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Abstract 

Ozone, a major component of smog, forms through chemical reactions involving pollutants 

like volatile organic compounds and nitrogen oxides, primarily from vehicle emissions and 

industrial activities. As a key air quality indicator, high ozone levels pose environmental and 

health risks, causing respiratory issues such as asthma and bronchitis while increasing 

cardiovascular disease risk. This study proposes the Generalized XLindley Distribution to 

model ozone levels in Ilorin, Kwara State, and compares it with the Exponential-Lindley, 

Quasi XLindley, and Inversed XLindley distributions. The Kolmogorov-Smirnov test was 

used to assess goodness-of-fit, while parameter estimation was performed using the Maximum 

Likelihood Estimator and the Method of Moments. A simulation study explored model 

behavior across varying parameters, with survival and hazard functions analyzed for deeper 

insights. Model selection criteria, including AIC, AICC, BIC, and HQIC, were applied to 

evaluate efficiency. The Generalized Xlindley Distribution outperformed competing models, 

providing a more accurate fit. These findings enhance statistical modeling of air pollution data, 

improving air quality assessment and prediction in urban settings. 

Keywords: Weighted Distribution, Xlindley distribution, Maximum Likelihood Estimation, 

Ozone, Airquality  
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INTRODUCTION 

Air quality refers to the state of the air in our environment, particularly in relation to the 

presence of pollutants that can affect human health, ecosystems, and climate. Clean air is 

essential for maintaining public health and environmental balance, while poor air quality is 

linked to respiratory diseases, environmental degradation, and climate change (WHO, 2021). 

Airquality is influenced by Meteorological Conditions  (Seinfeld & Pandis, 2016), Volcanic 

Eruptions (Robock, 2000), Wildfires (Jaffe et al., 2020), Industrial Emissions (U.S. EPA, 

2022), Vehicle Exhaust (Kim et al., 2018), Burning Fossil Fuels (IPCC, 2021). Airquality 

significantly impacts environmental health, especially in urban areas with increased human 

activities. Ozone (O₃), a secondary pollutant, forms through photochemical reactions involving 

volatile organic compounds (VOCs) and nitrogen oxides (NOₓ) in sunlight (Seinfeld & Pandis, 

2016). Ground-level ozone harms respiratory health, agriculture, and ecosystems (WHO, 

2021). 

Air quality is commonly measured using the Air Quality Index (AQI), which categorizes air 

conditions based on pollutant concentrations. Common Air Pollutants are Particulate Matter 

(PM2.5 & PM10), Carbon Monoxide (CO), Sulfur Dioxide (SO₂), Nitrogen Dioxide (NO₂) and 

Ozone (O₃) 

Ozone (O₃) is a significant air pollutant and is often considered the second most concerning air 

pollutant after particulate matter (PM2.5) due to its widespread health and environmental 

effects (WHO, 2021). Unlike primary pollutants, which are directly emitted into the 

atmosphere, ozone is a secondary pollutant that forms through chemical reactions in the 

presence of sunlight (U.S. EPA, 2022). 

Ozone, a key component of smog, forms when pollutants from vehicles, industries, and other 

sources react under sunlight (EPA. 2020). Ground-level ozone contributes to air pollution and 

public health issues, including respiratory problems and cardiovascular diseases (WHO, 2021). 
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Anthropogenic sources like transportation, industrial processes, and agriculture significantly 

drive ozone formation (Seinfeld & Pandis, 2016), along with natural sources such as wildfires 

(Monks, et al. 2015). Chronic exposure to high ozone levels damages crops, forests, and 

materials, impacting the environment (Mills, et al. 2011). Vulnerable groups, such as children 

and the elderly, are particularly at risk (Bell, et al. 2006). Monitoring ozone levels is done 

through ground-based sensors, satellite data, and atmospheric models (Fishman, Bowman, & 

Brasseur, 2010). This study analyzed ozone levels in Ilorin, Nigeria, using statistical models 

derived from the Xlindley distribution family. The airquality data, which focused on ozone 

levels over a four-month period, were obtained from OpenWeatherMap (OpenWeatherMap, 

2024). 

The field of distribution theory has advanced with new families of continuous distributions, 

enhancing the flexibility of traditional probability models. The Lindley Distribution, 

introduced by Lindley (1958), offers a monotonically decreasing hazard rate, which is an 

improvement over the exponential distribution (Shanker, 2015). The Xlindley distribution 

(Chouia, & Zeghdoudi, 2021). Quasi Xlindley distribution (Ibrahim, Shah & Haq, 2023), and 

Inverse Xlindley distribution (Meriem, et al. 2022). have since been developed. The 

Generalized Xlindley Distribution (GXLD) extends the Quasi Xlindley model by adding a 

weighting mechanism, making it more adaptable for various statistical analyses (Merovci, et 

al. 2014; Beghriche, et al. 2023). This extension broadens the applicability of the model, 

offering better flexibility for data modeling in different disciplines. 

The pdf of Lindley distribution of random variable X, with scale parameter γ is given by: 

𝑓(𝑥) =  
𝜃2

𝜃+1
(1 + 𝑥)𝑒−𝜃𝑥 ,     𝑥 > 0, 𝜃 > 0     (1) 

The idea of this work is to extend Quasi Xlindley Distribution called a Generalized Xlindley 

Distribution (GXLD) with the hope that it will attract many applications in different disciplines. 
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On applying the weighted version, the third parameter indexed, to this distribution, it is 

expected to be more flexible to describe different lifetime data than its sub-models. 

In this paper, a New Generalized Quasi Xlindley distribution which includes lindley 

distribution, exponential - lindley distribution and Quasi Xlindley distribution as particular 

cases, has been proposed and discussed. The GXLD is developed by incorporating weighting 

mechanisms into the Quasi Xlindley model, thereby broadening its applicability. Weighted 

distributions are utilized to modulate the probabilities of the events as observed and transcribed. 

(Patil, et al, 1987; Saghir, et al., 2017).]. The hazard rate function and Survival function of the 

distribution have been derived and their shapes have been discussed for varying values of the 

parameters. The estimation of its parameters has been discussed using maximum likelihood 

method. Finally, the goodness of fit and the applications of the distribution have been explained 

through four lifetime data and the fit has been compared with the Quasi XLindley distribution, 

Power Xlindley distribution and Inverse Xlindley distribution. 

METHODS 

Generalized XLindley Distribution 

In this section, Generalized Xlindley distribution is introduced through the incorporation 

weighted mechanism into the Quasi Xlindley distribution. 

Chouia and Zeghdoudi (2012) proposed xlindley distribution as the mixture of exponential 

and Lindley distribution with proportion given as 𝑝1 = 
𝜃

1+𝜃
 and 𝑝2 = 1 − 

𝜃

1+𝜃
 respectively. 

The pdf was obtained as:  

𝑓(𝑥) =  
𝜃2(2+𝜃+𝑥)𝑒−𝜃𝑥

(1+𝜃)2
   𝑥 > 0, 𝜃 > 0     (2) 
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Ibrahim, et al (2023) introduced a new generalization of xlindley distribution by incorporating 

a new parameter into the xlindley distribution. The distribution is named Quasi-XLindley 

(QXL) distribution with pdf: 

𝑓(𝑥) =  
𝜃

1+𝛼
(𝛼 + 

𝜃(1+𝑥)

1+𝜃
) 𝑒−𝜃𝑥, α, θ > 0; x > 0    (3) 

The aim of this work is to proposed an extension of QXL distribution through introduction of 

weighted parameter. The weight was quoted by Rather and Ozel (2020) as  

𝑓𝑤(𝑥) =  
𝑥𝑐𝑓(𝑥)

𝐸(𝑥𝑐)
          (3) 

where c > 0 is the weight parameter and the expected value is defined as: 

𝐸(𝑥𝑐) =  ∫ 𝑥𝑐∞

0
𝑓(𝑥)𝑑𝑥        (4)  

Therefore, the Generalized Xlindley distribution is obtained over scale, shape and weight 

parameter as: 

𝑓(𝑥; 𝛼, 𝜃, 𝑐) =
𝜃(1+𝑐)

1+ 𝛼+𝑐
 
𝑥𝑐(𝛼(1+𝜃)+𝜃(1+𝑥))

Γ(1+𝑐)
𝑒−𝜃𝑥 ;        𝑥 > 0, 𝛼, 𝜃 > 0, 𝑐 > 0   (5) 

 

The figure below is plot of probability density function of GXLD at various parameter values 

 



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

 

87 

 

 

Figure 1: The probability density function of GXLD 

The cumulative distribution is obtained as: 

𝐹(𝑥;  𝛼, 𝜃, 𝑐) =  
(𝑥𝑐𝜃𝑐(𝑥𝜃)−𝑐((1+𝛼+𝑐+𝜃+𝛼𝜃)Γ(1+𝑐)−(𝛼+𝜃+𝛼𝜃)Γ(1+𝑐,𝑥𝜃)− Γ(2+𝑐),𝑥𝜃))

((1+𝛼+𝑐+𝜃+𝛼𝜃)Γ(1+𝑐)
  (6) 

The figure below is plot of cumulative density function of GXLD at various parameter values 

 

Figure 2: The cumulative density function of GXL distribution 

Moments 

𝐸(𝑥𝑟) =  𝜇𝑟
′ = 

𝜃−𝑟(1+𝑟+𝑐+ 𝛼+𝜃+𝛼𝜃)Γ(1+𝑟+𝑐)

(1+𝛼+𝑐+𝜃+𝛼𝜃)Γ(1+𝑐)
       (7) 

First moment:  

 𝐸(𝑥) =  𝜇1
′ = 

(2+𝑐+ 𝛼+𝜃+𝛼𝜃)Γ(2+𝑐)

𝜃(1+𝑐+ 𝛼+𝜃+𝛼𝜃)Γ(1+𝑐)
       (8) 
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Second moment:  

𝐸(𝑥2) =  𝜇2
′ = 

(3+𝛼+𝑐+𝜃+𝛼𝜃)Γ(3+𝑐)

𝜃2(1+𝛼+𝑐+𝜃+𝛼𝜃)Γ(1+𝑐)
       (9) 

Third Moment: 

𝐸(𝑥3) =  𝜇3
′ = 

(4+𝑐+ 𝛼+𝜃+𝛼𝜃)Γ(4+𝑐)

𝜃3(1+𝑐+𝛼+𝜃+𝛼𝜃)Γ(1+𝑐)
       (10) 

Fourth moment: 

𝐸(𝑥4) =  𝜇4
′ = 

(5+𝑐+ 𝛼+𝜃+𝛼𝜃)Γ(5+𝑐)

𝜃4(1+𝑐+𝛼+𝜃+𝛼𝜃)Γ(1+𝑐)
       (11) 

Statistical summaries are obtained as follows: 

Variance (𝜎2) =  
(1+𝑐)2((3+𝑐+𝛼+ 𝜃+𝛼𝜃)(2+𝑐)(1+𝛼+𝑐+𝜃+𝛼𝜃)− (2+𝑐+𝛼+𝜃+𝛼𝜃)2)

𝜃2(Γ(1+𝑐))
2   (12) 

Coefficient of variation: 

𝑐𝑣 =  
√2+𝑐2+4𝜃+ 𝜃2+ 𝛼2(1+𝜃)2+2𝛼(1+𝜃)(2+𝑐+𝜃)+𝑐(3+2𝜃)

(1+𝑐)(2+𝑐+𝛼+𝜃+𝛼𝜃)
      (13) 

Skewness: 

𝑠𝑘 =  
(4+𝑐+𝛼+𝜃+𝛼𝜃)Γ(4+𝑐)

𝜃3(1+𝑐+𝛼+𝜃+𝛼𝜃)[
(1+𝑐)(3+2𝜃)(2+𝑐2+4𝜃+𝜃2+𝛼2(1+𝜃)2+2𝛼(1+𝜃)(2+𝑐+𝜃)+𝑐)

𝜃2(1+𝑐+ 𝛼+𝜃+𝛼𝜃)2
]

3
2
Γ(1+𝑐)

   (14) 

Kurtosis is obtained as: 

𝑘𝑠 =  
(1+𝑐+𝛼+𝜃+𝛼𝜃)3(5+𝑐+𝛼+𝜃+𝛼𝜃)Γ(5+𝛽)

(1+𝑐)2(2+𝑐+4𝜃+𝜃2+𝛼2(1+𝜃)2+2𝛼(1+𝜃))(2+𝑐+𝜃)+𝑐(3+2𝜃)2Γ(1+𝑐)
     (15) 

Index of Dispersion is obtained as: 
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𝐼𝐷 =  
(2+𝑐2+4𝜃+𝜃2+𝛼2(1+𝜃)(2+𝑐+𝜃)+𝑐(3+2𝜃))

𝜃(1+𝑐+ 𝛼+𝜃+𝛼𝜃)(2+𝑐+𝛼+𝜃+𝛼𝜃)
       (16) 

Harmonic mean is obtained as: 

𝐻𝑀 = (
𝑐

1+𝛼+𝜃
[

𝑐+𝛼

Γ(1+𝜃)
+ 

𝜃𝑐(1+𝛼)

Γ(1+𝜃)
])

−1

       (17) 
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Table 1a: Statistical Properties of GXLD for α = 0.3 and 0.8 

α θ c µ Var Sk Ks ID HM 

0.3 

0.3 

0.3 7.1859 6.7935 6.0160 11.12028 2.9610 0.7538 

0.8 7.0817 39.8099 0.4159 0.39326 2.9863 0.3012 

1.2 7.0242 69.7530 0.1915 0.14933 3.0072 0.2076 

2.0 6.9467 139.6385 0.1033 0.05457 3.0453 0.1301 

0.8 

0.3 2.3390 2.4924 1.4282 1.94411 1.0743 2.5253 

0.8 2.3646 6.9482 0.3476 0.37259 1.0824 0.9554 

1.2 2.3799 11.1155 0.2088 0.19547 1.0895 0.6403 

2.0 2.4021 21.0158 0.1589 0.09615 1.1036 0.3871 

1.2 

0.3 1.4399 1.4093 0.9954 1.29031 0.6991 4.1772 

0.8 1.4709 3.3830 0.3255 0.35933 0.7047 1.5574 

1.2 1.4901 5.2453 0.2167 0.21014 0.7095 1.0345 

2.0 1.5192 9.6948 0.1862 0.11446 0.7191 0.6173 

2.0 

0.3 0.7738 0.6293 0.7209 0.90760 0.4032 7.7778 

0.8 0.7979 1.3472 0.3055 0.34356 0.4069 2.8723 

1.2 0.8137 2.0296 0.2266 0.22305 0.4100 1.8954 

2.0 0.8390 3.6690 0.2197 0.13480 0.4158 1.1186 

0.8 

0.3 

0.3 6.2374 17.7240 1.4282 1.94411 2.8649 0.9470 

0.8 6.3057 49.4097 0.3476 0.37259 2.8864 0.3583 

1.2 6.3465 79.0438 0.2088 0.19547 2.9054 0.2401 

2.0 6.4055 149.4454 0.1589 0.09615 2.9429 0.1452 

0.8 

0.3 2.0621 3.0061 1.2476 2.09181 1.1204 2.6365 

0.8 2.1163 7.2167 0.4492 0.62610 1.1211 0.9901 

1.2 2.1509 11.2295 0.3185 0.37818 1.1231 0.6607 

2.0 2.2042 20.9049 0.2933 0.21148 1.1288 0.3969 

1.2 

0.3 1.2833 1.4240 1.2113 2.19277 0.7583 4.0376 

0.8 1.3235 3.2483 0.5038 0.76145 0.7577 1.5126 

1.2 1.3501 4.9989 0.3789 0.48262 0.7581 1.0078 

2.0 1.3926 9.2463 0.3664 0.28212 0.7602 0.6040 

2.0 

0.3 0.7018 0.5435 1.1984 2.35796 0.4606 6.9006 

0.8 0.7258 1.1803 0.5785 0.94772 0.4602 2.5806 

1.2 0.7424 1.7955 0.4619 0.63177 0.4602 1.7172 

2.0 0.7703 3.2986 0.4655 0.38800 0.4607 1.0270 
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Table 1b: Statistical Properties of GXLD for α = 1.2 

 

α θ c µ Var Sk Ks ID HM 

1.2 

0.3 

0.3 5.7595 22.5490 0.9954 1.29031 2.7962 1.0443 

0.8 5.8834 54.1285 0.3255 0.35933 2.8188 0.3893 

1.2 5.9606 83.9240 0.2167 0.21014 2.8382 0.2586 

2.0 6.0768 155.1162 0.1862 0.11446 2.8763 0.1543 

0.8 

0.3 1.9249 3.2039 1.2113 2.19277 1.1374 2.6917 

0.8 1.9853 7.3086 0.5038 0.76145 1.1366 1.0084 

1.2 2.0252 11.2474 0.3789 0.48262 1.1372 0.6718 

2.0 2.0889 20.8042 0.3664 0.28212 1.1402 0.4027 

1.2 

0.3 1.2062 1.4132 1.3422 2.75824 0.7876 3.9689 

0.8 1.2470 3.1612 0.6111 1.03231 0.7851 1.4894 

1.2 1.2748 4.8501 0.4774 0.67128 0.7840 0.9934 

2.0 1.3207 8.9771 0.4708 0.40132 0.7831 0.5965 

2.0 

0.3 0.6667 0.4981 1.5367 3.64186 0.4941 6.4734 

0.8 0.6892 1.0915 0.7698 1.47332 0.4919 2.4324 

1.2 0.7051 1.6689 0.6240 0.98505 0.4905 1.6239 

2.0 0.7326 3.0913 0.6214 0.60471 0.4885 0.9767 

 

From table 1, the follows can be deduced 

• as α, θ, and c increase (i.e. tends to ∞), the µ becomes smaller, variance, skewness, and 

kurtosis tends to increase, showing a wider, more extreme distribution with lower 

central values. 

• Also, as α, θ, and c increase, skewness values are mostly positive but decrease, 

suggesting a shift towards a more symmetric distribution with larger parameters. 

• The kurtosis also tends to increase with increasing α, θ, and c, indicating that higher 

values of these parameters are associated with more extreme values (heavier tails). 

• Both ID and HM tend to decrease as α, θ, and c increase, indicating diminishing returns 

or a saturation effect with larger values of these parameters. 

• c modifies the central tendency and tail behavior of the distribution 

In general, α determines the overall scale of the distribution, with higher values compressing it 

and reducing both the mean and skewness. The parameter θ influences the dispersion. 
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Survival Function 

The survival function is a function that gives the probability that a patient, device, or other 

object of interest will survive past certain time (Jiang, & Guterman, 2024). Let the lifetime x 

be a continuous random variable with cumulative density function F(x) and probability density 

function f(x) on the interval [0, ∞]. survival function of GXLD is given as:   

𝑠(𝑥; 𝛼, 𝜃, 𝑐) = 1 − 𝐹(𝑥; 𝛼; 𝜃, 𝑐)       (18) 

𝑠(𝑥; 𝛼, 𝜃, 𝑐) = 1 +
𝑥𝑐𝜃𝑐(𝑥𝜃)(−(1+𝑐+𝛼+𝜃+𝛼𝜃)Γ(1+𝑐)+(𝛼+𝜃+𝛼𝜃)Γ(1+𝑐,𝑥𝜃)+(2+𝑐,𝑥𝜃))

𝑐(1+𝑐+𝛼+𝜃+𝛼𝜃)Γ(1+𝑐)
  (19) 

Figure 3 present the shapes of the survival function of the proposed GXLD at selected values 

of α, θ and c.  
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Figure 3: The survival function of GXLD for various choices of parameter 

Hazard Function 

The hazard function h(x) of an event is the probability of the failure of the event at time x. It 

is the probability that an event will fail at a given time x. The hazard function h(x) is given as: 

ℎ(𝑥) =  
𝑓(𝑥)

1−𝐹(𝑥)
= 

𝑓(𝑥)

𝑠(𝑥)
= 

𝑓(𝑥; 𝛼,𝜃,𝑐)

𝑠(𝑥;𝛼,𝜃,𝑐)
        (20) 

the hazard function of GXLD is given as 

 ℎ(𝑥; 𝛼, 𝜃, 𝑐) =  
(𝛼+

(1+𝑥)

1+𝜃
)𝜃𝑒−𝑥𝜃

(1+𝛼)(1+
𝑥𝑐𝜃𝑐(𝑥𝜃)(1+𝑐+𝛼+𝜃+𝛼𝜃)Γ(1+𝑐)+(𝛼+𝜃+𝛼𝜃)Γ(2+𝑐,𝑥𝜃)

𝑐(1+𝑐+𝛼+𝜃+𝛼𝜃)Γ(1+𝑐)
)
    (21)
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Figure 4: The hazard function of GXLD for various choices of parameter 

Figure 4 presented the shapes of the hazard function of the proposed GXLD at selected values 

of α, θ and c. The plots show an increasing pattern which suggests that items are more likely to 

fail at the beginning after which they maintain a constant failure rate. This means that the failure 

may likely happen during the useful life of the item and failure occurs at random. 

Maximum Likelihood Estimation (MLEs) 

The Maximum Likelihood Estimate (MLE) is a widely used method for estimating the 

parameters of an assumed probability distribution. This is because of MLE estimators have 

desirable properties such as consistency, asymptotic efficiency, and invariance. To obtain the 

maximum likelihood estimators of the parameters of the GXLD, let x1, x2, ..., xn be a random 

sample of size n from the GXLD with the log-likelihood function is defined as 

𝐿(𝛼, 𝜃, 𝑐; 𝑥) = ∏ 𝑓(𝑥; 𝛼, 𝜃, 𝑐)𝑛
𝑖=1        (22) 

To find the MLE �̂�, 𝜃, �̂�  take the partial derivatives of the log-likelihood function with 

respect to 𝛼, 𝜃 and 𝑐 set them to zero as: to differentiate with respect to 𝛼 

𝜕𝐿(𝛼,𝜃,𝑐;𝑥)

𝜕𝛼
= 

𝑛

1+𝑐+𝛼
∑

1

𝛼+𝜃+𝑥𝑖𝜃+𝛼𝜃

𝑛
𝑖=1         (23) 

𝜕𝐿(𝛼,𝜃,𝑐;𝑥)

𝜕𝜃
= ∑ (

1+𝑐

𝜃
+

1+𝑥𝑖+𝛼

𝛼+𝜃+𝑥𝑖𝜃+𝛼𝜃
− 𝑛)𝑛

𝑖=1        (24) 

𝜕𝐿(𝛼,𝜃,𝑐;𝑥)

𝜕𝑐
= 

𝜃1+𝑐𝑥𝑐(𝛼(1+𝜃)+𝜃(1+𝑥))𝑒−𝜃𝑥

(1+𝛼+𝑐)Γ(1+𝑐)
 [𝑙𝑛(𝜃) − 

1

(1+𝛼+𝑐)
+ ln(𝑥) − 𝜓(1 + 𝑐)]  (25) 

These three natural log-likelihood do not seem to be solved directly. However, the Fisher’s 

scoring method was used to solve these equations and an Hessian Matrix of the log-likelihood 
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function lnL, which consists of second-order partial derivatives of lnL with respect to the 

parameters 𝛼, 𝜃 and 𝑐 was obtained 

𝐼(𝛼, 𝜃, 𝑐) =  

[
 
 
 
 
 
 
𝜕2𝐼𝑛𝐿

𝜕𝛼2

𝜕2𝐼𝑛𝐿

𝜕𝛼𝜕𝜃

𝜕2𝐼𝑛𝐿

𝜕𝛼𝜕𝑐
𝜕2𝐼𝑛𝐿

𝜕𝜃𝜕𝛼

𝜕2𝐼𝑛𝐿

𝜕𝜃2

𝜕2𝐼𝑛𝐿

𝜕𝜃𝜕𝑐
𝜕2𝐼𝑛𝐿

𝜕𝑐𝜕𝜃

𝜕2𝐼𝑛𝐿

𝜕𝑐𝜕𝜃

𝜕2𝐼𝑛𝐿

𝜕𝑐2 ]
 
 
 
 
 
 

 

 where 𝛼0, 𝜃0   and 𝑐0 are the initial values of 𝛼, 𝜃 and 𝑐 respectively. These equations were 

solved iteratively till sufficiently close values of �̂�, 𝜃 and �̂� are obtained. 

Simulation Study 

In this section, we evaluate �̂�𝑀𝐿𝐸 , 𝜃𝑀𝐿𝐸  and cˆ
MLE through a brief simulation study. The 

simulation study of the GXLD is carried out by choosing random samples, say n = 50, 100, ..., 

5000. These samples are obtained using the inverse cdf. The simulation study is conducted for 

the combination values 𝛼, 𝜃 and c respectively. The judgment about the performances of the 

�̂�𝑀𝐿𝐸 , 𝜃𝑀𝐿𝐸 and cˆ
MLE  are made by considering two evaluation criteria. These criteria are given 

by 

Mean Square Error (MSE) 

MSE (�̂�𝑀𝐿𝐸) =  
1

𝑁
∑ (�̂�𝑖 −  𝛼)2𝑛

𝑖=1   

Bias 

Bias (�̂�𝑀𝐿𝐸) =  
1

𝑁
∑ (�̂�𝑖 −  𝛼)𝑛

𝑖=1  
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The above evaluation criteria are also computed for (𝜃𝑀𝐿𝐸)and (�̂�𝑀𝐿𝐸). The simulation study 

is performed for the combination of parameter values by choosing random samples say n = 

50, 100, 300, 500, 700, 1000, 5000. The results are presented numerically in Tables 3. 

Table 2: The numerical illustration of the Simulation Study of the GXLD for �̂�𝑀𝐿𝐸, �̂�𝑀𝐿𝐸and 

�̂�𝑀𝐿𝐸 

n Parameter MLE Biases RMSE 

50 

α 208.09 206.59 206.59 

θ 33.47 30.97 30.96 

c 15.11 13.61 13.61 

100 

α 125.29 123.79 123.79 

θ 28.83 26.33 26.33 

c 12.29 10.79 10.79 

300 

α 565.21 563.71 563.71 

θ 36.18 33.68 33.68 

c 15.89 14.39 14.39 

500 

α 372.53 371.03 371.03 

θ 26.67 24.17 24.17 

c 11.21 9.71 9.71 

700 

α 642.54 641.04 641.04 

θ 30.28 27.78 27.78 

c 12.90 11.40 11.40 

1000 

α 467.13 465.63 465.63 

θ 29.80 27.30 27.29 

c 12.81 11.31 11.30 

5000 

α 1103.33 1101.83 1101.83 

θ 30.52 28.02 28.01 

c 13.17 11.67 11.47 

Interpretation 

From the results of the simulation of GXLD in Table 3, the followings were observed: 

• Smaller sample sizes lead to high bias and RMSE, particularly for α, suggesting that α 

is more sensitive to sample size. 

• As n -> ∞, θ and c parameters show relatively better performance compared to α,  

• The RMSE values being equal to Bias indicates that the variance component is 

minimal or negligible, meaning most of the error comes from bias, not variability. 
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• As n -> ∞, especially from n = 500 onwards, θ and c show significant improvements, 

while α still struggles with high bias, suggesting that further modifications or 

reparameterization might be needed for α. 

Figure 5 presented the plots of bias and RMSE against different sample size 

Models Selection Method 

The model selection criteria considered in this thesis are the AIC (Akaike Information 

Criterion) by Akaike (1974), AICC (Corrected Akaike Information Criterion) by Kletting and 

Glatting (2009), HQIC (Hannan-Quinn Information Criterion) by Maïnassara and 

Kokonendji (2016)] and BIC (Bayesian Information Criterion) by Weakliem (1999)and 

Kolmogorov Smirnov  by Massey (1951), Anderson - Darling, (1952) and  Pearson (1900). 

Where the AIC, AICC, BIC, HQIC and KS are obtained as follows: 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿)        (26) 

𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶 + 
𝑘(𝑘−1)

𝑛−𝑘−1
       (27) 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2ln (𝐿)       (28) 

𝐻𝑄𝐼𝐶 = −2 ln(𝐿) + 6ln (ln(𝑛))      (29) 

𝐾𝑆 = 𝑠𝑢𝑝𝑥|𝐹𝑛(𝑥) − 𝐹𝑜(𝑥)|      (30) 

𝐴𝐷 =  −𝑛 − ∑
2𝑖−1

𝑛

𝑛
𝑖=1 [𝑙𝑜𝑔(𝐹(𝑥𝑖)) + 𝑙𝑜𝑔(1 − 𝐹(𝑥𝑛−𝑖+1))]  (31) 

𝜒𝑖
2 = ∑

(𝑜𝑖−𝑒𝑖)
2

𝑒𝑖

𝑘
𝑖=1         (32) 
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Where k is the number of parameters in the distribution and n is the number of observations. 

APPLICATION 

Dataset: The dataset is 2902 data points measure of ozone in airquality per hour of 

September to December 2024 Ilorin, Kwara State. (OpenWeatherMap, 2025). 

 

Figure 6: Airquality dataset of Ilorin, Nigeria 

Table 3: Parameter estimates and goodness of fit test statistics for dataset 

Model MLE -ll AIC AICC HQIC BIC K-S KS p-

value 

AD Chi-square 

p-value 

GXLD   �̂� = 0.39284 

𝜃 ̂ = 0.04904 

𝑐 ̂ = 0.14807 

13270.98 

 

26547.19 

 

26547.20 

 

26554.20 

 

26557 

 

0.1088 0.0000 0.0471 0.1129 

QXLD α̂ =0.1973  

 θ ̂ = 0.04736 

13272.76 

 

26550.11 

 

26550.01 26554.20 26561  0.1271 

 

0.0000 0.0322 0.1485 

IXLD  �̂� = 29.8916 17217.2 34436.4 34436.40 34438.55  34442 0.7643 0.0000 0.0081 0.0000 

XLD θ ̂ = 0.05025 13290 26581 26581 26575 26587 0.2161 0.0000 0.0011 0.0026 

Table 3 shows goodness of fit tested with the airquality dataset, its shows that GXLD 

performed better with the lowest AIC (26547.19), kolmogorov smirnov value 0.1088 indicate 

that the empirical and theoretical distributions are closer, suggesting a better fit. The KS p-

value (0.0000), shows that the difference observed is statistically significant suggesting. 
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Anderson-Darling p-value  it is the best model for this dataset among the model consider. Other 

models like QXLD, PXLD and IXLD have higher AIC and negative log-likelihood, making 

them less preferred. The second and the other datasets performed the same, as GXLD shows 

lowest value of -ll, AIC, AICC, HQIC, BIC, K-S. 

 

Figure 7: plot of Empirical versus Fitted CDFs 

CONCLUSION 

This paper aims to model airquality of Ilorin, Kwara State, Nigeria, using the XLindley 

distribution family. The ozone component of the air quality data was obtained from the 

OpenWeatherMap website, covering four months from September 1 to December 31, 2024. 

Four members of the XLindley distribution family, including the baseline distribution, were 

considered: the XLindley distribution (XLD), Inverse XLindley distribution (IXLD), Quasi 

XLindley distribution (QXLD), and Generalized XLindley distribution (GXLD). The goal was 

to identify the best-fitting model for the dataset using model selection criteria such as log-

likelihood (ll), Akaike Information Criterion (AIC), Corrected Akaike Information Criterion 
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(AICC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information Criterion 

(HQIC). 

The GXLD exhibited the lowest values across the model selection criteria, with ll = 13270.98, 

AIC = 26547.19, AICC = 26547.20, HQIC = 26554.20, and BIC = 26557.01. This indicates 

that it provides the best fit by striking an optimal balance between goodness-of-fit and model 

complexity. 

Additionally, three goodness-of-fit tests were conducted to evaluate the performance of the 

empirical and theoretical distributions: the Kolmogorov-Smirnov (KS) test, the Anderson-

Darling (AD) test, and the Chi-square test. The GXLD achieved a KS statistic of 0.1088 with 

a p-value of 0.0000, suggesting that it may not perfectly capture the distribution but performs 

better than the other models. The AD test yielded a p-value of 0.0471, while the Chi-square 

test produced a p-value of 0.1129, further indicating the superior performance of the GXLD 

compared to the alternative models considered (Wilks, 2011). 

FUTURE RESEARCH 

Having consider GXLD as best model for airquality dataset of Ilorin Kwara State, it is therefore 

suggested that future research should extend the analysis to other pollutants, such as particulate 

matter (PM2.5 and PM10), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and carbon monoxide 

(CO), to provide a more comprehensive assessment of air quality of the city. Extending the 

study to assess the potential health impacts of varying ozone levels, especially during peak 

pollution periods, could also provide valuable information for policymakers and health 

authorities. The performance of the GXLD suggests its suitability for the dataset; however, 

more refined estimation techniques, such as Bayesian inference or bootstrapping, could be 

employed to improve parameter accuracy and reduce estimation variability. Predictive models 

such as Machine learning approaches i.e. time series models or ensemble learning, could be 

integrated with the distribution-based modelling for enhanced predictive. 



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

 

101 

 

REFERENCES 

Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on 

automatic control, 19 (6), 716–723. 

Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain "goodness of fit" 

criteria based on stochastic processes. The Annals of Mathematical Statistics, 23(2), 

193-212. https://doi.org/10.1214/aoms/1177729337 

Beghriche, A., Tashkandy, Y. A., Bakr, M. E., Halim, Z., Gemeay, A. M., Hossain, M. M., et 

al. (2023). The inverse xlindley distribution: Properties and application. IEEE Access. 

Bell, M. L., et al. (2006). Ozone and short-term mortality in 95 US urban communities, 1987–

2000. JAMA, 295(5), 1127-1135. 

Chouia, S., & Zeghdoudi, H. (2021). The xlindley distribution: Properties and application. 

Journal of Statistical Theory and Applications, 20 (2), 318–327. 

EPA. (2020). Ground-Level Ozone: Health and Environmental Impacts. U.S. Environmental 

Protection Agency. 

Fishman, J., Bowman, K. W., & Brasseur, G. P. (2010). Satellite Observations of Tropospheric 

Ozone. Springer. 

Ibrahim, M., Shah, M. K. A., & Haq, M. Ahsan-ul. (2023). New two-parameter xlindley 

distribution with statistical properties, simulation and applications on lifetime data. 

International Journal of Modelling and Simulation, 1–14. 

Intergovernmental Panel on Climate Change (IPCC). (2021). Climate Change 2021: The 

Physical Science Basis. Cambridge University Press.  

https://doi.org/10.1214/aoms/1177729337


Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

 

102 

 

Jaffe, D. A., O'Neill, S. M., Larkin, N. K., Holder, A. L., Peterson, D. L., Halofsky, J. E., & 

Rappold, A. G. (2020). Wildfire and air quality: Perspectives on a changing world. 

Atmospheric Chemistry and Physics, 20(5), 3473-3481.  

Jiang, F., & Guterman, E. (2024). Survival analysis. Statistical Methods in Epilepsy, 124–142. 

Kim, K. H., Kabir, E., & Kabir, S. (2018). A review on the human health impact of airborne 

particulate matter. Environmental International, 74, 136-143.  

Kletting, P., & Glatting, G. (2009). Model selection for time-activity curves: the corrected 

akaike information criterion and the f-test. Zeitschrift für medizinische Physik, 19(3), 

200–206. 

Lindley, D. V. (1958). Fiducial distributions and bayes’ theorem. Journal of the Royal 

Statistical Society. Series B (Methodological), 102–107. 

Maïnassara, Y. B., & Kokonendji, C. C. (2016). Modified schwarz and hannan–quinn 

information criteria for weak varma models. Statistical Inference for Stochastic 

Processes, 19, 199–217. 

Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the 

American Statistical Association, 46(253), 68–78. 

https://doi.org/10.1080/01621459.1951.10500769 

Meriem, B., Gemeay, A. M., Almetwally, E. M., Halim, Z., Alshawarbeh, E., Abdulrahman, 

A. T., et al. (2022). [retracted] the power xlindley distribution: Statistical inference, 

fuzzy reliability, and covid-19 application. Journal of Function Spaces, 2022 (1), 

9094078. 



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

 

103 

 

Merovci, F., Sharma, V. K., et al. (2014). The delta-lindley distribution: properties and 

applications. Journal of applied mathematics, 2014 . 

Mills, G., et al. (2011). Impacts of tropospheric ozone on vegetation. Critical Reviews in 

Environmental Science and Technology, 41(6), 1012-1042. 

Monks, P. S., et al. (2015). Tropospheric ozone and its precursors from global to regional 

scales. Atmospheric Chemistry and Physics, 15(5), 8881-8960. 

OpenWeatherMap. (2025). OpenWeatherMap API documentation. OpenWeatherMap. 

Retrieved from https://openweathermap.org 

Patil, G. P., Rao, C. R., Zelen, M., & Patil, G. P. (1987). Weighted distributions. Citeseer. 

Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in 

the case of a correlated system of variables is such that it can be reasonably supposed 

to have arisen from random sampling. Philosophical Magazine, 50(302), 157-175. 

https://doi.org/10.1080/14786440009463897 

R Core Team (2024). _R: A Language and Environment for Statistical Computing_. R 

Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>. 

Rather, A., & Ozel, G. (2020). The weighted power Lindley distribution with applications on 

the life time data. Pakistan Journal of Statistics and operation research, 16(2).  

Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191-219.  

Saghir, A., Hamedani, G. G., Tazeem, S., & Khadim, A. (2017). Weighted distributions: A 

brief review, perspective and characterizations. International journal of Statistics and 

Probability  

https://openweathermap.org/
https://doi.org/10.1080/14786440009463897


Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

 

104 

 

Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air 

Pollution to Climate Change. Wiley. 

Shanker, R. (2015). Shanker distribution and its applications. International journal of statistics 

and Applications, 5 (6), 338–348. 

U.S. Environmental Protection Agency (EPA). (2022). Air Quality Index: A Guide to Air 

Quality and Your Health. Retrieved from www.epa.gov 

Weakliem, D. L. (1999). A critique of the bayesian information criterion for model selection. 

Sociological Methods & Research, 27 (3), 359–397. 

Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences. Academic Press. 

Wolfram, S. (1991). Mathematica: a system for doing mathematics by computer. Addison 

Wesley Longman Publishing Co., Inc. 

World Health Organization. (2021). Air Quality Guidelines: Global Update 2021. Retrieved 

from https://www.who.int  

https://www.epa.gov/
https://www.who.int/

