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Abstract 

Joint modelling under Bayesian paradigm has gained a lot of traction especially with sampling-

based estimation, however approximate Bayesian estimation of integrated Laplace 

approximation (INLA) is slowly gaining grounds. Prior specification has also been a recurring 

discuss in Bayesian analysis with prior sentivity becoming part of the data analysis process. This 

work presents joint modelling of longitudinal and cure proportion using latent Gaussian model 

with INLA and prior sensitivity analysis for the model in the presence of data value missingness 

and outliers. The approach assumed inverse-Wishart prior distribution for the covariance matrix 

of the random effects and Gaussian priors for the joint model fixed effects, while the penalised 

complexity prior was assumed for the Weibull shape parameters of the baseline hazard function. 

Four different prior specification settings were studied for fixed and random effects and the 

association parameter. The study was applied to aortic valve replacement surgery data to assess 

the effects of covariates on a biomarker and risk of event, with spline trajectories. The best prior 

setting was arrived at via the lowest values of DIC, WAIC and log marginal-likelihood and was 

Gaussian prior for fixed effects and association parameter each with (mean, precision) values as 

(0, 0.001), (0, 0.001), (0, 0.001), and parameters from Wishart distribution on the precision 

matrix for random effects as (100, 1) and it gave robust results with missing values and outliers. 

The posterior estimates from the best prior settings showed significant covariates on the 

biomarker and on the conditional failure time latency model. The study contributes to the 

literature on approximate Bayesian alternative to jointly modelling of longitudinal and mixture 

cure outcomes in the area of prior specification and data value missingness and outiers. 

Keywords: prior specification, association structure, Laplace approximation, shared random 

effect, nonlinear trajectory 

1. Introduction 

Many experiments and trials give rise to opportunity for the collection of different types of dataset 

at the same time, for example longitudinal and survival datasets. These types of datasets are usually 

analysed separately. However, since the two datasets are collected form the same individuals 

simultaneously, analysing them separately can overlook latent association of the two components 

that could shed better light to the subject of inquiry. Consequently, conclusions may be biased and 

insufficient as a result of measurement error and missing data. Joint modelling has become a 

pervasive approach in analysing these two datasets as a way of remedying the separate analysis 
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(See Tsiatis and Davidian 2004). Joint modelling has been used in medical and health studies, 

engineering, finances etc. There are load of works in the literature on joint modelling with different 

types of models for the longitudinal part and survival part. Alsefri et al. (2020) gave a review of 

developments in Bayesian joint models covering articles published up to July 2019.   

Classical survival analysis models such as the Cox proportional hazard (PH) model (Cox, 1972) 

and the accelerated failure time (AFT) (Kalbfleisch and Prentice, 2002) model are based on the 

assumption that given enough follow up time, every subject will eventually experience the event 

of interest or censored. In some real situations, there are cases in which some individuals will never 

experience the event of interest, even if the follow-up is indefinite. In the case of possibility of 

cured subjects, the population is assumed to be made up of two groups of subjects: the susceptible, 

who will one day experience the event of interest, and the cured, who may not experience the event 

of interest during the follow-up period. Cancer trials are also cases where there is a strong rationale 

for the existence of cured subjects because if the treatment is successful, the original cancer is 

removed and the subject will not experience recurrence of the disease. This is particularly true for 

patients in early cancer stages (Peng and Taylor, 2014). Cure models are particularly appropriate 

in cancer trials where there is scientific interest in factors associated with the probability of cure 

and factors associated with the time to recurrence for non-cured individuals. 

Bayesian approach has seen more of Markov chain Monte Carlo (MCMC) for parameter 

estimation, for example, Chen et al. (2004) presented multiple longitudinal markers as well as a 

cure structure for the survival component based on the promotion time cure rate model with 

MCMC Gibbs sampling. Chi and Ibrahim (2007) used MCMC adaptive rejection algorithm and 

an extra Metropolis step was used for parameter estimation in joint modelling of multivariate 

longitudinal component and cure survival component. He and Luo (2016) employed MCMC in 

their shared random effects joint model of a multilevel item response theory model for the multiple 

longitudinal outcomes, and a Cox’s proportional hazard model with piecewise constant baseline 

hazards for the event time data. Alafchi et al. (2021) proposed a two-stage base model for joint 

modelling of multivariate longitudinal and multistate process. Maximum likelihood estimation 

was used for fixed effects coefficients in longitudinal and multistate model and empirical Bayes 

methods for random effects coefficients in longitudinal. 

Many studies in the literature report the computational constraint of Markov chain Monte Carlo 

(MCMC) technique in joint modelling, and they have been shown to be limited to relatively small 

samples and model specifications, as well as have slow convergence properties (Rustand, van 

Niekerk, Krainski, Rue, et al., 2024). The approximate Bayesian approach, INLA, introduced by 

Rue et al. (2009) is gaining usage for joint modelling as an alternative to MCMC with the Rue et 

al. (2009) discussing the advantages of INLA over MCMC. We refer to van Niekerk et al. (2021), 

Medina-Olivares et al. (2023), Rustand et al. (2023) and Rustand et al. (2024), Rustand, van 

Niekerk, Krainski, and Rue (2024), Alvares et al. (2024), Ekong et al. (2025) for more instances 

of INLA’s applicability and suitability. Lázaro et al. (2020) presented implementation INLA in 

general mixture cure survival model with covariate information for the latency and the incidence 
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model within a general scenario with censored and non-censored information. van Niekerk et al. 

(2019) showed that a joint model with a linear bivariate Gaussian association structure is a latent 

Gaussian model (LGM) and thus can be implemented using most existing packages for LGMs 

especially R-INLA and van Niekerk, Bakka, and Rue (2021) proposed a fully non-parametric 

spline component to competing risk joint model with nonlinear longitudinal trajectories to capture 

non-linear behaviour over time in the form of a random walk order two model. Rustand, van 

Niekerk, Krainski, Rue, et al. (2024) presented joint models of multivariate longitudinal and 

survival data using integrated nested Laplace approximations algorithm implemented in the R 

package R-INLA. They compared the INLA method to existing alternatives (MCMC and MCEM) 

via simulations applied to five longitudinal markers and included competing risks of death and 

transplantation in application to clinical trial on primary biliary cholangitis. Ekong et al. (2025) 

studied joint modelling of longitudinal and cure survival outcomes for univariate biomarker 

considering nonlinear trajectories with application to renal transplantation data which comprised 

with glomerular filtration rate of kidneys as biomarker and survival event of time to graft failure. 

This study builds on the presentation of Ekong et al. (2025) and Rue et al. (2009) by investigating 

the impact of different priors parameters values on the posterior distributions using the same 

model. Also, the impact of prior specification for the joint model presented is investigated in the 

presence of data value missingness and outliers. We visualise the sensitivity of the joint model to 

prior specifications and assess the model stability and reliability. The main goal here is to see how 

the marginal posterior effects, missing values and outliers are impacted by the Gaussian prior for 

the fixed effects and association parameters, as well as those of the Inverse Wishart prior for the 

multivariate random effects. We considered application to real dataset of aortic valve replacement 

surgery from an observational study by Lim et al. (2008), on detecting effects of different heart 

valves, differing on type of tissue, implanted in the aortic position.  

2. Methodology  

Following the presentation of Ekong et al. (2025), given sample observation yim, on the i-th patient 

at the m-th time point, let Tim be the event time for the i-th patient at the m-th time point, which 

may be right censored. The event indicator is given as im  = 1 if event is observed and im = 0 if 

censored and zim then is the latent variable classifying the patient as cured or not at the end of the 

follow-up. We observe that any patient with survival time observation at a particular point in time 

is classified to the population of uncured patients. The observed data for the i-th patient without 

any covariate is Di = { yim , Tim , im , zim }. The Di 's are assumed to be independent across patients, 

reflecting the belief that the disease process evolves independently for each patient. We also 

assume that Tim and yim are conditionally independent given some covariates of interest and a set 

of unobserved subject-level random effects. 

2.1 Longitudinal model component 

Given longitudinal observation yim and assuming that for a marginal generalized linear model, the 

population is from some probability model with density 𝑓(𝒀|𝑿; 𝜷; 𝑼). We also assume that the 

longitudinal outcomes yim, are conditionally independent and follow a well-defined distribution, 
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G, with some density function g, linear predictor L and hyperparameters θL , hence a structured 

additive model for the longitudinal component is given as follows: 

𝑔−1{𝐸(𝑦𝑖|𝑿, 𝜷, 𝑼)} = 𝜂𝐿 = 𝛽0 + 𝜷𝑿 + ∑ 𝑓(𝑢𝑖)

𝑛

𝑖=1

+ 𝒃𝑖𝑢𝑖 +  𝝐                      (1) 

where 𝑓(𝑢𝑖) is the latent random effect of covariate 𝑢𝑖 for i-th patient, which could be spatial 

effects, temporal effects, patient or group-specific intercepts. 𝜷 represent the linear fixed effects 

of the covariates 𝑿, 𝒃𝑖 is the vector of random effects of intercept and slope, where 𝛽0 plus 𝑏𝑖 

gives the combined effect of the intercept and random intercepts terms specifying that the event 

depends on the patient-specific level of the longitudinal profile at time 𝑡 = 0. We also have the 

structured random effect 𝑓(𝑢𝑖) which we take as cubic splines with internal knots at 1 and 4 years 

to account for nonlinear trajectories of the longitudinal outcome, 𝝐 is the unstructured random 

effects. 

2.2 Cure survival model component 

Given the observed event time 𝑇𝑖𝑚, let Zi be a cure random variable defined as Zi = 0 if that patient 

is susceptible for experiencing the event of interest, and Zi = 1 if the patient is cured. Cure and 

uncured probabilities are P(Zi = 1) =  and P(Zi = 0) = 1 - , respectively. The survival functions 

for patients in the cured and uncured population, Sc(t) and Su(t), t > 0, respectively, are 

𝑆𝑢(𝑡) = 𝑃(𝑇𝑖𝑚 > 𝑡 |𝑍𝑖 = 0) 

𝑆𝑐(𝑡) = 𝑃(𝑇𝑖𝑚 > 𝑡 |𝑍𝑖 = 1) = 1 

The general survival function for 𝑇𝑖𝑚 can be expressed in terms of a mixture of both cured and 

uncured populations in the form 

𝑆(𝑡) = 𝑃(𝑇𝑖𝑚 > 𝑡) =  + (1 − )𝑆𝑢(𝑡)                                               (2) 

Cure fraction  is also known as the incidence model and event time 𝑇𝑖𝑚 in the uncured population 

is also referred to as the latency model (Peng and Taylor, 2014). 

Covariates in the incidence model  

Note that for a patient who has experienced the event (i = 1), we know Zi = 1, but for a censored 

patient (i = 0), we do not observed Zi, hence, the effect of a baseline covariate vector x1 on the 

cure proportion is typically modelled by means of a logistic link function expressed as 

logit[ (𝛃1)] =  𝜷1
′ 𝒙1 ≡ (𝛽1) =

exp{𝜷1
′ 𝒙1}

1 + exp{𝜷1
′ 𝒙1}

                                    (3) 
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where 𝛃1 is the vector of regression coefficients associated to x1 and  is the cure proportion. 

Covariates in the latency   

For patients with Zi = 1, the time to event is assumed to follow a parametric distribution. The Cox 

proportional hazards model is usually formulated in terms of the hazard function for the event time 

as 

ℎ𝑢(𝑡 |ℎ𝑢0, 𝜷2) = lim
Δ𝑡→∞

𝑃(𝑡 ≤ 𝑇𝑖𝑚 < 𝑡 + Δ𝑡 |𝑇 ≥ 𝑡)

Δ𝑡
= ℎ𝑢0(𝑡) exp{𝜷2

′ 𝒙2}   (4) 

where ℎ𝑢0(𝑡) is the baseline hazard function that determines the shape of the hazard function. 

Model (4) can also be presented in terms of the survival function of 𝑇𝑖𝑚 as 

𝑆𝑢(𝑡|𝑆𝑢0, 𝜷2) = [𝑆𝑢0(𝑡)]𝑒𝑥𝑝{𝜷2
′ 𝒙2}                                                  (5) 

where 𝑆𝑢0(𝑡) = exp {− ∫ ℎ𝑢0(𝑠)d𝑠
𝑡

0
} represents the survival baseline function and some 

hyperparameter θS. 

2.3 Joint Model of Multivariate Longitudinal and Cure Survival Outcomes as LGMs  

The modelling approach assumes a logistic distribution for the probability of cure in the incidence 

model in (3) and the Cox proportional hazard (4) for the survival time with a Weibull baseline 

hazard function ℎ𝑢0(𝑡|𝜆, 𝛼) = 𝜆𝛼𝑡𝛼−1 with 𝜆 and 𝛼 as the scale and shape parameters 

respectively. 𝛾 is the association parameter estimating the strength of association between the 

survival and the longitudinal component, thus we define 

ℎ𝑖(𝑠) = ℎ𝑢0(𝑠)𝜂𝑖
𝑆(𝑠) (exp {− ∫ ℎ𝑖(𝑢)du

𝑡

0

} + logit[ ]) 

The linear predictors of the joint model becomes 

𝜂𝑖
𝐿,𝐽(𝑡) = 𝜂𝑖

𝐿(𝑡) 

𝜂𝑖
𝑆,𝐽(𝑠) = 𝜂𝑖

𝑆(𝑠) + 𝛾 (𝜂𝑖
𝐿(𝑠))   

Here 𝛾 as a smooth function facilitates the joint estimation of the models associating the 

longitudinal trajectories and mixture cure process using the entire longitudinal predictors as shared 

random effect where each random effect’s individual deviation is associated to an association 

parameter in the survival latency component.  

2.3.1 Likelihood function of Joint Model 

The likelihood of the longitudinal outcomes given the parameters 𝜷0, 𝛃, θ𝐿 , 𝜼𝐿 , 𝑓(∙), 𝒃𝑖 and 𝝐 can 

be given as  
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ℒ𝐿(𝒚|𝜼𝐿) = ∏ 𝑔 (𝑦𝑖𝑚|𝜼𝑖
𝐿(𝑡))

𝑁𝐿

𝑖=1

                                                       (6) 

Given survival observations d = {Tim , im , zim} and parameter vector 𝑹 = (𝜷1, 𝜷2, 𝛼, 𝜆, 𝜼𝑆, θ𝑆, 𝛾), 

the likelihood for the mixture cure survival becomes  

ℒ𝑆(𝒅|𝑹) = ∏ ℒ𝑖(𝑹|𝑑)

𝑁

𝑖=1

= ∏ 𝜂𝑖
𝑆𝑹𝑧𝑖

𝑁

𝑖=1

(1 − 𝜂𝑖
𝑆𝑹)

1−𝑧𝑖
ℎ𝑖𝑢(𝑡𝑖|𝑹)𝛿𝑖(1−𝑧𝑖)𝑆𝑖𝑢(𝑡𝑖|𝑹)1−𝑧𝑖       (7) 

The complete likelihood becomes 

𝑝(𝑫𝑖|𝝌𝑖, 𝜽) = ∫ [∏ ℒ𝑖(𝑹|𝑑)

𝑁

𝑖=1

∏ 𝑔 (𝑦𝑖𝑚|𝜼𝑖
𝐿(𝑡)) 𝑝(𝒃𝑖)

𝑁𝐿

𝑖=1

]
𝒃𝑖

𝑑𝒃𝑖                (8) 

where we define the latent field  = (𝛃, 𝛃1, 𝛃2, 𝜼𝑆, 𝜼𝐿 , 𝑓(∙), 𝒃𝑖, 𝜆, 𝝐) and a vector of 

hyperparameters 𝛉 = (θ𝐿 , θ𝑆, 𝛼, 𝜏−1, 𝛾𝑝). The aim is to present equation (8) as LGMs by showing 

its specific hierarchical structure. The first level of the hierarchy involves presenting the likelihood 

function given the latent field  and the vector of hyperparameters 𝛉 as shown in equation (8).  

2.3.2 Prior Specification settings 

The next level of the hierarchy involves the conditional distribution of the latent field  which is 

assumed to have a multivariate Gaussian prior with zero mean, such that it forms a Gaussian 

Markov random field with sparse precision matrix matrix 𝑸(𝜽2), i.e. 𝝌~𝑀𝑉𝑁(𝟎, 𝑸−1(𝜽2)), this 

is given as  

𝑝(𝝌|𝜽) = (2𝜋)𝑛|𝑸(𝜽2)|
1
2 exp (−

1

2
𝝌′𝑸(𝜽2)𝝌) 

Then at the final level of the hierarchy, a prior on the hyperparameter vector 𝑝(𝜽) can then be 

formulated for the set of hyperparameters 𝜽 = (𝜽1, 𝜽2), which could be non-normal. This enables 

us to assume normal prior for the vector of fixed effects for the longitudinal variable as 

𝜷~𝑁(𝟎, 𝜏𝑖𝑰), where 𝜷 ∈ 𝝌 and 𝜏𝑖 ∈ 𝜽. To complete the model specification, we assume the 

inverse-Wishart prior distribution for the covariance matrix of the random effects and Gaussian 

priors for the fixed effects, while the penalised complexity prior PC(5) is assumed for the Weibull 

shape parameters of the baseline hazard function. 

For the fixed effects and association parameter, the Gaussian distribution has density with mean 𝜇 

and precision 𝜏 

𝜋(𝜃) = (
𝜏

2𝜋
)

1
2

exp (−
𝜏

2
(𝜃 − 𝜇)2) 



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

55 
 

for continuous 𝜃, with precision 𝜏 and mean 𝜇. 

For random effects, given vector of random effects (𝑏𝑖, 𝑑𝑖) that are iid bivariate Normals 

(
𝑏𝑖

𝑑𝑖
) ~ 𝑁(𝟎 ,  𝑾−1);   𝑾−1 = (

1 𝜏𝑎⁄ 𝜌 √𝜏𝑎𝜏𝑏⁄

𝜌 √𝜏𝑎𝜏𝑏⁄ 1 𝜏𝑏⁄
), with 𝑾−1 as covariance matrix, 𝜏𝑎, 𝜏𝑏 and 

𝜌 are hyperparameters, with 𝜌 as correlation, 𝜏𝑎 and 𝜏𝑏 are the marginal precisions. 

The precision matrix W is Wishart distributed 

𝑾~Wishart𝑝(𝑟, 𝑮−1) 

with density 

𝜋(𝑾) = 𝑐−1|𝑾|(𝑟−(𝑝+1))/2 exp {−
1

2
Trace(𝑾𝑮)} ,   𝑟 > 𝑝 + 1 

and 

𝑐 = 2(𝑟𝑝)/2|𝑮|−𝑟/2𝜋(𝑝(𝑝−1))/4 ∏ Γ((𝑟 + 1 − 𝑗)/2)

𝑝

𝑗=1

. 

We consider the first prior settings for the fixed effects parameters, mean and precision, mean 

intercept and precision intercepts and association parameter (mean and precision) respectively as 

(0, 0.01), (0, 0.01), (0, 0.01), and (10, 1) for the prior on the precision of matrix which follows a 

Wishart distribution for the random effects. The second prior settings is respectively (0, 0.16), (0, 

0.16), (0, 0.16) and (10, 1) for the prior of random eff the prior on the precision of matrix of random 

effects. The third prior settings is (0, 0.16), (0, 0.16), (0, 0.16) and (100, 1) for the prior of random 

eff the prior on the precision of matrix of random effects. The forth settings is (0, 0.001), (0, 0.001), 

(0, 0.001) and (100, 1) for the prior of random eff the prior on the precision of matrix of random 

effects. 

2.3.3 Posterior Estimation using Integrated Laplace Approximation 

From this hierarchical Bayesian formulation the joint posterior distribution is then given as: 

𝑝(𝓧, 𝜽|𝑫) ∝  𝑝(𝜽)𝑝(𝓧|𝜽) ∏ 𝑝(𝑫𝑖|𝓧, 𝜽)

𝒊

                                                

∝  𝑝(𝜽)|𝑸(𝜽2)|
1
2 exp (−

1

2
𝝌′𝑸(𝜽2)𝝌 + ∑ log(𝑫𝑖|𝝌𝑖, 𝜽)

𝒏

𝒊=𝟏

)                      (9) 

Within this framework the joint posterior density (9) and subsequently the marginal posterior 

densities, 𝑝(𝝌𝑖|𝑫); i = 1 , … , n and 𝑝(𝜽|𝑫) can be efficiently and accurately calculated using the 

integrated Laplace approximation methodology developed by Rue et al. (2009). The marginal 

posterior densities becomes  

𝑝(𝝌𝑖|𝑫) = ∫ 𝑝(𝝌𝑖 , 𝜽|𝑫) 𝑑𝜽 = ∫ 𝑝(𝝌𝑖, 𝜽|𝑫)𝑝(𝜽|𝑫) 𝑑𝜽 
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and  

𝑝(𝜃𝑖|𝑫) = ∫ 𝑝(𝜽|𝑫) 𝑑𝜽−𝒋 

To obtain the posterior distribution of the model parameters under Bayesian framework, by Bayes’ 

theorem, the conditional posterior distribution 

𝑝(𝜽𝑖 , 𝝌𝑖|𝑫𝑖) =
𝑝(𝑫𝑖|𝜽𝑖, 𝝌𝑖)𝑝(𝜽𝑖, 𝝌𝑖)

𝑝(𝑫𝑖)
∝ 𝑝(𝑫𝑖|𝜽𝑖, 𝝌𝑖)𝑝(𝝌𝑖|𝜽𝑖)𝑝(𝜽𝑖) 

where 𝑝(𝝌𝑖|𝜽𝑖) and 𝑝(𝜽𝑖) are  prior distributions and the focus is on approximating the 

multidimensional integral from the marginal likelihood 𝑝(𝑫𝑖|𝜽𝑖 , 𝝌𝑖) and approximation technique 

of INLA has been shown to provide exact approximations to the posterior estimates at faster rates 

than sampling-based methods such as Markov Chain Monte Carlo (MCMC) especially for 

complex and hierarchical models (see Rustand, van Niekerk, Krainski, Rue, et al. 2024). 

We consider the Laplace transformation using a second-order Taylor series expansion for the 

integral of the density function 𝑝(𝝌) by taking the form of (Blangiardo and Cameletti, 2015) 

∫ 𝑝(𝝌)

∞

−∞

𝑑𝝌 = ∫ exp(log 𝑝(𝝌))

∞

−∞

𝑑𝝌 = ∫ exp(𝑔(𝝌))

∞

−∞

𝑑𝝌                   (10)  

Since for unimodal functions the integral value is mainly determined by the behaviour around the 

mode of 𝑔(𝝌), a second-order Taylor approximation of 𝑔(𝝌) can be substituted for 𝑔(𝝌) to 

calculate an approximate value of the integral. 

Let 𝝌∗ be the global maximum of 𝝌 which is defined as 

𝝌∗ = argmax 𝝌𝑔(𝝌), 

then  

𝜕𝑔(𝝌)

𝜕𝝌
|

𝝌=𝝌∗

= 0 

for 𝑔(𝝌) to be approximated as 

𝑔(𝝌) ≈ 𝑔(𝝌∗) + 0.5(𝝌 − 𝝌∗)′𝐇𝑔(𝝌∗)(𝝌 − 𝝌∗) 

where 𝐇𝑔(𝝌∗) is the Hessian of 𝑔(𝝌∗), and equation (10) can be written as 

∫ 𝑝(𝝌)

∞

−∞

𝑑𝝌 = ∫ exp(𝑔(𝝌∗) + 0.5(𝝌 − 𝝌∗)′𝐇𝑔(𝝌∗)(𝝌 − 𝝌∗))

∞

−∞

𝑑𝝌     
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= exp(𝑔(𝝌∗)) ∫ exp(0.5(𝝌 − 𝝌∗)′𝐇𝑔(𝝌∗)(𝝌 − 𝝌∗))

∞

−∞

𝑑𝝌 

= exp(𝑔(𝝌∗)) ∫ exp(−0.5(𝝌 − 𝝌∗)′{−𝐇𝑔(𝝌∗)}(𝝌 − 𝝌∗))

∞

−∞

𝑑𝝌 

= exp(𝑔(𝝌∗)) (2𝜋)
𝑛𝑚

2 |𝐇𝑔(𝝌∗)|−
1
2 × 

∫ (2𝜋)−
𝑛𝑚

2 |𝐇𝑔(𝝌∗)|−
1
2

∞

−∞

exp(−0.5(𝝌 − 𝝌∗)′{−𝐇𝑔(𝝌∗)}(𝝌 − 𝝌∗)) 𝑑𝝌 

The integral is associated with the density of a multivariate Gaussian distribution and putting 

−𝐇𝑔(𝝌∗) = 𝑸(𝝌∗), the precision matrix for the random vector 𝝌∗ yields  

∫ 𝑝(𝝌)

∞

−∞

𝑑𝝌 ≈ exp(𝑔(𝝌∗)) (2𝜋)
𝑛𝑚

2 |𝐇𝑔(𝝌∗)|−
1
2 ×     

∫ (2𝜋)−
𝑛𝑚

2 |𝑸(𝝌∗)|−
1
2

∞

−∞

exp(−0.5(𝝌 − 𝝌∗)′𝑸(𝝌∗)(𝝌 − 𝝌∗)) 𝑑𝝌 

≈ (2𝜋)
𝑛𝑚

2 |𝑸(𝝌∗)|−
1
2 exp(𝑔(𝝌∗)). 

The conditional posterior distribution of 𝑝(𝓧, 𝜽|𝑫) is defined from the joint posterior distribution 

in Equation (9) as 

𝑝(𝓧, 𝜽|𝑫) ∝ 𝑝(𝜽)|𝑸(𝜽)|
1
2 exp (−

1

2
𝝌′𝑸(𝜽)𝝌 + ∑ log 𝑝(𝑫𝑖|𝝌𝑖, 𝜽)

𝒏

𝒊=𝟏

) 

which can be rewritten as, ignoring elements with 𝝌 

𝑝(𝓧|𝜽, 𝑫) ∝ exp (−
1

2
𝝌′𝑸(𝜽)𝝌 + ∑ 𝑔𝑖(𝝌𝑖)

𝒏

𝒊=𝟏

)                       (11)  

Refer to Rue et al. (2009) and Ekong et al. (2025) for more details on the approximation 

procedures, such as Gaussian, Laplace and simplified Laplace approximations, as well as further 

discussions on the approximations error and its asymptotics with practical issues. 
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3 Results and discussion 

3.1 Descriptive analyses of the aortic valve replacement surgery data 

The aortic valve replacement surgery data is an observational study on detecting effects of different 

heart valves, differing on type of tissue, implanted in the aortic position carried out by Lim et al. 

(2008). The data consists of 300 patients who underwent aortic valve replacement from 1991 to 

2001 with at least a year of follow-up with a total of 1,273 serial echocardiographic measurements. 

Patients with two or more procedures were censored from the time point of the second procedure 

to ensure that they were analysed only once. Demographic, operative, and mortality data were 

obtained from individual hospital notes, death certificates, and autopsy reports. Details of the 

dataset can be found in Lim et al. (2008).  

The version of the aortic valve replacement surgery data (n = 256) used in this study was obtained 

from the R package joineRML (Hickey et al., 2018) and for the sake of comparison of results we 

selected variables used in the analysis in Lim et al. (2008) for our own analysis and they include 

hs, the type of implanted aortic prosthesis: Homograft or Stentless valve; sex, gender of patient (0 

= Male and 1 = Female); time, observed time point, with surgery date as the time origin (years); 

fuyrs, maximum follow up time, with surgery date as the time origin (years); status, censoring 

indicator (1 = died and 0 = lost at follow up); size, size of the valve (millimeters); lv, preoperative 

left ventricular ejection fraction (1 = good, 2 = moderate and 3 = poor);  grad, valve gradient at 

follow-up visit; lvmi, left ventricular mass index (standardised) at follow-up visit; and ef, ejection 

fraction at follow-up visit. The longitudinal biomarker of interest is grad. The data has biomarker, 

grad, with 359 missing values (36.3% missing) and about 64 outliers and these are represented in 

Fig. 1 showing the plot of percentage of missing values and boxplot including outliers. The dataset 

with missing and outlier values is denoted as Data A. 

 

Fig. 1 Plot of percentage of missing values and boxplot showing outliers 
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In order to treat the missing and outlier values in the dataset, we apply data imputation by replacing 

the missing values with the mean of the dataset without the outliers and replacing the outliers with 

the inter-quantile range by method of capping. Hence, the dataset without missing values and 

outliers is also used in the analysis and is denoted as Data B.  

We examined the survival curves for the two covariates of type of implanted aortic prosthesis 

received and gender of patient, hs and sex. From Fig. 2 which shows the different survival curves 

estimated by type of prosthesis, it can be observed that survival seemed to lower quickly for 

patients who received stentless valve replacement before flattening at 50% rate at less than two 

years after treatment. The patients with homograft valve replacement showed slower decrease in 

survival rate before flattening at aver 70% at less than two years after treatment. This information 

suggest the possibility of cure fraction for some patients who may not observe the failure event of 

death at the end of the follow-up period and or beyond. 

 
Fig. 2 Survival estimates of patients according to treatment covariate hs 

3.2 Joint cure modelling of aortic valve replacement surgery data  

Our approach here is to fit the joint model for the aortic valve replacement surgery data using the 

LGM framework as implemented with INLA by considering the possibilities of cure proportion in 

the survival component of the modelling. The modelling formulation as described in Section 2 is 

presented for the dataset thus. 

Longitudinal component with spline trajectories: 

grad𝑖(𝑡) =  (𝛽10 + 𝑏𝑖10) + (𝑏𝑖11 + 𝛽1𝑡𝑖𝑚𝑒)time𝑖𝐹1(𝑡) + 𝛽1ℎ𝑠hs𝑖 + 𝛽1𝑠𝑒𝑥sex𝑖 +  𝛽1𝑠𝑖𝑧𝑒size𝑖

+ 𝛽1𝑙𝑣1lv𝑖 + 𝛽1𝑙𝑣2lv𝑖 + 𝜀𝑖1(𝑡) = 𝜂𝑖1(𝑡) + 𝜀𝑖(𝑡) 

 



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

60 
 

Latency model component: 

ℎ𝑖(𝑡 |ℎ0) = (𝜆𝛼𝑡𝛼−1) exp{𝛾gradS
(𝜂𝑖1(𝑡))

+ (𝛽2ℎ𝑠hs𝑖 + 𝛽2𝑠𝑒𝑥sex𝑖 +  𝛽2𝑠𝑖𝑧𝑒size𝑖 + 𝛽2𝑙𝑣1lv𝑖 + 𝛽2𝑙𝑣2lv𝑖)} 

Incidence model component: 

logit[𝜋𝑖] = 𝛽30 + 𝛽3ℎ𝑠hs𝑖 + 𝛽3𝑠𝑒𝑥sex𝑖 +  𝛽3𝑠𝑖𝑧𝑒size𝑖 + 𝛽3𝑙𝑣1lv𝑖 + 𝛽3𝑙𝑣2lv𝑖 

where 𝜀𝑖(𝑡) are independent Gaussian measurement errors for the longitudinal outcome, 𝐹1(𝑡) is 

natural cubic spline basis functions with internal knots at 2 years. For priors specification, as noted 

earlier, we assume a Gaussian prior for the latent field 𝝌 with precision matrix 𝑸(𝜽) conditioned 

on 𝜽, which we also assume prior distributions 𝑝(𝜽) for which all the regression coefficients and 

the Weibull log(λ) scale parameters follow a vague normal distribution centred at zero 

(𝒩(0,1000)) while the shape parameter, α, is assumed to follow the penalised complexity prior 

PC(5). The inverse-Wishart prior is assumed for the covariance matrix of the random effects and 

Gaussian priors for all the fixed effects. 

For the sensitivity analysis, we consider the first prior settings, the Gaussian prior for the fixed 

effects parameters, mean and precision, mean intercept and precision intercepts and the association 

parameter, 𝛾gradS
, (mean and precision) respectively as (0, 0.01), (0, 0.01), (0, 0.01), and the 

hyperparameters values in the inverse-Wishart prior are (10, 1) on the precision of matrix of the 

Wishart distribution for the random effects. The second prior settings is respectively (0, 0.16), (0, 

0.16), (0, 0.16) and (10, 1) fixed effects parameters, mean and precision, mean intercept and 

precision intercepts, the association parameter and the prior of random effects precision matrix. 

The third prior settings follows the same order as (0, 0.16), (0, 0.16), (0, 0.16) and (100, 1) for the 

prior of random eff the prior on the precision of matrix of random effects. Similarly, the forth 

settings is (0, 0.001), (0, 0.001), (0, 0.001) and (100, 1) for the prior of random eff the prior on the 

precision of matrix of random effects. The posterior distributions for the different prior settings 

are used in the joint model for the data with missing values and outliers (Data A) and the data 

without missing values and outliers (Data B) and the plots of the posteriors are presented in what 

follows for random effects and association parameter and we also compared the models under the 

two data scenarios and prior settings using Bayesian model diagnostics to see the best situation 

and how sensitive the joint model approach is to priors, missing values and outliers in datasets. 

The results are represented via plots of the prior distributions against the posterior distributions for 

all the prior settings for the random effects and the association parameters and are shown in Fig. 3 

to Fig. 8. Starting with Fig. 3, we saw that the first prior setting was not sensitive to the missing 

values and outliers for the random intercept and longitudinal trajectory terms but had impact on 

their interaction term, meaning that the missing value and outliers influenced their posteriors for 

this prior setting.  Hence, this prior for the joint model was robust to the effect of missing values 

and outliers in datasets. Prior two setting showed more robustness to sensitivity, missing values 

and outliers in data as both posteriors of the random effects were similar for Data A and Data B as 
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shown in Fig. 4, except for the intercept random effect term. The case was even most encouraging 

for prior three and four, shown in Fig. 5 and Fig. 6, as these priors had almost no impact on the 

marginal posteriors of the random effects parameters for Data A and Data B, meaning that missing 

values and outliers do not influence our model given this prior settings, thus supporting its 

robustness. 
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                                                   Data A (prior 1)                                                                                            Data B (prior 1) 

 

 

Fig. 3 Comparison of posterior distributions of random effects for Data A and Data B with prior setting one 
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   Data A (prior 2)                                                                                            Data B (prior 2) 

  

 

 Fig. 4 Comparison of posterior distributions of random effects for Data A and Data B with prior setting two 
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                                                   Data A (prior 3)                                                                                            Data B (prior 3) 

  
 

Fig. 5 Comparison of posterior distributions of random effects for Data A and Data B with prior setting three 
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                                                   Data A (prior 4)                                                                                            Data B (prior 4) 

  

 

Fig. 6 Comparison of posterior distributions of random effects for Data A and Data B with prior setting four 
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Data A (prior 1)                                                                            Data B (prior 1) 

          

Data A (prior 2)                                                                                       Data B (prior 2) 

             

 Fig. 7 Comparison of posterior distributions of association parameter for prior settings one and two with Data A and Data B 
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Data A (prior 3)                                                                                Data B (prior 3) 

         
Data A (prior 4)                                                                                       Data B (prior 4) 

         

Fig. 8 Comparison of posterior distributions of association parameter for prior settings three and four with Data A and Data B 
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For marginal posterior of the association parameter for the four prior settings in Data A and Data 

B, we saw from Fig. 7 that prior settings one and two had different impacts on the marginal 

posteriors of the association parameter in the data with missing values and outliers against data 

without them, meaning that these priors were not robust to the missing values and outliers in 

estimating the association term. However, prior settings three and four showed similar posterior 

distributions for the association parameter in both Data A and Data B as seen in Fig. 8, meaning 

these priors had limited impact on these posteriors and showed robustness to missing values and 

outliers as in the case of the random effects parameters. 

Table 1: Comparison of different Prior specifications on the two datasets 

Data A. Prior 1 Prior 2 Prior 3 Prior 4 

DIC 1349.625 1357.548 1357.909 1345.592 

WAIC 1189.869 1197.313 1197.667 1186.181 

Loglike -4902.484 -4894.183 -4894.039 -4914.956 

Associa. 8.2788 2.9589 3.0018 -6.4966 

Data B. Prior 1 Prior 2 Prior 3 Prior 4 

DIC 3543.856 3542.586 3613.034 3590.417 

WAIC 3385.403 3384.444 3452.953 3430.888 

Loglike -6028.639 -6024.494 -6024.549 -6039.454 

Associa. -3.3233 -1.1818 2.9959 -8.6742 

 

In Table 1 we see that all the model comparison diagnostics are in favour of the joint model with 

Data A which included missing values and outliers, since their values for all four prior settings 

were lower than those of Data B without missing values and outliers, and this results shows that 

the joint modelling approach is robust to missing values and outliers, while they are not sensitive 

to prior specification given missingness and outliers. However, we also observed from the results 

for Data A that the fourth prior specification was best, since it had the lowest values of these 

diagnostics. Whereas in the case of Data B, prior settings two was preferred before prior setting 

one, then prior setting four and three in that order. We also looked at the association parameter 

that measures the strength of association between the longitudinal and cure survival components 

and we saw that for Data A, prior settings one and four reported a strong association between both 

components, howbeit in different directions. Prior setting four reported a strong negative 

association for Data B, and hence the fourth prior setting showed strong association 

notwithstanding the missingness and outliers in data and this favoured association value indicated 

that higher values of the biomarker, the implanted valve gradient, at follow-up were pointer to 

lower risk of the event happening. 

The output of the joint modelling approach using the fourth prior settings, being the best prior 

specification reported in Table 1, with the mean, standard deviation and 95% credible interval, is 
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presented in Table 2. The results showed that the random effect was not significant for the valve 

gradient over time, whereas the significant predictors for valve gradient were gender, the type of 

implanted aortic prosthesis and preoperative left ventricular ejection fraction. The valve gradient 

was higher in female patients with male reference, decreased in patients with moderate 

preoperative left ventricular ejection fraction and increased in patients with poor preoperative left 

ventricular ejection fraction both with good preoperative left ventricular ejection fraction as 

reference. It can be seen that the spline function was significant in the time effect in capturing the 

longitudinal profile of valve gradient.  

Table 2: Posterior mean, standard deviation and 95% Confidence intervals of aortic valve 

replacement surgery data from fourth prior settings 

Fixed mean sd Low 95% CI Up 95% CI 

β10 36.685 9.015 19.016 54.355 
β1time -3.877 1.303 -6.431 -1.324 

β1hs 3.826 1.803 0.292 7.359 
β1sex 2.281 1.590 -0.836 5.397 
β1size -0.776 0.377 -1.516 -0.036 
β1lv1 -1.040 1.528 -4.035 1.955 
β1lv2 3.034 2.606 -2.074 8.143 

σe1 302.571 16.942 270.802 337.375 

Random     
σ2

b10 0.010 0.002 0.008 0.014 
σ2

b11 0.010 0.002 0.008 0.014 

covb10,b11 0.000 0.001 -0.002 0.002 

Latency     
α 0.779 0.087 0.626 0.969 
λ 0.020 0.083 -0.087 0.085 

β2hs 0.836 0.374 0.103 1.570 
β2sex 0.305 0.323 -0.329 0.939 
β2size -0.017 0.075 -0.164 0.131 
β2lv1 0.240 0.301 -0.350 0.829 
β2lv2 0.553 0.411 -0.253 1.359 

Incidence     
β30 0.145 1.698 -3.185 3.475 

β3hs -0.177 0.339 -0.841 0.487 
β3sex -0.508 0.310 -1.117 0.101 
β3size -0.012 0.072 -0.154 0.130 
β3lv1 0.047 0.281 -0.504 0.598 
β3lv2 -0.046 0.472 -0.972 0.880 

Association     
γgrad_S -6.497 1.144 -8.554 -4.072 

 

The latency model reports that the type of implanted aortic prosthesis, sex, and the Weibull shape 

parameter and preoperative left ventricular ejection fraction were also significant in the conditional 
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failure time latency model, as evidenced in the survival curves plots in Figure 1 to 3, however we 

see that there is only mild variation in gender at the onset after the surgery as the curve for both 

male and females flatten together over time. For the incidence model, only gender was significant, 

where the cure variable has a negative log-odds coefficients for female patients. The association 

parameter was significant and strong in the link between the survival component and the 

longitudinal trajectory of valve gradient. The case of negative association parameter indicates that 

higher values of the longitudinal outcome implies that there was a reduction in the probability in 

the risk of the event. 

4 Conclusion 

This paper presented the modelling of longitudinal outcomes and mixture cure survival under 

shared random effect using latent Gaussian modelling approach, involving evaluating the posterior 

distribution of the resulting Bayesian modelling using integrated Laplace approximation (INLA) 

introduced by Rue et al. (2009). The focus here was the sensitivity of the joint modelling approach 

for longitudinal outcome with nonlinear trajectory and survival cure component with data 

missingness and outliers. The joint cure modelling approach was applied to the aortic valve 

replacement surgery data to study the effects of different heart valves on valve gradient (grad) and 

the risk of death after aortic valve replacement surgery. We compared four prior settings for the 

Gaussian distribution for the fixed effects and association parameters, as well as the inverse-

Wishart distribution for the random effects.  

Prior parameter values for Gaussian prior for the fixed effects parameters, mean and precision, 

mean intercept and precision intercepts and the association parameter, (mean and precision) 

respectively given as (0, 0.16), (0, 0.16), (0, 0.16), (100, 1) and (0, 0.001), (0, 0.001), (0, 0.001), 

(100, 1) for priors three and four had limited impact on their posteriors. The prior settings three 

and four had almost no impact on the marginal posteriors of the random effects parameters for 

Data A and Data B, meaning that missing values and outliers do not influence our model given 

this prior settings, thus supporting its robustness. These prior settings three and four also showed 

similar posterior distributions for the association parameter in both Data A and Data B, again 

meaning that these priors had limited impact on their posteriors and showed robustness to missing 

values and outliers as in the case of the random effects parameters. 

Bayesian inference has always been concerned with the effects of prior settings on posterior 

estimates of model parameters and these effects have often been studied via sensitivity analyses 

and the case of joint modelling longitudinal and survival cure outcomes is presented in this study, 

where latent Gaussian model leading to INLA for parameter estimation. This study contributes to 

the literature on joint modelling using approximate Bayesian inference with INLA as a time 

efficient alternative to Markov Chain Monte Carlo (MCMC).  
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