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Abstract 

Accurate forecasting of internally generated revenue (IGR) is crucial for effective fiscal planning 

and sustainable economic development. This study applies the Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) model to forecast the IGR of Kaduna State, Nigeria. 

ARFIMA is particularly useful for modeling long-memory processes, which are common in 

financial and economic time series. The data used for the study was obtained secondarily from 

Kaduna State Internal Revenue Service (KADIRS). The stationarity of the data was assessed 

using Augmented Dickey Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. 

The long memory parameter d of the ARFIMA model was estimated using the Geweke and 

Porter-Hudak (GPH) method. The presence of a long memory structure was revealed by the 

sample autocorrelation function. Based on the information selection criteria, using AIC, BIC, 

and HQC, two optimal time series models were selected. But the prediction power of ARFIMA 

(3,0.423636,4) model is better and suitable for monthly periods forecasting, as such the model 

best fit the data. Thus, the findings can be used to provide accurate and reliable forecast of 

Kaduna State IGR for better revenue planning and economic policy formulation. 

Keywords: ARFIMA model, forecasting, internally generated revenue, long-memory. 

1. Introduction  

Internally Generated Revenue (IGR) refers to the income that a government or organization 

generates from its own activities within its jurisdiction, excluding external sources such as 
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federal allocations or grants. This revenue is typically derived from taxes, fees, license, and other 

charges imposed on businesses, individuals, and transactions conducted within the entity’s 

geographical boundaries (Uduma et al., 2021).  

The internally generated revenue (IGR) is an important source of revenue that can be used to 

fund public services and infrastructure projects. It has taken the second position among sources 

of revenue in Nigeria, especially placed heavy reliance on oil (Okorie et al., 2018). Every 

institution is encouraged to augment its finances by generating revenue internally.  

The forecasting and control of internally generated revenue can help in understanding its patterns 

and characteristics, which are essential for formulating effective and impactful policies to 

achieve good governance. Kaduna State, like many other institutions in Nigeria, generates 

revenue internally to complement the efforts of the Federal Government. 

Time series data is a set of observations obtained by measuring a single variable over a regularly 

period of time. The study of Time series analysis is relevant in many fields, such as agriculture, 

geography, health sciences, social sciences, and economics. 

The main objective of time series analysis is to decompose the data into trend, seasonal, cyclical 

and error components for forecasting purposes. The concept of time series is based on past 

observations, present and future of any series (Chatfield, 1984). 

 There are two main approaches to time series analysis: The time domain approach and the 

frequency domain approach (Hamilton, 1983).  

The Autoregressive fractionally integrated moving average (ARFIMA) model is used to model 

time series data. ARFIMA models extend ARIMA models by allowing non-integer values for 

the differencing parameter, making them suitable for capturing long-memory processes. 
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The ARFIMA(p, d, q) model belongs to the long memory model family (Liu, Chen and Zhang, 

2017). Its primary objective is to explicitly account for persistence and long-term correlations in 

the data. 

Several studies have explored revenue forecasting using time series models. On this note, Harrison et 

al. (2014) employed SARIMA modelling techniques to monthly internally generated revenue of Rivers 

State of Nigeria. The finding revealed that adequate model for prediction was SARIMA(0, 1, 1)x(1, 1, 1)
12 

model.  

Gimba et al. (2018) studied the impact of Personal Income Tax (PIT) on Internally Generated Revenue in 

Kaduna State from 1988-2015 using time series data obtained from Kaduna State Internal Revenue 

Service (KADIRS). The study employs the Engle and Granger (1987) two-stage Co-integration estimation 

techniques for the long run equilibrium relationship and the associated Error Correction Mechanism 

(ECM) to estimate the multivariate model. The findings revealed that there is a strong positive significant 

impact of PIT on internally generated revenue in Kaduna State within the period of the study.  

Okorie et al. (2018) examined the time series analysis of monthly generated revenue in Gombe Local 

Government of Gombe State. Ordinary least square regression and Autoregressive Average models 

were used for the analysis. The trend of findings shows a significant increase in the monthly internal 

generated revenue in the study area.  

Festus, (2019) investigated the application of time series analysis on revenue generation in Adamawa 

State. The study used ordinary least square method of multiple regressions to establish a relation 

between revenue and economic growth.  

Waniyos et al. (2020) examined the time series analysis of Internal Generated Revenue in Adamawa 

State. The study used least square method to determine the level of trend patterns over the study period 

and predicted the future generation of internal revenue in the state.  

Uduma et al. (2021) examined the Nigerian Ports Authority (NPA) revenue generated monthly series 

spanning January, 2007 to December, 2019. They defined a good model and a perfect fit for the NPA 
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revenue generated series by comparing the forecast of the transformed series with outlier and without 

outliers using the forecast evaluation criterion.  

Suleiman et al. (2023) identified the best ARIMA time series model for monthly crude oil price 

in Nigeria spanning from 2006 to 2020. The finding of the study revealed that ARIMA (3,1,1) 

model best fits the data with minimum values of predictive measures.  

Monge & Infante (2023) investigated historical data for crude oil prices using autoregressive 

fractionally integrated moving average (ARFIMA) model. The best specification is an 

ARFIMA(2,d,2) with an estimated value of d around 0.4, but its confidence interval is wide and 

does not allow the rejection of I(0) or I(1) hypotheses. This high level of uncertainty may be due 

to the presence of breaks or non-linear trends in the data. 

However, the ARIMA models used in forecasting internally generated revenue are limited in 

handling long-range dependencies. Fractionally integrated models, such as ARFIMA, introduced 

by Granger & Joyeux (1980), offer a more flexible approach by allowing for fractional 

differencing.  

Empirical applications have shown ARFIMA's superiority in modelling financial and economic 

data with long-memory characteristics (Baillie, 1996). Therefore, this study contributes to the 

literature by applying ARFIMA to Kaduna State’s IGR data.  

2.0 Methodology 

2.1 Autoregressive Fractionally Integrated Moving Average Process ARFIMA (p, d, q)  

The ARFIMA like ARIMA models has three parameters: p, d, and q. The parameter 

corresponding to the number of lags involved in the autoregressive portion of the series is p. 

Meanwhile, the parameter for the moving average lags is q. If the series is fractionally integrated, 

with d takes a value in the interval of 0 < 𝑑 < 1 then, the model is referred to as an ARFIMA 

model. 
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Now, consider {
tY }, 𝑡 = 1…, is a nonstationary process with time-varying mean and variance. 

Then 
tY  is said to be fractional integral process if 

( )1
d

t tL Y − =         (1) 

where this has the interpretation as follows: 

1 2 3

( 1) ( 1)( 2)
...

2! 3!
t t t t t

d d d d d
Y dY Y Y − − −

− − −
− + − + =    (2) 

Here, 𝐿 is the backward shift operator, 
t  is a white noise process and d is the long memory 

parameter such that 0 < 𝑑 < 1. The general form of an ARFIMA model of Granger and Joyeux 

(1980) and Hosking (1981) is given by: 

( ) ( )(1 ) ,0 1.d

t tL L Y L d  − =          (3) 

2.2 Model Estimation  

2.2.1 Unit Root Test 

Kwiatkowski Phillips Schmidt and Shin Tests 

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test has been proposed by Kwiatkowski et. al. 

(1992) with the null hypothesis that the data generating process is stationary are tested against a 

unit root. The test statistic is given by 
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=  with j tw y y= −  and 2̂  is an estimator of the long-run variance of the process 

tz . The null hypothesis of the test is 2

0
ˆ: 0H  =  against the alternative hypothesis 2

1
ˆ: 0H    . 

Reject the null hypothesis if the test statistic is greater than the asymptotic critical values. 

Augmented Dickey Fuller (ADF) Test 

The ADF test statistics developed by Dickey & Fuller (1979) is given by 
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ADF
ˆ

ˆ( )SE




=          (5) 

Where ˆ( )SE   is the standard error for ̂ , and ^  denotes estimate. The null hypothesis of unit 

root is accepted if the test statistic is greater than the critical values. 

 2.2.2 Detection of Long Memory  

Geweke and Porter-Hudak (GPH) test  

Geweke and Porter-Hudak (1983) proposed a semi-parametric approach to test for long memory, 

using the following regression,  

2ln ( ) ln 4sin ( / 2)j j jI w d w n  = − +      (6) 

Where 2 / , 1,..., ;j jw n T j n= =  jn  is the residual term and denotes Fourier frequencies.  ( )jI w  

represent the periodogram of a time series 
1r  and it is defined as  
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2.2.3 Information Selection Criteria 

The popular model selection criteria are AIC due to (Akaike, 1974), HQC due to (Hannan – 

Quinn, 1979) and SIC due to SIC (Schwarz, 1978). 

Let 𝐿𝑛(𝑘) be the maximum likelihood of a model with k parameters based on a sample of size 

n. The information criteria for selecting the most parsimonious correct model proposed by 

Akaike (1974) is given by: 

𝐴𝑘𝑎𝑖𝑘𝑒 ∶                           𝐶𝑛(𝑘) = −
2 ln(𝐿𝑛(𝑘))

𝑛 + 2𝑘
𝑛

                                                                (8) 

where k is the number of parameters, n is the number of observations. 
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Hannan-Quinn information criterion (HQC) is an alternative to Akaike information criterion 

(AIC) and Bayesian information criterion (BIC) given as;  

𝐻𝑎𝑛𝑛𝑎𝑛 − 𝑄𝑢𝑖𝑛𝑛:              𝐶𝑛(𝑘) = −
2 ln(𝐿𝑛(𝑘))

𝑛 + 2𝑘𝑙𝑛(ln(𝑛))
𝑛

                                                       (9) 

Schwarz information is derived using Bayesian arguments, this criterion is also known as the 

Bayesian Information Criterion (BIC). These criteria take the general form; 

                                   𝐶𝑛(𝑘) = −
2 ln(𝐿𝑛(𝑘))

𝑛 + 𝑘𝜑(𝑛)
𝑛

                                                                (10) 

where 𝜑(𝑛) = 2 in Akaike case, 𝜑(𝑛) = 2 ln(ln (𝑛)) in Hannan – Quinn case 𝜑(𝑛) = ln (𝑛) in 

the Schwarz case. 

2.2.4 Forecasting Evaluation 

Performance metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) 

and Mean Absolute Percentage Error (MAPE) were considered to assess the forecast accuracy; 

Root Mean Square Error (RMSE) 

The RMSE is a measure of how well the model fits the data. It is defined as: 

RMSE = √
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1

𝑛
       (11) 

where the ŷ𝑖 are the values of the predicted variable when all samples are including in the model 

formation, and 𝑛 is the number of observations. RMSE  

Mean Absolute Error (MAE) 

The MAE is a quantity used to measure how close predictions are to the eventual outcomes. 

MAE =
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖| =

1

𝑛
∑ |𝑒𝑖|

𝑛
𝑖=1

𝑛
𝑖=1               (12) 

It is an average of the absolute errors. i.e.|𝑒𝑖| = |𝑓𝑖 − 𝑦𝑖|, where 𝑓𝑖 is the prediction and 𝑦𝑖 is the 

true value. 
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Mean Absolute Percentage Error (MAPE) 

The MAPE is a measure of prediction accuracy of a forecasting method in statistics. It usually 

expresses accuracy as a percentage, and is defined by the formula: 

MAPE=
1

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡

𝑛
𝑡=1 | ∗ 100                (13) 

Where, 𝐴𝑡 is the actual value and 𝐹𝑡 is the forecast value. 

The difference between 𝐴𝑡 and 𝐹𝑡 is divided by the Actual value 𝐴𝑡 again.  

3.0 Results and Discussion  

The study uses monthly internally generated revenue data of Kaduna State, obtained from 

Kaduna State Internal Revenue Service (KADIRS). The dataset covers a sufficiently long period 

spanning from January 2003 to December 2023 to analyze long-memory effects. R and Gretl 

statistical softwares were used in conducting the analysis. The pattern and behavior of the data 

was studied by Time plot, ACF and PACF as shown below. 

 

Fig. 1. Time plot of internally generated revenue 

Figure 1 revealed that the monthly average internally generated revenue is increasing at the 

beginning of each year (between January and April) and subsequently decreasing (between May 

and December). The IGR series increase from 2010 to 2015, then decrease from 2016 to 2019, 
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with a further increase from 2020 to 2023; which is the peak. This indicates that the series 

consists of trend, meaning it’s not yet stationary. Further unit root tests such as KPSS and ADF 

tests were used to confirmed whether the data is stationary or not. 

 

Fig. 2. Time plot of fractional differencing 

Figure 2 shows the time plot of the ffractional differencing of the original series. The diagram 

that plots the series after fractional differencing shows that the variability of the series appears 

to be stable. The time plot of the series appears to be stationary for both mean and variance 

suggesting that the time series is stationary.  

3.1 Stationarity Test of fractional differencing 

Table 1: ADF and KPSS tests of the data 

 Unit Root of the Original Data Unit Root of the Fractional   Differencing 

Test Lag Order T-Statistic P-Values T-Statistic P-Values 

ADF Test  5 -1.32359 0.0638 -9.76023   1.94e-018 

 12 0.38859 0.9825 -9.8177 1.27e-018 

 20 1.95997 0.9999 -5.87809 2.34e-007 

KPSS Test 5 2.88736 0.0013 0.024352 0.8472 

 12 1.61586 0.0025 0.056119 0.7488 

 20 1.08174 0.0044 0.089088 0.6022 
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From Table 1, the KPSS test result showed that the data was not stationary before fractional 

differencing since the p-values corresponding to the KPSS test are less the level of significance 

5%, implying that the null hypothesis (H0) was rejected. However, the data was stationary at 

fractional differencing since the p-values are greater than the level of significance 5%, implying 

that we fail to reject H0. Similarly, from table 1, the ADF test result revealed that there was 

presence of unit root in the data before fractional differencing since the p-values are greater than 

the 5% level of significance. But there was no presence of unit root in the data after fractional 

differencing since the p-values are less than 5% level of significance. 

 

Fig. 3. ACF and PACF Plot of the IGR Series 

Fig 4.3 shows that the sample ACF and PACF of IGR series. The autocorrelation function of 

IGR decreases slowly at a hyperbolic rate, an indication of long memory (or long-range 

dependence), which is also conformed to a fractionally integrated series. The PACF is significant 

at lag 54 but decays very slowly to zero. 

 

 

3.2 Long Memory Parameter Estimation  
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Table 2: Long memory estimate of IGR series  

Test  Estimate (d) Z statistic p-value 

Geweke and Porter-Hundlak (GPH) 0.42363579 4.06361 0.0004 

The GPH estimated d parameter to be 0.4236. GPH provides fractional difference parameter 

values which lies within the conventional long memory parameter. 

3.3 ARFIMA Model Identification 

In this section, the best model among the candidate of ARFIMA models for the IGR data will be 

selected. The fraction difference parameter estimated (d=0.4236) is chosen because the estimate 

lies within the conventional long memory parameter (−0.5 < 𝑑 < 0.5). 

Table 3: Result of ARFIMA model identification and selection  

MODEL AIC BIC HQC 

ARFIMA(0,0.4236,0) 11356.81 11363.87 11359.65 

ARFIMA(0, 0.4236,1) 11328.87 11359.46 11333.13 

ARFIMA(0, 0.4236,2) 11328.94 11353.06 11334.62 

ARFIMA(0, 0.4236,3) 11330.97 11358.62 11338.07 

ARFIMA(0, 0.4236,4) 11332.06 11353.24 11340.58 

ARFIMA(1, 0.4236,0) 11336.63 11357.22 11340.89 

ARFIMA(1, 0.4236,1) 11328.83 11352.94 11334.51 

ARFIMA(1, 0.4236,2) 11330.91 11358.56 11338.01 

ARFIMA(1, 0.4236,3) 11332.77 11353.94 11341.29 

ARFIMA(1, 0.4236,4) 11333.39 11358.09 11343.33 

ARFIMA(2, 0.4236,0) 11330.07 11354.19 11335.75 

ARFIMA(2, 0.4236,1) 11330.78 11358.42 11337.88 

ARFIMA(2, 0.4236,2) 11332.62 11353.80 11341.14 

ARFIMA(2, 0.4236,3)  11334.06 11358.77 11344.01 

ARFIMA(2, 0.4236,4)+ 11317.04 11345.27 11328.40 

ARFIMA(3, 0.4236,0) 11331.61 11359.26 11338.71 

ARFIMA(3, 0.4236,1) 11331.91 11353.08 11340.43 

ARFIMA(3, 0.4236,2) 11333.88 11358.59 11343.82 

ARFIMA(3, 0.4236,3) 11335.96 11364.19 11347.32 

ARFIMA(3, 0.4236,4)+ 11318.35 11350.11 11331.13 
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Table 3 displayed the results of ARFIMA model selection. Twenty (20) models were tested based 

on the information selection criteria, and thus two models were selected for further examination 

namely ARIMA(2,0.4236,4) and ARFIMA (3,0.4236,4)  models since they have the minimum 

values of AIC, BIC and HQC. 

3.4 Model Estimation 

Table 4: Result of ARFIMA (2,0.4236,4) Model Estimation for the IGR Series  

Parameter Coefficient Std. Error Z-Statistic P-Value 

Constant 2.03416e+08 4.11725e+07 4.941 7.79e-07  *** 

phi_1 1.64370 0.0262905 62.52 0.0000    *** 

phi_2 −0.953044 0.0242775 −39.26 0.0000    *** 

theta_1 −2.07771 0.0699511 −29.70 7.17e-194 *** 

theta_2 1.58904 0.156601 10.15 3.41e-024 *** 

theta_3 −0.217912 0.152161 −1.432  0.1521 

theta_4 −0.141387 0.0645650 −2.190  0.0285    ** 

 

Table 4 shows that the parameters (phi-1, phi-2, theta_1, theta_2, and theta_4) are statistically 

significant to the model at 5% level of significance. However, the parameter theta_3 is 

statistically insignificant to the model. Thus, the ARFIMA (2,0.4236,4) model is fitted as; 

( )0.4236

1 2 1 2 4(1 ) 1.6437 0.9530 2.0777 1.5890 0.1414t t t t t t tL Y Y Y    − − − − −− + − = + + −   (4.3) 

Table 5: Result of ARIMA (3,0.4236,4) Model Estimation for the IGR Series  

Parameter Coefficient Std. Error Z-Statistic P-Value 

Constant 2.05908e+08 4.10980e+07 5.010 5.44e-07 *** 

phi_1 1.11887 0.302002 3.705 0.0002   *** 

phi_2 0.111575 0.525496 0.2123 0.8319 

phi_3 −0.614768 0.295654 −2.079 0.0376   ** 

theta_1 −1.55943 0.294357 −5.298 1.17e-07 *** 

theta_2 0.264395 0.624407 0.423634 0.6720 

theta_3 0.801111 0.476940 1.680 0.0930   * 

theta_4 −0.316371 0.116046 −2.726 0.0064   *** 
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Table 5 revealed that the parameters (phi-1, phi-3, theta_1, theta_3, and theta_4) are statistically 

significant to the model at 5% level of significance. However, the parameters (phi-2, theta_2, 

and theta_3) are statistically insignificant to the model at 5% level of significance. Thus, the 

ARFIMA (3,0.4236,4) model is fitted as; 

( )0.4236

1 3 1 4(1 ) 1.1189 0.6148 1.5594 0.316t t t t t tL Y Y Y   − − − −− + − = − −    (4.4) 

3.4 Model Checking 

Fig. 4. ACF and PACF of the residual of ARFIMA (2,0.4236,4) 

 

Fig. 5. ACF and PACF of the residual of ARIMA (3, 0.4236,4)  

Fig 4 and Fig 5 confirmed that there is no form of correlation amongst the residuals, this means 

that the ARFIMA (2,0.4236,4) and ARFIMA (3,0.4236,4) models have passed the standard test 

criteria of being white noise, since the residuals are uncorrelated and stationary. 
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Fig. 6. Normal probability plot from ARFIMA (2,0.4236,4) model Fig. 7. Normal probability plot from ARFIMA (3, 0.4236,4) model 

From Figures 6 and 7 above, it is observed that the relationship between the theoretical 

percentiles and the sample percentiles is approximately linear. Therefore, the Normal Probability 

Plot of the residuals of the data using the two models suggests that the error terms are indeed 

normally distributed. 

3.5 ARFIMA Model Forecasting 

Table 4.14: Forecasting Results using selected ARFIMA Models 

Year ARFIMA(2,0.4236,4) model ARFIMA(3,0.4236,4) model 

 Prediction Lower Bound Upper Bound  Prediction Lower Bound Upper Bound 

2024:1 1.81203e+008 -2.74627e+009 2.38386e+009 9.87875e+008 -3.54771e+009 1.57196e+009 

2024:2 6.72894e+008 -2.12333e+009 3.46912e+009 2.16772e+008 -3.01402e+009 2.58047e+009 

2024:3 4.04755e+008 -2.39851e+009 3.20802e+009 4.69706e+008 -3.28293e+009 2.34352e+009 

2024:4 6.37891e+006 -2.80239e+009 2.81515e+009 1.43344e+008 -2.95661e+009 2.66992e+009 

2024:5 3.12339e+008 -3.12348e+009 2.49880e+009 1.02125e+008 -2.81675e+009 2.81596e+009 

2024:6 4.56545e+008 -3.26777e+009 2.35468e+009 3.51464e+008 -2.46515e+009 3.16808e+009 

2024:7 3.89825e+008 -3.20201e+009 2.42236e+009 5.60457e+008 -2.25622e+009 3.37713e+009 

2024:8 1.42723e+008 -2.95849e+009 2.67305e+009 7.45670e+008 -2.07299e+009 3.56433e+009 

2024:9 1.99852e+008 -2.62065e+009 3.02036e+009 7.59908e+008 -2.06041e+009 3.58023e+009 

2024:10 5.27443e+008 -2.29620e+009 3.35109e+009 6.68021e+008 -2.15440e+009 3.49044e+009 

2024:11 7.39416e+008 -2.08494e+009 3.56377e+009 4.52938e+008 -2.37029e+009 3.27617e+009 

2024:12 7.75628e+008 -2.04882e+009 3.60007e+009 1.93281e+008 -2.63009e+009 3.01665e+009 
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2025:1 6.33129e+008 -2.19302e+009 3.45928e+009 6.47497e+007 -2.88826e+009 2.75876e+009 

2025:2 3.64392e+008 -2.46519e+009 3.19397e+009 2.50198e+008 -3.07456e+009 2.57416e+009 

2025:3 5.84769e+007 -2.77434e+009 2.89129e+009 3.26852e+008 -3.15292e+009 2.49921e+009 

2025:4 1.88237e+008 -3.02248e+009 2.64600e+009 2.74681e+008 -3.10253e+009 2.55317e+009 

2025:5 3.02212e+008 -3.13651e+009 2.53209e+009 1.10853e+008 -2.93986e+009 2.71815e+009 

2025:6 2.54421e+008 -3.08926e+009 2.58041e+009 1.25396e+008 -2.70391e+009 2.95470e+009 

2025:7 6.72463e+007 -2.90414e+009 2.76965e+009 3.75933e+008 -2.45338e+009 3.20525e+009 

2025:8 1.94867e+008 -2.64480e+009 3.03454e+009 5.81896e+008 -2.24791e+009 3.41170e+009 

2025:9 4.47318e+008 -2.39422e+009 3.28885e+009 6.95057e+008 -2.13602e+009 3.52613e+009 

2025:10 6.12464e+008 -2.22951e+009 3.45444e+009 6.90627e+008 -2.14210e+009 3.52335e+009 

2025:11 6.43320e+008 -2.19870e+009 3.48534e+009 5.71678e+008 -2.26233e+009 3.40569e+009 

2025:12 5.36645e+008 2.30634e+009 3.37963e+009 3.68528e+008 -2.46600e+009 3.20305e+009 

 

Table 4.14 displayed the forecast values of Kaduna State IGR series using ARFIMA(2,0.4236,4) 

and ARFIMA(3,0.4236,4) models. The forecasts values along with 95% upper and lower bound 

of the IGR series was generated for the next two years or 24 months, starting January 2024 until 

December 2025. 

Table 6: Forecast Evaluation Statistics  

 MSE RMSE MAE MAPE 

ARFIMA (2,0.423636,4) 1.734226e+18 1.3169e+009 7.745e+008 1129.1 

ARFIMA (3,0.423636,4) 1.727647e+18 1.3144e+009 7.6082e+008 1077.2 

 

The smaller the value of the error, the better the forecasting performance of the model. From 

Table 6, it could be seen that both the two selected models have shown good result (minimum 

predictive measures). But forecast result of ARFIMA (3,0.423636,4) model is closer to the actual 

series. Therefore, the prediction power of ARFIMA (3,0.423636,4) model is better and suitable 

for monthly periods forecasting, as such the model best fit the data. 
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4.0 Conclusion and Policy Implications 

The findings demonstrate ARFIMA’s effectiveness in forecasting IGR, highlighting its potential 

for improving fiscal management in Kaduna State. Policymakers can leverage these forecasts for 

informed decision-making and resource allocation. Future research may explore hybrid models 

integrating ARFIMA with machine learning techniques for enhanced accuracy. 
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