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e study of probability and statistics, Extreme value theory in a away plays an important
role in statistical analysis. The frechet distribution is one of the distributions used to model
extreme values. The Inverse Rayleigh-Frechet distribution (IRF) is one of the probability
models that can be used to model extreme value distribution. This distribution has « and A as
the shape parameters and [ as the scale parameter. The inverse Rayleigh Frechet distribution
was developed by Saeed and Muhammad (2020). Since IR has only one parameter and so it
does not present extreme flexibility for analyzing different types of lifetime data. Then a new
continuous distribution Inverse Rayleigh-Frechet (IR-Frechet) introduced from family of
distributions (Inverse Rayleigh family). In their paper, the estimator of the scale parameter was
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obtained based on maximum likelihood method of estimation. However, there is need to
estimate the parameter based on other methods of parameter estimation, since every method of
estimation has its advantages and disadvantages. In this paper, we proposed the Bayesian
method of parameter estimation of the scale parameter of Inverse Rayleigh frechet distribution.
And compared it with the maximum likelihood used in the previous paper based on MSE
criteria for basis of comparison.

2. LITERATURE REVIEW

A new family of distribution named Inverse Rayleigh Family of distribution was developed
Saeed and Muhammad (2020), the family is invariably used to generate a new distri
named Inverse Rayleigh Frechet distribution (IR-Frechet). Saeed and Muhammad,
their paper, studied the IR-Frechet Distribution. They derived some of the Statist
(properties) of the new generator which includes the moments, quantile
functions, entropy measures and order statistics. The Estimation of the mo
the maximum likelihood estimation method was done. Eraikhuemen et
the Bayes estimators of the parameter (shape) of exponential inverse
putting into consideration, the Jeffrey, Uniform, and gamma priot.di
diffrent loss functions, that is, Quadratic Loss Function, Squa
Precautionary Loss Function. Overall, their simulation r
estimation under QLF provides estimator with least MSEs
Eventually, some of the articls in this area of research te
on Quadratic Loss Function under gamma prior p
parameter compared to estimators of Maximum Li
parameters values and the assumed sample siz
of parameters estimation of the Fréchet dis
Bayesian view point respectively. Aliyu
parameter of Generalized Rayleigh dist
under squared error, Entropy and
between the performance of M
that Bayes estimator under
function, Precautionary Ig
estimate the Fréchet distr
authors have made
includes but no
Terna and A

tial distribution
ons based on three
Error Loss Function and
Its” indicated that bayesian
on all the priors distributions.
t&"support Bayesian Method based
eS the best estimators of the shape
d method, irrespective of any chosen
ro L. et al (2019) consider the challenge
on from the frequentist view point and the
aya (2016) studied the estimation of shape
ution with assumption of non-informative prior
tionary loss functions. Comparison was also made
ikelihood Bayesian estimators, and it was concluded
y loss function is better than that of squared error loss
n and that of likelihood estimation. Abbas and Tang (2015)
On parameter putting reference priors into consideration. Many
) ributions towards the development of bayesian method, which

0 Afaqg etal (2015), Arnold (1983), Terma and Oguntunde (2018),
@la (2018), Fatima* and Ahmad (2017).

Parameter g [fon is important in any probability distribution and as such, many authors
adopt v methods of estimation. The classical estimation methods such as the Maximum
likeli imation (MLE), Method of moment (MM), Least Square Estimation (LSE) and
Wi Least Square stimation (WLSE), maximum product spacing estimator (MPS),

1 estimator (PE), Cramér-von-Mises estimator (CME), Anderson-Darling estimator
ADE) and L-moment (LME) estimator etc. are frequently used for parameter estimation each
one of them with its advantages and disadvantages. However, the most used among the
methods of parameter estimation is Maximum likelihood estimation method. However,
Maximum likelihood function (MLE) depends on data, when data is insufficient, MLE may
not be reliable. In this paper, we intend to use Bayesian method of estimation to obtain the best
estimator of the model and compared it with the maximum likelihood method based on mean
square error MSE criteria.

3. Materials and Methods
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In this section, we considered the scale parameter estimation of Inverse Rayleigh Frechet
distribution based on Bayesian approach. The prior distributions considered in estimating the
posterior distribution of the scale parameter are uniform prior and quasi prior. These prior
distribution were used to derived the posterior distribution of the scale parameter. Three loss
functions, thus the Square Error Loss Function SELF, Quadratic Loss Function QLF,
Precautionary Loss Function PLF were employed to derive the estimators through which the
best estimator is selected based on mean square error (MSE) criteria. The best estimator
according to the MSE criterion is the estimator with the small MSEs, the estimator with the
smallest estimate is considered to be the best estimator of the scale parameter. The stepsi
under listed in subsection three (3)

3.1 Maximum Likelihood Estimation
The PDF of IR-Frechet is expressed as:

1

afx—0-1le=Bx~¢ B

flx; 8,a,p) =20a 337 3x3(@+De2Bx™ (1 — gpx—a~1e=F¥™") ex
1)2};
1)

a, 3,6 >0
Where, 6 is the scale parameter, « is the location ter and g is the shape parameter.

And its Hazard function is

2
20a-p72 *(amapee et Yool ot 1) |

[l_exp[ _e(m*f”

h(x; 6,a,B) =

(2)

Suppose (X4, X5,
parameters 6,

,are random variables from Inverse Rayleigh Frechet distribution with
hen the MLE of 6 (i.e ) is derived as follows:

i=1f(xi; 6,a,B) 3)
1) in (3)
S0a—3p3)n ?:1{xi3(a+1) (1 _
2
(4)
This implies that,

éMLE = - (5)
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3.2 Bayesian Estimation

To estimate the scale parameter of the Inverse Rayleigh Frechet distribution, this study will
adopt the Bayesian approach of estimation in which the posterior distributions will be obtained

under the assumption of Uniform and Quasi prior.
e Uniform prior is defined as:

m(0) < 1; where 0 is the parameter and 0 < § < © (6)

e Quasi prior is defined as:

() = %; where 0 is the parameter, c is constant and 0 < 6 <,

Posterior distribution under Uniform prior

Posterior distribution of the scale parameter (8) based on uniform p be obtained by

substituting equation (4) and (6) in equation (8)

n(6/x) =
2
—92?:1<ﬁ—1> +2B X X
(29a_3ﬂ_3)n H?:l{xi3(a+1) (1_aﬁxi—a—le—[3xi_a)} e afx;~ % 1e Bx; i
2 8
‘92?—1<+—a—1> +2BE X
- = —a—1,—-Bx; i=1"1
fOOO(ZGa_3,8_3)n ]‘[?zl{xi3(a+1) (l—a,b’xi_“_le_ﬁxi )} e aBx;~%le”P¥i 26
) 3 P — n+1
oM e Zl_l<aﬁxi_a_1e_ﬁxi n 1 1 2
= =gt P
~m(0/x) = ©)

Posterior distribution underbuai prior

gcale parameter (6) based on Quasi prior can be obtain by
(7) in equation (8)

Posterior distribution o
substituting equatio

n(0/x) = y

2
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n—c+1

(11)

~m(0/x) =

'(n—-c+1)

Loss function
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To obtain the Bayes estimators of the parameter (scale) of Inverse Rayleigh Frechet distribution
from the posterior distributions obtained in equation (10) and (12) under the SELF, QLF and
PLF.
e Squared Error Loss Function (SELF) is defined as:
~ ~ 2
L(97 QSELF) = (9 - QSELF) (12)
Where 85z, denotes the Bayes estimator under SELF and is given by:

Osere = E(0/x) = [ 0 m(6/x) do

e Quadratic Loss Function (QLF) is defined as:

L(0,0qur) = (222)’

Where 6, denotes the Bayes estimator under QLF and is give

_E(@~Yx) _ [ 071 n(0/x) a6

Oour = E(0-2/x) ~ [°6=2 m(6/x) db (15)
e Precautionary Loss Function (PLF) is defined as:
_n\2
L(8pur, 0) = PHED (16)
Where 6, denotes the Bayes estim r PLF and is given by:
1 -
OpLr = {E(62/x)}2 = {f (17)
Bayesian Estimation under diffe unction based on Uniform prior
The Bayes estimator under pased on uniform prior can be obtained from equation (9)
and (13) as: g
- (18)

2
6-1/x) = i) ) (19)

n

2
i) ) 0)

n(n-1)

And E(8-2/x) = (

By substituting equation (19) and (20) in equation (15)

-1
QQLF — (nl ) . (21)
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Under PLF based on uniform prior, the Bayes estimator can be obtained from equation (9) and
(17)

Now, from equation (18)
E(QZ/X) — (n+1)(n+2) — (22)
n 1
(=) )

By substituting equation (23) in (18)

[(n+1)(n+ 2)]%

“~ OpLr = ) z
n e —
<Zi=1(aﬁxi_a_1e—[3xi_a 1> >

Bayesian Estimation under different loss function based on Quasi prior

The Bayes estimator under SELF based on Quasi prior can be obtained frofn gquation (11) and
(13) as:

(n—c+1)

~ Osprp = 7
n ;_1
[ ——

The Bayes estimator under QLF based on Quasi prior c
(15)

(24)

btained from equation (11) and

Where, E(0~1/x) = (

(25)
And E(6-2/x) = 26)
By substituting equation (26 (26) in equation (15)

@7)

_ (n—c+1)(n—c+2) (28)

= 2
n (1 -1
=1 aﬁxi_a_le_ﬁxi_a

By substituting equation (28) in (17)

[(n—c+1)(n—c+2)]% (29)

S Opp = ) Z
n -
(Zi:l(aﬁxi—a—le—ﬁxi_a 1) )
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Posterior Risk under three Loss Functions

The posterior risk of the Bayes estimator under SELF is defined as:
2
77'-(Qself) = E(QZ) - (E(Q)) (30)

Posterior Risk under SELF based on uniform prior

Where, E(62) = (n+1)(n+2) — (31)
n 1

Therefore the Bayes risk corresponding to the Bayes estimator under SELF }
uniform prior can be derived by substituting equation (18) and (31) in equation

1
- (Osery) = R (32)
n 1
( i:1(al3xi_a_1e_ﬁxi_a _1> >
Posterior Risk under SELF based on Quasi prior
Where, E(62) = (n-c+1)(n-c+2) > (33)

2
n (1 -1
i=1 aﬁxi_a_le—ﬁxi—a

Therefore the Bayes risk corresponding to the
prior can be derived by substituting equation

e

Posterior risk under Quadr

timator under SELF based on on Quasi
d (33) in equation (30)

77'-(Qself) = 2 (34)

The Posterior risk of th estimator under QLF is given as:

(561"

E(672)

(35)

Posterior R der QLF based on Uniform prior

r‘risk under QLF based on uniform prior can be obtain by substituting equation
20) in equation (35)

“ (OgLr) = % (36)

The

Posterior Risk under QLF based on Quasi prior

The posterior risk under QLF based on Quasi prior can be obtain by substituting equation (25)
and (26) in equation (35)
1

(n-c) (37)

~(OgLr) =

164



Royal Statistical Society Nigeria Local Group 2021 Conference Proceedings

Posterior risk under Precautionary Loss Function (PLF)

The Posterior risk of the Bayes estimator under QLF is given as:

m(6prr) = 2{0p.r - E(6)} (38)
Posterior risk under PLF based on uniform prior

The Posterior risk under PLF based on uniform prior is obtained by substituting equation (18)
and (23) in equation (38)

[(n+1) (n+2)]%— (n+1)
2
n 1
Zi:l(aﬁxi_a_le_ﬁxi_a _1)

Posterior risk under PLF based on Quasi prior

# (Oprr) = 2

The Posterior risk under PLF based on Quasi prior is obtained
and (29) in equation (38)

ystituting equation (24)

[(n—c+1)(n—c+2)]%—(n—c+1)
2

o2

aﬁxi—a—le_ﬁxi

Wm(Opp) = 2 (40)

Simulation Study

simulation was carried out and comparisop:Was made in order to check the performance of the
different estimators focusing on bi and mean square errors under single replication to
generate random samples of sizes n* 35, 75 and 125) from the IR-Frechet. Under the
following parameter values; 6 L5 assuming «, 8 and ¢ are known, given a« = =1, and
¢ = 0.5. The MSE: MSE 6)? was adopted as the yardstick to ascertain relative

performances of the esti

Tablel: Estimates; s and MSEs for 8 under Uniform and Quasi prior across

different loss
A&

Sample c MLE Uniform prior Quasi prior
size '
SELF | QLF PLF SELF QLF PLF
Estimates | 0.5 | 0.4295 | 0.4314 | 0.41109 | 0.412242 | 0.47299 | 0.45911 | 0.4724
439 10 3 8 3 7
Bias 0.5 | 0.2454 | 0.2537 | 0.23180 | 0.282516 | 0.22448 | 0.22401 | 0.3970
27 34 8 3 6 15
MSE 0.5]0.0123 | 0.0123 | 0.0105 | 0.0133 0.0133 | 0.0106 | 0.0145
35 Estimates | 0.5 | 0.4398 | 0.4310 | 0.4134 | 0.4354 0.4398 | 0.4222 | 0.4442
Bias 0.5]0.2010 | 0.2019 | 0.17872 | 0.205931 | 0.22966 | 0.54798 | 0.2293
42 90 11 1 12 83 89
MSE 0.5|0.0320 | 0.0329 | 0.00817 | 0.008773 | 0.01199 |0.01039 |0.0121
8037 9695 | 2967 097 666 056 6446
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75 Estimates | 0.5 | 0.4549 | 0.4543 | 0.61730 | 0.621450 | 0.48740 | 0.70498 | 0.0142
26 94 99 2 26 98 14

Bias 0.5]0.2123 | 0.2119 | 0.21663 | 0.249824 | 0.23773 | 0.21101 | 0.2376
5 801 46 81 02 59

MSE 0.5 |0.0383 | 0.0388 | 0.00579 | 0.005991 | 0.01412 | 0.01102 | 0.0142

0469 1541 | 6209 898 125 416 1446

125 Estimates | 0.5 | 0.4549 | 0.4543 | 0.45173 | 0.462145 | 0.48740 | 0.45704 | 0.4873
263 94 09 02 26 9898 195

Bias 0.5]0.2123 | 0.2119 | 0.21234 | 0.249824 | 0.23773 0.2376

5 801 7 75 81 594

MSE 0.5 |0.0383 | 0.0388 | 0.00579 | 0.005991 | 0.01412 0.0142

0469 1541 | 6209 898 125 . 1446

Table 1. Shows the results obtained from the simulation. The Bayes estimates

the QLF has the smallest
among other MSE from
sample size 125.

prior among other MSE from other estimators. Also at sample siZ
MSE of 0.0052 and 0.0052 under extended Jeffery and Quagispri
other estimators. Similarly, the same apply to sample si

4. Results and Interpretation

MLE and Bayesian estimation of paramete
distribution is considered. Under the s
functions consisting Quadratic Loss
Loss Function. Derivation of p
on the priors and its loss fu
the performances of the esti
performances of the M
indicate that the Bayesi
based on quadrati

ale) 6 of inverse Rayleigh Frechet (IR-Frechet)
ion of Uniform and Quasi prior with three (3) loss
jetion, Squared Error Loss Function, and Precautionary
ior distributions and Bayes estimators are obtained based
spectively. Simulation was conducted in order to compare
based on Mean Square Error as a performance measure. The
the Bayes estimators were conducted the result that follows
n éstimator of the parameter (scale) & under uniform and quasi prior
function is better than the maximum likelihood estimate in terms of
he results shows that quadratic loss functions under Uniform prior and
ormed the squared error loss function and the precautionary loss function
et sample sizes. The result also reveals that the Bayesian estimates of the scale
under uniform and quasi prior based on quadratic loss function is better than the
likelihood estimate.

across (
para

5 Conclusion

The results of the comparison between Maximum likelihood and Bayesian methods of
estimating the parameter (scale) 6 of the inverse Rayleigh Frechet (IR-Frechet) distribution
shows that quadratic loss functions (QLF) under Uniform prior and quasi prior outperformed
the squared error loss function (SELF) and the precautionary loss function (PLF) across
different sample sizes. Finally, the results reveal that the Bayesian estimates of the scale
parameter 6 under the uniform and quasi prior based on quadratic loss function is better than
the maximum likelihood Estimates.
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