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Abstract 

Among the methods of parameter estimation, maximum likelihood approach is the most often 
used. However, Maximum likelihood function (MLE) is data dependence, and insufficiecncy 
of data may cause the results obtained from this method to be unreliable. In this case, the 
Bayesian method, which allows the usage of the prior knowledge on the parameters in the 
estimation process, is adopted. This research paper aims to study the Bayesian analysis and 
compared it with maximum likelihood estimator on the scale parameter estimation of Inverse 
Rayleigh Frechet distribution based on uniform and quasi priors and applied Mean square error 
MSE criteria as a basis for comparison. In the Bayesian method,  the Bayes estimates were 
obtained under Squared Error Loss Function (SELF), Quadratic Loss Function (QLF) and the 
Precautionary Loss Function (PLF). The performances of these estimators were compared to 
the Maximum Likelihood Estimates based on simulation study. The results of this analytic 
simulation show that the  quadratic loss function is the preferred estimators since its posseses 
the lowest mean Square Error (MSE) under uniform prior and quasi prior. Finally, the results 
show that quadratic loss functions under Uniform prior and Quasi prior outperformed the 
squared error loss function, the precautionary loss function and Maximum Likelihood estimator 
across different sample sizes. 

Keywords: Bayesian estimator, Bayes theory, Inverse Rayleigh Frechet, Loss functions, 
Maximum likelihood estimator, Prior distribution, Posterior distribution. 
 

 

1.0 Introduction 

In the study of probability and statistics, Extreme value theory in a away plays an important 
role in statistical analysis. The frechet distribution is one of the distributions used to model 
extreme values. The Inverse Rayleigh-Frechet distribution (IRF) is one of the probability 
models that can be used to model extreme value distribution. This distribution has ߙ and ߣ as 
the shape parameters and ߚ as the scale parameter. The inverse Rayleigh Frechet distribution 
was developed by Saeed and Muhammad (2020). Since IR has only one parameter and so it 
does not present extreme flexibility for analyzing different types of lifetime data. Then a new 
continuous distribution Inverse Rayleigh-Frechet (IR-Frechet) introduced from family of 
distributions (Inverse Rayleigh family). In their paper, the estimator of the scale parameter was 
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obtained based on maximum likelihood method of estimation. However, there is need to 
estimate the parameter based on other methods of parameter estimation, since every method of 
estimation has its advantages and disadvantages. In this paper, we proposed the Bayesian 
method of parameter estimation of the scale parameter of Inverse Rayleigh frechet distribution. 
And compared it with the maximum likelihood used in the previous paper based on MSE 
criteria for basis of comparison. 

 
2. LITERATURE REVIEW  
A new family of distribution named Inverse Rayleigh Family of distribution was developed by 
Saeed and Muhammad (2020), the family is invariably used to generate a new distribution 
named Inverse Rayleigh Frechet distribution (IR-Frechet). Saeed and Muhammad (2020), in 
their paper, studied the IR-Frechet Distribution. They derived some of the Statistical measures 
(properties) of the new generator which includes  the moments, quantile and generating 
functions, entropy measures and order statistics. The Estimation of the model parameters by 
the maximum likelihood estimation method was done. Eraikhuemen et al. (2020) found that 
the Bayes estimators of the parameter (shape) of exponential inverse exponential distribution 
putting into consideration, the Jeffrey, Uniform, and gamma prior distributions based on three 
diffrent loss functions, that is, Quadratic Loss Function, Squared Error Loss Function and 
Precautionary Loss Function. Overall, their simulation results indicated that bayesian 
estimation under QLF provides estimator with least MSEs based on all the priors distributions. 
Eventually, some of the articls in this area of research  tends to support Bayesian Method based 
on Quadratic Loss Function under gamma prior produces the best estimators of the shape 
parameter compared to estimators of Maximum Likelihood method, irrespective of any chosen 
parameters values and the assumed sample sizes.  Pedro L. et al (2019) consider the challenge 
of parameters estimation of the Fréchet distribution from the frequentist view point and the 
Bayesian view point respectively. Aliyu and Yahaya (2016) studied the estimation of shape 
parameter of Generalized Rayleigh distribution with assumption of non-informative prior 
under squared error, Entropy and Precautionary loss functions. Comparison was also made 
between the performance of Maximum likelihood Bayesian estimators, and it was concluded 
that Bayes estimator under the entropy loss function is better than that of squared error loss 
function, Precautionary loss function and that of likelihood estimation. Abbas and Tang (2015) 
estimate the Fréchet distribution parameter putting reference priors into consideration. Many 
authors have made their contributions towards the development of bayesian method, which 
includes but not limited to  Afaq et al (2015), Arnold (1983), Terma  and Oguntunde (2018), 
Terna  and Angela (2018), Fatima* and  Ahmad (2017). 
Parameter estimation is important in any probability distribution and as such, many authors 
adopt various methods of estimation. The classical estimation methods such as the Maximum 
likelihood estimation (MLE), Method of moment (MM), Least Square Estimation (LSE) and 
Weighted Least Square stimation (WLSE), maximum product spacing estimator (MPS), 
percentile estimator (PE), Cramér-von-Mises estimator (CME), Anderson-Darling estimator 
(ADE) and L-moment (LME) estimator etc. are frequently used for parameter estimation each 
one of them with its advantages and disadvantages. However, the most used among the 
methods of parameter estimation is Maximum likelihood estimation method. However, 
Maximum likelihood function (MLE) depends on data, when data is insufficient, MLE may 
not be reliable. In this paper, we intend to use Bayesian method of estimation to obtain the best 
estimator of the model and compared it with the maximum likelihood method based on mean 
square error MSE criteria. 
3. Materials and Methods 
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In this section, we considered the scale parameter estimation of Inverse Rayleigh Frechet 
distribution based on Bayesian approach. The prior distributions considered in estimating the 
posterior distribution of the scale parameter are uniform prior and quasi prior. These prior 
distribution were used to derived the posterior distribution of the scale parameter. Three loss 
functions, thus the Square Error Loss Function SELF, Quadratic Loss Function QLF, 
Precautionary Loss Function PLF were employed to derive the estimators through which the 
best estimator is selected based on mean square error (MSE) criteria. The best estimator 
according to the MSE criterion is the estimator with the small MSEs, the estimator with the 
smallest estimate is considered to be the best estimator of the scale parameter. The steps is 
under listed in subsection three (3)  

 
3.1 Maximum Likelihood Estimation 

The PDF of IR-Frechet is expressed as: 

;ݔ)݂ (ߚ,ߙ,ߠ	 = ଷ(ఈାଵ)݁ଶఉ௫షഀ൫1ݔଷିߚଷିߙߠ2 − ఈିଵ݁ିఉ௫షഀ൯ିݔߚߙ exp ൜	−ߠ ቀ ଵ
ఈఉ௫షഀషభ௘షഁೣషഀ

	−

1ቁ
ଶ
ൠ ;                   

(1)        

                                                                                           0 < ݔ < ∞; ߠ,ߚ,ߙ						 > 0                                         

Where, ߠ is the scale parameter,  ߙ is the location Parameter and ߚ is the shape parameter. 

And its Hazard function is 

ℎ(ݔ; (ߚ,ߙ,ߠ	 = 
ଶఏఈషయఉషయ௫య(ഀశభ)௘మഁೣ

షഀ
ቀଵିఈఉ௫షഀషభ௘షഁೣ

షഀ
ቁ ୣ୶୮൝	ିఏቆ భ

ഀഁೣషഀషభ೐షഁೣషഀ
	ିଵቇ

మ
ൡ

൥ଵିୣ୶୮൝	ି ఏቆ భ
ഀഁೣషഀషభ೐షഁೣషഀ

	ିଵቇ
మ
ൡ൩

                   

(2) 

 

Suppose ( ଵܺ,ܺଶ, … ,ܺ௡) are random variables from Inverse Rayleigh Frechet distribution with 
parameters ߙ,ߠ	݀݊ܽ	ߚ. Then the MLE of ߠ (i.e ߠ෠ )  is derived as follows: 

(ߠ)ܮ                      = ∏ ;௜ݔ)݂ ௡(ߚ,ߙ,ߠ	
௜ୀଵ                                                                                       (3) 

By substituting (1) in (3) 

(ߠ)ܮ = ௡(ଷିߚଷିߙߠ2) 	∏ ൛ݔ௜ଷ(ఈାଵ)	൫1 −௡
௜ୀଵ

௜ିఈିଵ݁ିఉ௫೔ݔߚߙ
షഀ൯ൟ	 ݁

ିఏ∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
ାଶఉ ∑ ௫೔షഀ

೙
೔సభ 	೙

೔సభ
    

                (4)                  

This implies that,  

                     ∴ ෠ெ௅ாߠ	 = 	 ௡

∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ

೙
೔సభ

                                                                         (5) 
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3.2 Bayesian Estimation 

To estimate the scale parameter of the Inverse Rayleigh Frechet distribution, this study will 
adopt the Bayesian approach of estimation in which the posterior distributions will be obtained 
under the assumption of Uniform and Quasi prior. 

 Uniform prior is defined as: 

(ߠ)ߨ                     ∝ 1; 0	݀݊ܽ	ݎ݁ݐ݁݉ܽݎܽ݌	ℎ݁ݐ	ݏ݅	ߠ	݁ݎℎ݁ݓ			 < ߠ < ∞                                      (6) 

 Quasi prior is defined as: 

(ߠ)ߨ                     = ଵ
ఏ೎

; ,ݎ݁ݐ݁݉ܽݎܽ݌	ℎ݁ݐ	ݏ݅	ߠ	݁ݎℎ݁ݓ		 0	݀݊ܽ	ݐ݊ܽݐݏ݊݋ܿ	ݏ݅	ܿ < ߠ < ∞		        (7) 

                                                                                                                                               

Posterior distribution under Uniform prior 

Posterior distribution of the scale parameter (ߠ) based on uniform prior can be obtained by 
substituting equation (4) and (6) in equation (8) 

(ݔ/ߠ)ߨ =

൫ଶఏఈషయఉషయ൯
೙
	∏ ቄ௫೔య(ഀశభ)	ቀଵିఈఉ௫೔షഀషభ௘షഁೣ೔

షഀ
ቁቅ	೙

೔సభ 	௘
షഇ∑ ቌ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	షభቍ

మ

శమഁ∑ ೣ೔
షഀ೙

೔సభ 	೙
೔సభ

∗ଵ

∫ (ଶఏఈషయఉషయ)೙ 	∏ ቄ௫೔య(ഀశభ)	ቀଵିఈఉ௫೔షഀషభ௘షഁೣ೔
షഀ

ቁቅ	೙
೔సభ 	௘

షഇ∑ ቌ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	షభቍ

మ

శమഁ∑ ೣ೔షഀ	
೙
೔సభ 	೙

೔సభ
ௗఏಮ

బ

    (8) 

             ∴ (ݔ/ߠ)ߨ = 	
஘౤	ୣ

షഇ∑ ቌ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	షభቍ

మ

	೙
೔సభ

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ି ଵቇ
మ
		೙

೔సభ ൱
೙శభ

୻(୬ାଵ)
                   (9) 

Posterior distribution under Quasi prior 

Posterior distribution of the scale parameter (ߠ) based on Quasi prior can be obtain by 
substituting equation (4) and (7) in equation (8) 

(ݔ/ߠ)ߨ =

൫ଶఏఈషయఉషయ൯
೙
	∏ ቄ௫೔య

(ഀశభ) 	ቀଵିఈఉ௫೔షഀషభ௘షഁೣ೔
షഀ

ቁቅ	೙
೔సభ 	௘

షഇ∑ ቌ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	షభቍ

మ

శమഁ∑ ೣ೔
షഀ೙

೔సభ 	೙
೔సభ

∗ భഇ೎

∫ (ଶఏఈషయఉషయ)೙ 	∏ ቄ௫೔య(ഀశభ)	ቀଵିఈఉ௫೔షഀషభ௘షഁೣ೔
షഀ

ቁቅ	೙
೔సభ 	௘

షഇ∑ ቌ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	షభቍ

మ

శమഁ∑ ೣ೔షഀ
೙
೔సభ 	೙

೔సభ
∗ భഇ೎	ௗఏ

ಮ
బ

(10

) 

          ∴ (ݔ/ߠ)ߨ = 	
஘౤షౙ	ୣ

షഇ∑ ቌ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	షభቍ

మ

	೙
೔సభ

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
೙ష೎శభ

୻(୬ିୡାଵ)
             (11) 

 

 

Loss function 
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To obtain the Bayes estimators of the parameter (scale) of Inverse Rayleigh Frechet distribution 
from the posterior distributions obtained in equation (10) and (12) under the SELF, QLF and 
PLF. 

 Squared Error Loss Function (SELF) is defined as: 

෠ௌா௅ி൯ߠ,ߠ൫ܮ                       = ൫ߠ − ෠ௌா௅ி൯ߠ
ଶ
                                                                                  (12) 

             Where ߠ෠ௌா௅ி  denotes the Bayes estimator under SELF and is given by: 

෠ௌா௅ிߠ                       = (ݔ/ߠ)ܧ = 	 ∫ ஶߠ݀	(ݔ/ߠ)ߨ	ߠ
଴                                                                    (13) 

 Quadratic Loss Function (QLF) is defined as: 

ொ௅ி൯ߠ,ߠ൫ܮ                     = ቀఏିఏೂಽಷ
ఏ

ቁ
ଶ
                                                                                          (14) 

               Where ߠொ௅ி denotes the Bayes estimator under QLF and is given by:  

ொ௅ிߠ                      = ா(ఏషభ/௫)
ா(ఏషమ/௫)

= ∫ ఏషభ	గ(ఏ/௫)	ௗఏಮ
బ
∫ ఏషమ	గ(ఏ/௫)	ௗఏಮ
బ

                                                                         (15) 

 Precautionary Loss Function (PLF) is defined as: 
 
௉௅ிߠ)ܮ           , (ߠ = (ఏುಽಷିఏ)మ

ఏ
                                                                                          (16) 

               Where ߠ௉௅ி denotes the Bayes estimator under PLF and is given by:  

௉௅ிߠ                      = {(ݔ/ଶߠ)ܧ}
భ
మ = ൛∫ ஶߠ݀(ݔ/ߠ)ߨ	ଶߠ

଴ ൟ
భ
మ                                                          (17) 

Bayesian Estimation under different loss function based on Uniform prior 

The Bayes estimator under SELF based on uniform prior can be obtained from equation (9) 
and (13) as:  

∴ ෠ௌா௅ிߠ = (୬ାଵ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
                                                                                        (18) 

Under QLF based on uniform prior, the Bayes estimator can be obtained from equation (9) and 
(15)  

Where, ܧ(ିߠଵ/ݔ) = 	
൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱

୬
                                                                      (19) 

And ܧ(ିߠଶ/ݔ) = 	
൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
మ

୬(୬ିଵ)
                                                                          (20) 

By substituting equation (19) and (20) in equation (15) 

            ∴ ொ௅ிߠ = (୬ିଵ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
                                                                             (21) 
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Under PLF based on uniform prior, the Bayes estimator can be obtained from equation (9) and 
(17) 

Now, from equation (18) 

(ݔ/ଶߠ)ܧ = 	 (୬ାଵ)(୬ାଶ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
మ                                                                                    (22) 

By substituting equation (23) in (18) 

             ∴ ௉௅ிߠ = [(୬ାଵ)(୬ାଶ)]
భ
మ

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
                                                                             (23) 

Bayesian Estimation under different loss function based on Quasi prior 

The Bayes estimator under SELF based on Quasi prior can be obtained from equation (11) and 
(13) as:  

∴ ෠ௌா௅ிߠ = (୬ିୡାଵ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
                                                                                        (24) 

The Bayes estimator under QLF based on Quasi prior can be obtained from equation (11) and 
(15)  

Where, ܧ(ିߠଵ/ݔ) = 	
൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱

(୬ିୡ)
                                                                      (25) 

And ܧ(ିߠଶ/ݔ) = 	
൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
మ

(୬ିୡ)(୬ିୡିଵ)
                                                                         (26) 

By substituting equation (25) and (26) in equation (15) 

              ∴ ொ௅ிߠ = (୬ିୡିଵ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
                                                                           (27) 

The Bayes estimator under PLF based on Quasi prior can be obtained from equation (11) and 
(17) 

Now, from equation (17) 

(ݔ/ଶߠ)ܧ = 	 (୬ିୡାଵ)(୬ିୡାଶ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
మ                                                                                    (28) 

By substituting equation (28) in (17) 

               ∴ ௉௅ிߠ = [(୬ିୡାଵ)(୬ିୡାଶ)]
భ
మ

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
                                                                           (29) 

 



Royal Statistical Society Nigeria Local Group   2021 Conference Proceedings 

 
 

164

Posterior Risk under three Loss Functions 

The posterior risk of the Bayes estimator under SELF is defined as: 

(௦௘௟௙ߠ)ߨ                       = (ଶߠ)ܧ − ൫(ߠ)ܧ൯
ଶ
                                                                               (30) 

Posterior Risk under SELF based on uniform prior 

Where, ܧ(ߠଶ) = (௡ାଵ)(௡ାଶ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
మ                                                                            (31) 

Therefore the Bayes risk corresponding to the Bayes estimator under SELF based on on 
uniform prior can be derived by substituting equation (18) and (31) in equation (30) 

              ∴ (௦௘௟௙ߠ)ߨ = 	 (௡ାଵ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ି ଵቇ
మ
		೙

೔సభ ൱
మ                                                                   (32) 

Posterior Risk under SELF based on Quasi prior 

Where, ܧ(ߠଶ) = (௡ି௖ାଵ)(௡ି௖ାଶ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
మ                                                                            (33) 

Therefore the Bayes risk corresponding to the Bayes estimator under SELF based on on Quasi 
prior can be derived by substituting equation (24) and (33) in equation (30) 

                 ∴ (௦௘௟௙ߠ)ߨ = 	 (௡ି௖ାଵ)

൭∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ ൱
మ                                                                (34) 

Posterior risk under Quadratic Loss Function (QLF) 

The Posterior risk of the Bayes estimator under QLF is given as: 

(ொ௅ிߠ)ߨ                       = 1 −
ቀா൫ఏషభ൯ቁ

మ

ா(ఏషమ)
                                                                                       (35) 

Posterior Risk under QLF based on Uniform prior 

The posterior risk under QLF based on uniform prior can be obtain by substituting equation 
(19) and (20) in equation (35) 

                     ∴ (ொ௅ிߠ)ߨ = ଵ
௡
                                                                                                        (36) 

Posterior Risk under QLF based on Quasi prior 

The posterior risk under QLF based on Quasi prior can be obtain by substituting equation (25) 
and (26) in equation (35) 

               ∴ (ொ௅ிߠ)ߨ = ଵ
(௡ି௖)

                                                                                                        (37) 
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Posterior risk under Precautionary Loss Function (PLF) 

The Posterior risk of the Bayes estimator under QLF is given as: 

(	௉௅ிߠ)ߨ = –	௉௅ிߠ}2  (38)                                                                                                        {(ߠ)ܧ	

Posterior risk under PLF based on uniform prior 

The Posterior risk under PLF based on uniform prior is obtained by substituting equation (18) 
and (23) in equation (38) 

                 ∴ (	௉௅ிߠ)ߨ = 	2൞ [(௡ାଵ)(௡ାଶ)]
భ
మି(௡ାଵ)

∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ

ൢ                                                             (39) 

Posterior risk under PLF based on Quasi prior 

The Posterior risk under PLF based on Quasi prior is obtained by substituting equation (24) 
and (29) in equation (38) 

                 ∴ (	௉௅ிߠ)ߨ = 	2൞[(௡ି௖ାଵ)(௡ି௖ାଶ)]
భ
మି(௡ି௖ାଵ)

∑ ቆ భ

ഀഁೣ೔షഀషభ೐
షഁೣ೔షഀ

	ିଵቇ
మ
		೙

೔సభ

ൢ                                                            (40)       

Simulation Study 

simulation was carried out and comparison was made in order to check the performance of the 
different estimators focusing on biases and mean square errors under single replication to 
generate random samples of sizes n = (25, 35, 75 and 125) from the IR-Frechet. Under the 
following parameter values; ߠ = 0.5	assuming ߚ,ߙ and ܿ are known, given ߙ = ߚ = 1, and 
ܿ = 0.5. The MSE: ܧܵܯ = ଵ

௡
෠ߠ)ܧ −  ଶ was adopted as the yardstick to ascertain relative(ߠ

performances of the estimators. 
 
Table1: Estimates, Biases and MSEs for ࣂ෡ under Uniform and Quasi prior across 
different loss functions 

Sample 
size (n) 

Measures  c MLE Uniform prior Quasi prior 

SELF QLF PLF SELF QLF PLF 
25  Estimates  0.5 0.4295

439      
0.4314
10      

0.41109
3  

0.412242  0.47299
8     

0.45911
3  

0.4724
7  

   Bias  0.5 0.2454
27 

0.2537
34  

0.23180
8  

0.282516  0.22448
3  

0.22401
6  

0.3970
15  

   MSE  0.5 0.0123  0.0123  0.0105  0.0133  0.0133  0.0106  0.0145  
35  Estimates  0.5 0.4398  0.4310  0.4134  0.4354  0.4398  0.4222  0.4442  
   Bias  0.5 0.2010

42 
0.2019
90 

0.17872
11  

0.205931
1  

0.22966
12  

0.54798
83  

0.2293
89 

   MSE  0.5 0.0320
8037  

0.0329
9695  

0.00817
2967  

0.008773
097  

0.01199
666  

0.01039
056  

0.0121
6446  
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75  Estimates  0.5 0.4549
26       

0.4543
94     

0.61730
99     

0.621450
2      

0.48740
26     

0.70498
98  

0.0142
14  

   Bias  0.5 0.2123
5  

0.2119
801  

0.21663
46  

0.249824  0.23773
81  

0.21101
02  

0.2376
59  

   MSE  0.5 0.0383
0469  

0.0388
1541  

0.00579
6209  

0.005991
898  

0.01412
125  

0.01102
416  

0.0142
1446  

125  Estimates  0.5 0.4549
263       

0.4543
94     

0.45173
09     

0.462145
02      

0.48740
26     

0.45704
9898     

0.4873
195  

   Bias  0.5 0.2123
5  

0.2119
801  

0.21234
7  

0.249824
75  

0.23773
81  

0.21101
021  

0.2376
594  

   MSE  0.5 0.0383
0469  

0.0388
1541  

0.00579
6209  

0.005991
898  

0.01412
125  

0.01024
164  

0.0142
1446  

Table 1. Shows the results obtained from the simulation. The Bayes estimates, biases, mean 
square error (MSE) were obtained under different sample sizes across the different estimators 
(maximum likelihood, SELF, QLF, PLF under uniform and quasi prior). where ߙ = 0.5 
assuming ߣ ,ߚ ܽ݊݀ ܿ are known, given ߚ = ߣ = 1 and ܿ = 0.5 . It is observed that, at sample 
size 25, the QLF has the smallest MSE of 0.0105 and 0.0106 under extended Jeffery and Quasi 
prior among other MSE from other estimators. Also at sample size 35, the QLF has the smallest 
MSE of 0.0052 and 0.0052 under extended Jeffery and Quasi prior among other MSE from 
other estimators. Similarly, the same apply to sample size 75 and sample size 125. 

 

4. Results and Interpretation 

MLE and Bayesian estimation of parameter (scale) ߠ of inverse Rayleigh Frechet (IR-Frechet) 
distribution is considered. Under the assumption of Uniform and Quasi prior with three (3) loss 
functions consisting Quadratic Loss Function, Squared Error Loss Function,  and Precautionary 
Loss Function. Derivation of posterior distributions and Bayes estimators are obtained based 
on the priors and its loss functions respectively. Simulation was conducted in order to compare 
the performances of the estimators based on Mean Square Error as a performance measure. The 
performances of the MLEs and the Bayes estimators were conducted the result that follows 
indicate that the Bayesian estimator of the parameter (scale)	ߠ under uniform and quasi prior 
based on quadratic loss function is better than the maximum likelihood estimate in terms of 
Mean Square Error. The results shows that quadratic loss functions under Uniform prior and 
Quasi prior outperformed the squared error loss function and the precautionary loss function 
across different sample sizes. The result also reveals that the Bayesian estimates of the scale 
parameter	ߠ under uniform and quasi prior based on quadratic loss function is better than the 
maximum likelihood estimate.  
 

5. Conclusion 
The results of the comparison between  Maximum likelihood and Bayesian methods of 
estimating the parameter (scale) ߠ of the inverse Rayleigh Frechet (IR-Frechet) distribution 
shows that quadratic loss functions (QLF) under Uniform prior and quasi prior outperformed 
the squared error loss function (SELF) and the precautionary loss function (PLF) across 
different sample sizes. Finally, the results reveal that the Bayesian estimates of the scale 
parameter ߠ  under the uniform and quasi prior based on quadratic loss function is better than 
the maximum likelihood Estimates.  
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