝜎/𝑘  when k < 0 

Given a generalized pareto distributed base random variable X with previously stated 

denotations of functions in section 1, let 𝑓(𝑦), 𝐹(𝑦), 𝑠(𝑦) = 𝐹ത(𝑦), ℎ(𝑦), and 𝑟(𝑦) be 
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respective corresponding denotations of the PDF, CDF, SF, HF and RHF of another continuous 

random variable Y, having an additional parameter (c>0) derived from the applications of 

either LA2 or LA1 parameter induction methods to the functions of X.  

3.1.1 Lehmann Type II GPD (LIIGPD) 

Functions of the generalized distribution (LIIGPD) are obtained by applying LA2 parameter 

induction method to the functions of the base distribution (GPD) in section 3.1 as follows; 

Substituting 𝑓(𝑥) in (3a) for 𝑓(𝑥) in (1.2) and 𝐹ത(𝑥) in (3c) for 𝐹ത(𝑥) in (1.2)   

f(y) = ቊ
cσିଵ(1 + ky/σ)ିଵିୡ/୩,    k ≠ 0     

𝑐𝜎ିଵ൫𝑒𝑥𝑝(−𝑦/𝜎)൯

,    𝑘 = 0

      

 (3.1) Substituting 𝐹ത(𝑥) in (3c) for 𝐹ത(𝑥) in (1.2a) 

𝐹(𝑦) = ൞
1 − ቀ1 +

௬

ఙ
ቁ

ି


ೖ
,      𝑘 ≠ 0 

1 − ൬𝑒𝑥𝑝 ቀ−
௬

ఙ
ቁ൰



,         𝑘 = 0

      

 (3.1a)            Substituting 𝐹ത(𝑥) in (3c) for 𝐹ത(𝑥) in (1.2b) 

𝐹ത(𝑦) = ቊ
(1 + 𝑘𝑦/𝜎)ି/,    𝑘 ≠ 0     

൫𝑒𝑥𝑝(−𝑦/𝜎)൯

,       𝑘 = 0

  

 (3.1b) 

Substituting 𝑓(𝑥) in (3a) for 𝑓(𝑥) in (1.2c) and 𝐹ത(𝑥) in (3c) for 𝐹ത(𝑥) in (1.2c)   

ℎ(𝑦) = ൜
𝑐𝜎ିଵ(1 + 𝑘𝑦/𝜎)ିଵ,   𝑘 ≠ 0

𝑐𝜎ିଵ,   𝑘 = 0
   

 (3.1c)         

3.1.2 Lehmann Type I GPD (LIGPD) 

Functions of the generalized distribution (LIGPD) are obtained by applying LA1 parameter  
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induction method to the functions of the base distribution (GPD) in section 3.1 as follows; 

Substituting 𝑓(𝑥) in (3a) for 𝑓(𝑥) in (1.1) and 𝐹(𝑥) in (3b) for 𝐹(𝑥) in (1.1)   

𝑓(𝑦) =  ൝
𝑐𝜎ିଵ(1 + 𝑘𝑦/𝜎)ିଵିଵ/൫1 − (1 + 𝑘𝑦/𝜎)ିଵ/൯

ିଵ
,   𝑘 ≠ 0

𝑐𝜎ିଵ𝑒𝑥𝑝(−𝑦/𝜎)൫1 − 𝑒𝑥𝑝(−𝑦/𝜎)൯
ିଵ

,   𝑘 = 0       
  

 (3.2) 

Substituting 𝐹(𝑥) in (3b) for 𝐹(𝑥) in (1.1a)  

F(y) = ൝
൫1 − (1 + 𝑘𝑦/𝜎)ିଵ/൯


, 𝑘 ≠ 0  

൫1 − 𝑒𝑥𝑝(−𝑦/𝜎)൯

, 𝑘 = 0

  

 (3.2a) 

Substituting 𝐹(𝑥) in (3b) for 𝐹(𝑥) in (1.1b) 

𝐹ത(𝑦) =

⎩
⎪
⎨

⎪
⎧

1 − ቆ1 − ቀ1 +
௬

ఙ
ቁ

ି
భ

ೖ
ቇ



, 𝑘 ≠ 0

1 − ൬1 − 𝑒𝑥𝑝 ቀ−
௬

ఙ
ቁ൰



, 𝑘 = 0  

  

 (3.2b) 

Substituting 𝑓(𝑥) in (3a) for 𝑓(𝑥) in (1.1c) and 𝐹(𝑥) in (3b) for 𝐹(𝑥) in (1.1c)   

ℎ(𝑦) =

⎩
⎨

⎧
ఙషభ(ଵା௬/ఙ)షభషభ/ೖ൫ଵି(ଵା /ఙ)షభ/ೖ൯

షభ

ଵି൫ଵି(ଵା௬/ఙ)షభ/ೖ൯
 , 𝑘 ≠ 0

ఙషభ௫(ି௬/ఙ)൫ଵି௫(ି௬/ఙ)൯
షభ

ଵି൫ଵି௫(ି௬/ఙ)൯
 ,           𝑘 = 0

  

 (3.2c)  

3.2 Flexibility of Exponentiated GPDS 

To establish flexibility, PDF and HF shapes of exponentiated GPDs are compared with those 

of GPD.  

3.2.1 SHAPE OF THE PDF OF LIIGPD          
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Figures 1 and 2 provide visuals of LIIGPD PDF shapes at 𝜎 = 1 and varying values of c and 

k. 

3.2.2 SHAPE OF THE HF OF LIIGPD 

Hazard shapes of LIIGPD are represented in figures 3 and 4 below;  
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Figure 1: PDF Shapes of LIIGPD (k = 1,σ = 1, varying c)
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Figure 2: PDF Shapes of LIIGPD (k =-2,σ = 1, varying c)
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Figure 3: HF Shapes of LIIGPD (k = 1, σ = 1, varying c) 
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3.2.3 SHAPE OF THE PDF OF LIGPD 

Figures 5, 6, and 7 show some PDF shapes of LIGPD for some specified values of distribution 

parameters. The LIGPD parallels GPD when c = 1, hence, at other values of c, figures show 

effect of introducing c on PDF shapes. 
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Figure 4: HF Shapes of LIIGPD (k = -1, σ = 1, varying c)
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Figure 5: PDF shapes of LIGPD (K = 1,σ = 1, varying c)
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Figure 6: PDF Shapes of LIGPD ( k = 0, σ = 1, varying c)
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3.2.4 The shape of the HF of LIGPD 

At some values of k, possible shapes of the hazard function are represented in figures 8, 9, and 

10 below: 
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Figure 7: PDF Shapes of LIGPD ( k = -1, σ = 1, varying c)
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Figure 8: HF Shapes of LIGPD ( k = 1, σ = 1, varying c)
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Figure 9: HF Shapes of LIGPD ( k = -1, σ = 1, varying c)
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3.3 Discussions 

 The LIIGPD parellels GPD when c=1. At other values of c and varying k values, LIIGPD with 

additional c did not introduce any new density or hazard shapes. Generalized distributions do 

not always introduce new shapes. Some generalizations of the Dirichlet distribution do not 

allow for a dependence and structure sufficiently richer than the Dirichlet (Ongaro & 

Migliorati, 2013). The hazard shapes of Generalized Gamma distribution (GG), an extension 

of the Gamma distribution (Stacy, 1962) include increasing, decreasing, bathtub, and unimodal 

shapes. Nevertheless, some generalizations of GG like Transmuted GG (Lucena et al., 2015), 

Kumaraswamy GG (Pascoa et al., 2011) and Modified GG (Mead et al., 2018) have similar 

hazard function with the base GG distributions. The GG is a flexible distribution for modeling 

many types of data, however, some of its extensions add very little to its capabilities and 

therefore GG is standard for parametric analysis of positive data considering the complexity of 

estimating these extended distribution (Matheson et al., 2017). 

The two-parameter Weibull distribution, a generalization of the exponential distribution has 

increasing or decreasing hazard function. It is limited in its characteristics and is unable to 

show wide flexibility, However, density and hazard shapes of many other generalizations of 

the weibull distribution include the bathtub or inverted bathtub and unimodal shapes. 
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Figure 10: HF Shapes of LIGPD ( k = 0, σ = 1, varying c)
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LIGPD reduces to GPD when c=1. At other values of c, probability and hazard shapes observed 

in figures 5-10 are the increasing, decreasing, constant and unimodal shapes. LIGPD 

introduced a new shape (unimodal) and improved flexibility by generalizing the GPD through 

LA1 parameter induction method.  Ongaro and Migliorati (2013) proposed a new 

generalization of the Dirichlet distribution known as flexible Dirichlet exhibiting substantially 

greater flexibility in terms of shape of the density. Hazard rate of odd generalized exponential 

family introduced by Tahir et al. (2015) could have increasing, decreasing, J, reversed-J, 

bathtub and upside-down bathtub shapes. Most existing generalized distributions show wide 

flexibility by introduction of new shapes. Generalized distributions often improve flexibility of 

distributions. 

 

4. CONCLUSION 

            Two modifications of Generalized Pareto Distribution belonging to the exponentiated 

class of distributions were derived for the purpose of establishing flexibility of generalized 

distributions. No new probability density or hazard shape was introduced by LIIGPD however, 

LIGPD derived from the application of LAI parameter induction method added flexibility by 

introducing new shape in the probability density and hazard functions. Generalized 

distributions do not always introduce new density and hazard shapes but often improves 

flexibility.  
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