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Abstract: Understanding wind speed is the key planning renewable energy projects studying climate patterns and 

forecasting weather. In our study we explore how monthly wind speeds behave in North West Nigeria using an 

advanced model known as the Exponential Autoregressive-Fractional Integrated Generalized Autoregressive 

Conditional Heteroscedasticity (ExAR-FIGARCH). This model not only captures the lingering effects of past wind 

speeds but also accounts for unpredictable shifts over time. To see how its stacks up, we compare its performance 

against the more traditional ExAR-GARCH model, which mainly focuses on short-term fluctuations. We estimated 

two models and results showed the ExAR-FIGARCH model is better based on serial correlation analysis, efficient 

parameters and measures of accuracy, along with their ability to forecast future values. Our findings suggest that 

embracing long-memory effects in wind speed analysis could provide better insights into the region’s wind energy 

potential.  
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1.0 Introductions 

Imagine standing outside on a breezy day in North West Nigeria feeling the gentle caress of the wind and 

then, suddenly, encountering an unexpected gust that reminds you of nature’s unpredictability. This 

natural phenomenon is not just a backdrop to our daily lives, it plays a critical role in renewable energy, 

agriculture and weather forecasting. Yet understanding and predicting these wind patterns, with all their 

twists and turns remains a significant challenge. 

In this paper we set out to explore the behavior of monthly wind speeds in North West Nigeria using two 

distinct modeling approaches. On the other hand, we have the ExAR-GARCH model, as trusted method 

that captures short term volatility. On the other we introduces the ExAR-FIGARCH model which not only 

handles immediate fluctuations but also accounts for the subtle, long memory effects that influence wind 

behavior over time. By comparing these models, our goal is to provide a clearer picture of how wind 

speeds evolve in this region. We aim to offer insights that can help local planners and engineers bitter 
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harness wind energy and improve weather forecasting,  therefore this study is about blending robust 

statistical methods with real-world observations to better understand a natural force that affect us all.  

1.1 Literature Review 

Understanding and accurately forecasting wind speed is crucial for optimizing wind energy production 

and ensuring the reliability of the power systems. Traditional models, such as Autoregressive Moving 

Average (ARMA) by Box & Jinkens (1970) and Generalizes Autoregressive Conditional 

Heteroskedasticity (GARCH) of Baillie et al (1996), have been employed to capture the temporal 

dependencies and volatility clustering inherent in wind speed data. 

 However, these models often fall short in addressing long memory characteristics observed in wind speed 

time series. To bridge this gap, the Exponential Autoregressive Fractionally Integrated GARCH (ExAR-

FIGARCH) model has been introduced by Jibrin et al (2024), offering more nuanced approach to 

modelling wind speed dynamics. The ARMA-GARCH framework has been widely applied in modelling 

wind speed due to its capability to handle short term dependencies and volatility clustering, for instance, 

Liu et al(2011) utilized the ARMA-GARCH  to forecast 1 hour mean wind speeds, demonstrating its 

applicability in wind  energy analysis. 

 Similarly Masseran (2016) highlighted the model’s effectiveness in capturing the stochastic nature of 

wind speed fluctuation. However, these models assume short memory in volatility processes which may 

not adequately represent the persistence observing the wind speed data. 

To address the limitations of traditional models researchers have explored models that account for long 

memory effects. The ARFIMA-FIGARCH model of Baillie et al(1996) , which combines Autoregressive   

Fractionally Integrated Moving Average (ARFIMA) with FIGARCH, has been proposed to capture both  
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long-term dependencies in the mean and volatility of wind speed data. Studies have shown that this 

approach provides a more accurate representation of wind speed dynamics, especially for long term 

forecasting harizons (Liu et al 2011). 

Building upon the ARFIMA-FIGARCH framework, the ExAR-FIGARCH model introduces exponential 

autoregressive component to better capture nonlinear patterns and asymmetries in wind speed data. This 

enhancement allows for a more flexible modelling approach, accommodating sudden changes and extreme 

values often observed in the wind speed time series. The evaluation of wind speed modelling has 

progressed from traditional short memory models to advanced framework that incorporate long memory 

effects and nonlinear components.  

1.2 Objective of the Study 

(i)To improve wind speed forecasting accuracy. 

(ii)To capture nonlinearity in mean and long memory effects in wind speed volatility. 

(iii) To compare performance with traditional models. 

(iv)  To support wind energy planning, management and analyze extreme wind events. 

(v)To contribute to climate and metrological studies. 

 

2.0 Methodology 

The ExpAR Ozaki(1980) model of order p denoted by ExpAR(p)  can be defined as:   

                                               Yt = C + (ϕj + λje
−γYt−1

2
)Yt−j + εt.                                                    (1) 
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Many time series exhibits trend, volatility and long memory effect (see Jaiswal et al(2019), Kim et 

al(2020), Liang et al(2021) and Fameliti and Skintzi(2022)). Besides handling trend, it is clear that the 

Exp-AR model lack requirements of handling time series with volatility and long memory characteristics. 

2.1 The Proposed ExpAR-FIGARCH Model 

The current study assumed that the model in (1)  

a. Failed to account for the volatility and long memory that are present and dwelled in the time 

series{Yt}, t = 1, … , T.  

b. Have residuals{𝜀t}, t = 1, … , T that are serially correlated and heteroscedastic.  

c. Could not account for the high degree of relationship that exists in volatility of a time series as 

observed by Gonzaga (2022), Gil-Alana et al (2022) and Aliyu et al(2023) for similar mean 

models.  

Consequently, the current study wants to introduce the ExpAR-FIGARCH hybrid model. The ExpAR(p)-

FIGARCH(u,d,v) is for the study of the nonlinear, volatility and long memory in time series.The 𝜀𝑡 in 

eq.(1) is a stochastic process that can be expressed as: 

                                                      𝜀𝑡 = 𝑚𝑡𝜎𝑡,                                                                     (2) 

Where𝐸(𝑚𝑡) = 0, 𝑉𝑎𝑟(𝑚𝑡) = 1 and 𝜎𝑡 is positive and changes with respect to time, t. This implies that 

the process, {𝑚𝑡}, is assumed to be serially uncorrelated expressed as: 

                                                       𝑚𝑡~𝑖𝑖𝑑(0,1)                                                              (3) 

Thus, the conditional variance 𝜎𝑡 is non-stationary process that changes over time. In view of this, Baillie 

et al., (1996) introduced the FIGARCH(u,d,v) model to study 𝜎𝑡 as:  

                     𝜎𝑡
2 = 𝑐[1 − 𝜓(𝐿)]−1 + {1 − [1 − 𝜓(𝐿)]−1𝛼(𝐵)(1 − 𝐿)𝑑}𝜀𝑡

2,                         (4) 
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Now, to develop the hybrid ExpAR-FIGARCH model, from eq.(4), consider the function 

                                                    𝑓(𝜓(𝐿)) = [1 − 𝜓(𝐿)]−1,                                               (5) 

The Taylor series expansion for eq.(5) is 

                                              𝑓(𝜓(𝐵)) = [1 − 𝜓(𝐿)]−1 = 1 + 𝜓(𝐿) + (𝜓(𝐿))
2

+ ⋯               (6) 

Let consider part of the expansion in (6) [1 − 𝜓(𝐿)]−1 = 1 and substituting in eq. (4). Then, so that we 

can have  

                                                               𝜎𝑡
2 = 𝑐 + {1 − 𝛼(𝐿)(1 − 𝐿)𝑑}𝜀𝑡

2.                                  (7) 

However, 𝛼(𝐿) = 1 − 𝛼(𝐿) − 𝛽(𝐿)(see Lopes, 2008 p.11). Therefore, the FIGARCH(r,d,v) can be 

expressed as: 

                                                𝜎𝑡
2 = 𝑐 + {(𝛼(𝐿) + 𝛽(𝐿))(1 − 𝐿)𝑑}𝜀𝑡

2.                          (8) 

Similarly, eq.(8) can be expressed as: 

                                             𝜎𝑡 = [𝑐 + {(𝛼(𝐿) + 𝛽(𝐿))(1 − 𝐿)𝑑}𝜀𝑡
2]

1

2.                          (9) 

Again, substituting eq.(9) in (2), the following is obtained  

                                            𝜀𝑡 = 𝑚𝑡[𝑐 + {(𝛼(𝐿) + 𝛽(𝐿))(1 − 𝐿)𝑑}𝜀𝑡
2]

1

2.                      (10) 

Finally, let 𝜀𝑡 = 𝑚𝑡[𝑐 + {(𝛼(𝐿) + 𝛽(𝐿))(1 − 𝐿)𝑑}𝜀𝑡
2]

1

2in eq. (1) so that the ExpAR(p)-FIGARCH(u,d,v) 

can be represented as: 

                       Yt = C + (ϕj + λje
−γYt−1

2
)Yt−j + 𝑚𝑡[𝑐 + {(𝛼(𝐿) + 𝛽(𝐿))(1 − 𝐿)𝑑}𝜀𝑡

2]
1

2.              (11) 
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Where Yt is dependent variable C is a constant term, ϕj, λj (forj = 1, … , p are unknown parameters to be 

estimated from Yt., εt is the error terms that are independent and identically distributed random variables, 

p is the order of the model and γ is defined as the scaling parameter.  

 The α(B) = α1L1 + ⋯ , αrL rand β(L) = β
1

L1 + ⋯ , β
v

Lv are called characteristics polynomial and all 

their roots are expected to lie in the unit root circle while L is the lag operator. Where ω > 0,ϕj ≥ 0, 

 for j =  1, … , p, αk ≥ 0 for k =  1, … , r, β
l

≥ 0 for l = 1, … , v,  d is a long- memory parameter. 

In addition, when 𝑝 = 𝑢 = 𝑣 = 1, the ExpAR(1)-FIGARCH(1,d,1) can be shown as below (12) 

Yt = C + (ϕ1 + λ1e−γYt−1
2

)Yt−1 + 𝑚𝑡[𝜔 + {(𝛼1 + 𝛽1)(1 − 𝐿)𝑑}𝜀𝑡
2]

1

2.                   (12) 

2.2 The Estimation Procedure of the Hybrid ExpAR-FIGARCH Models 

The steps for the estimation of the ExpAR-FIGARCH model are: 

1) Estimate the long memory parameter, d, by Geweke and Porter-Hudak (GPH) method. 

2) Identify the parameters of the ExpAR(p)-FIGARCH(u,d,v) model. 

3) Select the best candidates of ExpAR-FIGARCH based on minimum Accuracy measures estimates. 

4) Test for the adequacy of the chosen ExpAR-FIGARCH model(s). 

5) Carry out serial correlation analysis on the residuals of ExpAR-FIGARCH model(s). 

6) Finally, perform the analysis. 

The iterative process for fitting the ExpAR,ExpAR-FIGARCH and ExpAR-GARCH models is will be 

carried out reference to the Box-Jenkins modeling procedure. 

3.0 Data and Analysis  

Monthly Nigeria North-West Wind Speed (MNWNWS) is used to determine the best of the class of models 

considered. The considered models are ExAR, ExAR-GARCH and the proposed hybrid ExAR-FIGARCH model. 
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Table 1 presents the descriptive statistics and normality test for the MNWNWS index. The mean and 

standard deviation for MNWNWS is 7.51 and 5.06 respectively. The kurtosis, which measures the 

risk of  sudden gust or lulls in MNWNWS is 0.48 indicating wind speed are more with less frequent 

sudden changes The skewness and Jarque-Bera statistic for MNWNWS indicate non-normality for 

the series. 

Table 1: Descriptive Statistics for Daily MNWNWS 

Statistics MNWNWS 

Minimum 3.74 

Maximum 14.39 

Mean 7.51 

Std.Dev 5.06 

Skewness 0.91 

Kurtosis 0.48 

Jarque-Bera 

Test 20.18(0.0000) 
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Figure 1: show time series plot of MNWNS 
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Figure 2: The ACF of the MNWNWS 

 

The time series plot of the Monthly North-West Nigeria are shown in Fig. 1. The time series graphs exhibit 

unstable trend behavior. The ACF of the MNWNWS is shown in Fig. 2. The autocorrelations indicates a 

slow decay which is evidence of long memory process. Therefore on the average, the MNWNWS are not 

stationary. Having said this, the trend behavior observed in MNWNWS series indicates the ExAR is a 

candidate model study time series data with this type of attributes.   
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Figure 3: The volatility plot of the MNWNWS 

 

The volatility plot of the MNWNWS is shown in Fig. 3. The plot indicates evidence of volatility clustering 

indicating that the series is volatile. The observed volatility shows that the volatility models such as 

GARCH and FIGARCH are other candidate models to study the MNWNWS series.  

3.1 ExAR(p) Model Estimation and Diagnostic tests 

The ExAR modeling based on model estimation and diagnostic analysis are carried out in this 

section.  The estimation of ExAR(1) and ExAR(2) model for the MNWNWS and serial correlation 

analysis results are displayed in Table 2 and 3.  

All the parameters in the ExAR models estimated using the MNWNWS are insignificants due to 

large standard errors of the parameters. The serial correlation analysis results show that the residulas 
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of the estimated mean models, ExAR(1) and ExAR(2) are heterscedastic and non-normal. This is 

because the p-values are less than the 0.01 significance level. This suggests the two models are 

indequate to be consider for studying the  MNWNWS series as they failed to reduce or eliminate 

the noise signals in the MNWNWS so that the models can be considered for forecast.  

 

Table 2: ExAR(1) Models Estimation and Diagnostic Analysis  Of Monthly North-West Wind Speed 

(MNWNWS) 

ExAR(1) Components 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

C 6.3692 0.9168 6.947 0.0000 

λ1 0.1250 0.1031 1.212 0.2278 

ϕ1 3.0929 0.8092 3.822 0.0002 

ARCH-LM Test= 13.375(0.0003) and Jarque-Bera Test = 83.06(0.0088) 

 

 

 

 

Table 3: ExAR(2) Models Estimation and Diagnostic Analysis of Monthly North-West Wind Speed (MNWNWS) 

ExAR(2) Components 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

C 6.6489 0.4812 13.819 0.0000 

λ1 0.3750 1.6347 0.229 0.8190 

λ2 0.5000 2.3379 0.214 0.8310 

ϕ1 24.3046 743.1532 0.033 0.9740 

ϕ2 -23.7429 742.8946 -0.032 0.9750 

ARCH-LM Test= 13.19(0.0003) and Jarque-Bera Test = 4.8593(0.0018) 

 

Statistical fact tha explained the heterogeneity and non-normality in models residual are high 

noise signals, size of volatility, outliers and volatility clustering as seen in Figure 3.  
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The GARCH and FIGARCH known as volatility and long memory volatility models respectively 

could be joined with the ExAR models to form hybrid model. This could help in eliminating the 

observed unwanted signals. It would also assists in improving the fitting of the ExAR model to the 

MNWNWS data. Having said this, an analyses by considering hybrid model of ExAR-GARCH and 

ExAR-FIGARCH models would be carried out and discussed in next section. 

3.2 Hybrid ExAR-GARCH and ExAR-FIGARCH Modeling 

This section discusses the estimation and diagnostic tests of hybrid model; ExAR-GARCH 

and ExAR-FIGARCH using the MNWNWS. Before estimating the hybrid models that involved the 

long memory volatility model, FIGARCH, it is important to investigate the presence of long 

memory in the MNWNWS.  

Table 4: Long Memory Parameter Estimation 

Data Volatility 

MNWNWS -0.3565 

 

The long memory in the volatility of MNWNWS was further estimated and is displayed in Table 4. The  

Geweke and Porter-Hudak (GPH) long memory estimation method produced the fractional differencing 

value  to be -0.3565 for the volatility of MNWNWS. This value confirmed the long memory attributes in 

the original series and the volatility of MNWNWS and indicating the suitability of considering the 

FIGARCH model. The results of the parameters estimation of  ExAR-GARCH models using the 

MNWNWS is shown in Table 5 and 6 and ExAR-FIGARCH in Table 7 and 8.The hydrid models estimated 

are assumed to be normal and student –t distribution because of the heterodasticity of the ExAR models, 
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Table 5: ExAR(1)-GARCH(1,1) Models Estimation and Diagnostic Analysis  of Monthly North-West 

ExAR(1) Components 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

C 6.3692 0.9168 6.947 0.0000 

λ1 0.1250 0.1031 1.212 0.2278 

ϕ1 3.0929 0.8092 3.822 0.0002 

GARCH(1,1) Components with 𝑚𝑡 assumed to be normal distribution 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

Ω 0.0712 0.0003 -248.9392 0.0000 

α1 0.0470 0.0002 266.5832 0.0000 

β1 0.9306 0.0010 963.6716 0.0000 

ARCH-LM Test= 1.7003(0.1922) and Jarque-Bera Test = 8.1281(0.0172) 

GARCH(1,1) Components with 𝑚𝑡 assumed to be Student-t distribution 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

Ω 0.1204 0.0003 346.3377 0.0000 

α1 0.0357 0.0002 189.1099 0.0000 

β1 0.9296 0.0010 965.8108 0.0000 

v 6.7199 0.0026 2598.1585 0.0000 

ARCH-LM Test= 1.7003(0.1922) and Jarque-Bera Test = 8.1281(0.0172) 
Note: standard errors in parenthesis, p-values are in square brackets and the Q (.) is a Box-Ljung type of Portmanteau test. 
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Table 6: ExAR(2)-GARCH(1,1) Models Estimation and Diagnostic Analysis of Monthly North-West Wind 
Speed (MNWNWS) 

ExAR(2) Components 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

C 6.6489 0.4812 13.819 0.0000 

λ1 0.3750 1.6347 0.229 0.8190 

λ2 0.5000 2.3379 0.214 0.8310 

ϕ1 24.3046 743.1532 0.033 0.9740 

ϕ2 -23.7429 742.8946 -0.032 0.9750 

GARCH(1,1) Components with 𝑚𝑡 assumed to be normal distribution 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

Ω 0.0704 0.0003 265.8304 0.0000 

α1 0.0455 0.0002 213.3960 0.0000 

β1 0.9322 0.0010 964.0272 0.0000 

ARCH-LM Test=1.5656(0.2108) and Jarque-Bera Test = 8.6517(0.0132) 

GARCH(1,1) Components with 𝑚𝑡 assumed to be Student-t distribution 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

Ω 0.1246 0.0004 353.4190 0.0000 

α1 0.0347 0.0002 186.2043 0.0000 

β1 0.9299 0.0010 962.5185 0.0000 

V 6.3706 0.0025 2523.2105 0.0000 

ARCH-LM Test=1.5656(0.2108) and Jarque-Bera Test = 8.6517(0.0132) 
Note: standard errors in parenthesis, p-values are in square brackets and the Q (.) is a Box-Ljung type of Portmanteau test. 

 

 

 

 

 

 

 

 



 
 

Royal Statistical Society Nigeria Local Group  2025 Conference Proceeding 

15 
 

 

The estimation of ExAR(1)-FIGARCH models for the wind speed series and serial 

correlation analysis results are displayed in Table 7-8 

  

 

Table 7: ExAR(1)-FIGARCH(1,1) Models Estimation and Diagnostic Analysis  of Monthly North-West 
Wind Speed (MNWNWS) 

ExAR(1) Components 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

C 6.3692 0.9168 6.947 0.0000 

λ1 0.1250 0.1031 1.212 0.2278 

ϕ1 3.0929 0.8092 3.822 0.0002 

FIGARCH(1,1) Components with 𝑚𝑡 assumed to be normal distribution 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

Ω 0.0130 0.0001 113.9807 0.0000 

α1 0.3255 0.0006 567.8667 0.0000 

β1 0.8060 0.0009 897.9479 0.0000 

dv 0.6348 0.0008 794.7497 0.0000 

ARCH-LM Test= 0.6834(0.4084) and Jarque-Bera Test = 1.065(0.5871) 

FIGARCH(1,1) Components with 𝑚𝑡 assumed to be Student-t distribution 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

Ω 0.0180 0.0001 133.9983 0.0000 

α1 0.4476 0.0007 667.7989 0.0000 

β1 0.8123 0.0010 902.3381 0.0000 

dv 0.5852 0.0008 765.1760 0.0000 

v 6.4414 0.0025 2534.7062 0.0000 

ARCH-LM Test= 0.6777(0.4104) and Jarque-Bera Test = 1.2714(0.5296) 
Note: standard errors in parenthesis, p-values are in square brackets and the Q (.) is a Box-Ljung type of Portmanteau test. 
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Table 8 ExAR(2)-FIGARCH(1,1) Models Estimation and Diagnostic Analysis of Monthly North-West 

Wind Speed (MNWNWS) 

ExAR(2) Components 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

C 6.6489 0.4812 13.819 0.0000 

λ1 0.3750 1.6347 0.229 0.8190 

λ2 0.5000 2.3379 0.214 0.8310 

ϕ1 24.3046 743.1532 0.033 0.9740 

ϕ2 -23.7429 742.8946 -0.032 0.9750 

FIGARCH(1,1) Components with 𝑚𝑡 assumed to be normal distribution 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

Ω 0.0261 0.0002 161.7473 0.0000 

α1 0.1458 0.0004 381.0774 0.0000 

β1 0.8339 0.0009 910.8783 0.0000 

dv 0.8684 0.0009 928.8897 0.0000 

 

ARCH-LM Test=0.5061(0.4768) and Jarque-Bera Test = 2.0656(0.3560) 

FIGARCH(1,1) Components with 𝑚𝑡 assumed to be Student-t distribution 

Parameters Estimate Std. Errors t-value Pr(>|t|) 

Ω 0.0185 0.0001 135.4982 0.0000 

α1 0.4525 0.0007 672.7026 0.0000 

β1 0.7870 0.0009 887.4412 0.0000 

dv 0.5598 0.0008 746.0056 0.0000 

V 7.8478 0.0028 2796.2552 0.0000 

ARCH-LM Test=0.5269(0.4679) and Jarque-Bera Test = 2.264(0.3224) 
Note: standard errors in parenthesis, p-values are in square brackets and the Q (.) is a Box-Ljung type of Portmanteau test. 

 

 

All parameters of the hybrid models specifically the ExAR-FIGARCH that were assumed to be 

Student-t-distribution comes with smaller standard errors than parameters of the ExAR models. This 

indicates the goodness-of-fit of the hybrid models to the MNWNWS and adequacy of the hybrid 
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ExAR-FIGARCH models. Also, the p-values of the serial correlation analysis of the hybrid models 

are larger compare to the mean models, the ExAR. This results shows evidence of improvement in 

model fitting as a results of introducing the FIGARCH model to the ExAR models. 

 

Table 9: Diagnostic Analysis of the Hybrid Models 

 

 

 

The ARCH-LM test which is a serial correlation analysis investigates the 

homoscedasticity of residuals of a time series models. The p-values of the ARCH-LM test 

of the hybrid models in Table 6 are larger than the p-values of the ExAR mean models as 

shown in Table 7 and 8. This results shows evidence of improvement in model fitting as a 

results of introducing the FIGARCH model to the ExAR models. Also, the residuals of the 

ExAR(1)-FIGARCH(1,1) is homocedastic and therefore the model could be consider in 

producing reliable forecasts. However, Results of the Jarque-Bera test show evidence of 

non-normality in all the mean and hybrid model residuals due to zero p-values of Jarque- 

Bera test statistics. 

 

Candidate Models Residuals as Normal Distribution Residuals as Student-t- 

Distribution 

ARCH-LM Test Jarque-Bera – 
Test 

ARCH-LM Test Jarque-Bera - 
Test 

 

MNWNWS 

ExAR(1)-GARCH(1,1) 2.6256(0.6391) 7.9557(0.000) 2.7391(0.2691) 8.0482(0.0000) 

ExAR(2)-GARCH(1,1) 2.4201(0.4872) 7.8201(0.000) 2.9682(0.1721) 7.1119(0.000) 

ExAR(1)-FIGARCH(1,1) 2.3022(0.3391) 7.0363(0.000) 1.9429(0.4859) 9.1167(0.0000) 

ExAR(2)-FIGARCH(1,1) 2.1042(0.3251) 7.9341(0.000) 1.1410(0.3785) 9.2431(0.000) 
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Figure 4: Diagnostic Plots of ExAR(1)-FIGARCH(1,1) Fitted to MNWNWS 

 

 

 

The diagnostic plots and in-sample forecasts for the ExAR(1)-FIGARCH(1,1) are shown in Figure 4. 

The in sample forecast plot (right top panel) show that the actual volatility coincide with the fitted or 

observed volatilities for the ExAR(1)-FIGARCH(1,1) model.  
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3.3 The Foreacst Accuracy Measures of Hybrid Models 

The Mean Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 

are used in the literature to evaluate performance (see Hyndman and Athanasopolous(2013) 

and Papailias and Dias (2017)).  

 

 

Table 10: Forecast Accuracy Measures for Hybrid Models 

MNWNWS 

 

Candidate Models 
Residuals as Normal 

Distribution 

Residuals as Student-t- 

Distribution 

MSE RMSE MAE MSE RMSE MAE 

ExAR(1)-GARCH(1,1) 7.0389 2.6531 1.4868 3.4612 1.8604 0.7708 

ExAR(2)-GARCH(1,1) 9.5168 3.0849 1.3511 5.0389 2.2447 1.1911 

ExAR(1)-FIGARCH(1,1) 4.2351 2.0579 0.7401 1.0368 1.0182 0.3714 

ExAR(2)-FIGARCH(1,1 5.1721 2.2742 0.9849 2.1113 1.4530 0.5731 

 

The forecast accuracy measures results of  MNWNWS using the hybrid ExAR-GARCH and 

ExAR-FIGARCH models are shown in Table 10 Compared to the candidates hybrid model, 

The ExAR-FIGARCH model produces a better forecast performace with minimum accuracy 

measures.The MSE, RMSE and Mean Absolute Error (MAE) are used in the literature to 

evaluate performance (see Hyndman and Athanasopolous(2013) and Papailias and Dias 

(2015)). The forecast accuracy measures results of  MNWNWS using the hybrid ExAR-

GARCH and ExAR-FIGARCH models are shown in Table 10. Compared to the hybrid 

ExAR- GARCH models, the ExAR-FIGARCH model produces the minimum and better 

forecast performances based on the assumptions that their residuals are Student-t-

distributed. Again, the ExAR(1)-FIGARCH(1,1) for the MNWNWS produces accuracy 

measures; MSE, RMSE and MAE equal 1.0368, 1.0182 and 0.3714 respectively.In view 
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of this, the ExAR(1)- FIGARCH(1,1) is chosen as the best model. Consequently, the 

chosen model which is equivalent to the hybrid ExpAR(1)-FIGARCH(1,𝑑v,1) model in 

eq.(13) has estimated parameters   C = 6.3692, ф1 =3.0929  

 λ1= −0.1250 𝜔 = 0.0391, α1 = 0.0 𝛽1 =0.87 and 𝑑v = 0.87 as shown in Table 7 

.Therefore, the fitted model for MNWNWS is 

 

𝑌𝑡=6.3692+ (3.09 + 0.13𝑒−6.37𝑌𝑡−1
2

)𝑌𝑡−1+𝑚𝑡[0.04 + {(0.00 + 0.87(1 − 𝐿)0.87]𝜀𝑡
2}

1

2  -----    (13) 

  

 

4.0 Summary and Conclusion 

Accurately modelling wind speed is essential for optimizing wind energy production, forecasting 

extreme weather events and ensuring infrastructure resilience. The statistical properties of wind 

speed data such as skewness, kurtosis and normality tests, provide valuable insights that 

influence models selection .The ExAR-FIGARCH model, which accommodates long memory 

effects, volatility clustering, and asymmetric, is a powerful tool for wind speed forecasting. 

Future research should focus on real world application of ExAR-FIGARCH models, validating 

their performance across different regions and times scales.  
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