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ABSTRACT 

The Inverse Lomax Distribution, a flexible heavy-tailed distribution, has gained attention in 

statistical modeling, particularly in fields like finance, reliability engineering, and risk analysis. 

This research delves into the applications of the Inverse Lomax Distribution, offering insights into 

its robustness in various contexts. The parameters of the ILD were estimated using maximum 

likelihood method. Key advantages include its ability to model data with high skewness and heavy 

tails, making it a strong candidate for applications requiring robust outlier sensitivity. Additionally, 

the distribution’s straightforward form enables analytical tractability, facilitating parameter 

estimation and inference. 

Keywords: Inverse Lomax Distribution; Inverse Lomax Log-Logistic Distribution; Skewed 

Distribution. 

1. INTRODUCTION 

The Lomax distribution, introduced by Lomax (1954), has been widely used in various 
fields such as economics, engineering, and survival analysis due to its heavy-tailed 
characteristics and flexibility in modeling data with decreasing failure rates. Its inverse 
counterpart, the Inverse Lomax Distribution (ILD), has garnered attention for its 
applicability in modeling lifetimes and reliability data where the hazard function exhibits 
specific behaviors. Inverse Lomax Distribution is part of an inverted family of distributions, 
and it can be used in a variety of situations where the failure rate is non-monotonic (Singh 
et al. 2013). Inverse Lomax distribution is an alternative to a lot of distributions like 
Gamma, Weibull, e.t.c. (Sharma and Kumar, 2020). 
 
Recent studies have focused on extending and generalizing the ILD to enhance its flexibility 
and applicability. For instance, Hassan and Abd-Allah (2019) proposed the Inverse Power 
Lomax Distribution, introducing an additional shape parameter to better model various 
data behaviors. Similarly, Almarashi (2021) developed a modified version of the ILD, 
termed the Modified Logarithmic Transformed Inverse Lomax Distribution, which 
demonstrated improved fitting for engineering and medical data. Furthermore, 
Muhammed et al. (2022) introduced the Inverse Lomax Chen Distribution, combining 
properties of the ILD and the Chen distribution to model data with different hazard rate 
shapes. 
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Despite these advancements, there remains a gap in the literature concerning the comprehensive 

exploration of the ILD's potential applications across diverse fields. Specifically, while various 

generalizations have been proposed, a unified framework that systematically evaluates the ILD's 

applicability and performance in real-world scenarios is lacking. 

The analysis of extreme events, particularly those related to natural catastrophes, has garnered 

significant attention in both statistical and actuarial sciences. Understanding the distribution and 

characteristics of such events is crucial for risk assessment, financial modeling, and disaster 

preparedness. This study focuses on a unique dataset developed by Hogg and Klugman (2009), 

which captures 40 losses incurred in 1977 due to wind-related catastrophes. The dataset is 

characterized by its extreme right skewness, a common feature in loss distributions, where a 

majority of the observations cluster at lower values, while a few extreme outliers significantly 

influence the overall distribution. Extreme Value Theory (EVT) is a statistical framework 

specifically designed to model the tail behavior of distributions, making it highly relevant for 

analyzing datasets with extreme skewness and outliers. The dataset in question exhibits a 

pronounced right skew, with a few extreme values (e.g., 32 and 43) that dominate the 

distribution. EVT has been widely applied in actuarial science to model catastrophic losses, as 

discussed by Embrechts et al. (2013) in their seminal work, Modelling Extremal Events for 

Insurance and Finance. They emphasize the importance of understanding tail behavior for 

accurate risk assessment and pricing of insurance products. The presence of extreme skewness 

in loss data poses significant challenges for traditional statistical methods, which often assume 

normality or symmetry. McNeil et al. (2005), in Quantitative Risk Management: Concepts, 

Techniques, and Tools, highlight the limitations of conventional models, such as the Gaussian 

distribution, in capturing the tail behavior of skewed datasets. They advocate for the use of heavy-

tailed distributions, such as the Pareto or Generalized Extreme Value (GEV) distributions, which 

are better suited for modeling extreme events. Wind-related catastrophes, such as hurricanes 

and tornadoes, have been the subject of numerous studies due to their significant economic 

impact. Smith (2003), in Statistics of Extremes: With Applications in Environment, Insurance, and 

Finance, provides a comprehensive analysis of wind-related loss data, highlighting the importance 

of extreme value analysis in understanding the frequency and severity of such events. 

The dataset presented by Chhikara and Folks (1977) provides a valuable resource for studying the 

active repair times (in hours) of an Airborne Communication Transceiver. This dataset has been 

widely cited in statistical literature, particularly in the context of reliability analysis, survival 

analysis, and the application of lifetime distributions. Chhikara and Folks (1977) originally used 

this dataset to demonstrate the applicability of the inverse Gaussian distribution in modeling 

repair times. The inverse Gaussian distribution is particularly suited for data with positive 

skewness and is often used in reliability engineering to model lifetimes and failure times. Their 

work highlighted the flexibility of the inverse Gaussian distribution in capturing the variability and 

skewness inherent in repair time data. The dataset has been extensively used in reliability studies 

to estimate the mean time to repair (MTTR) and to analyze the failure rates of systems. For 

instance, Padgett and Spurrier (1985) utilized this dataset to compare the performance of 
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nonparametric and parametric methods in reliability analysis. They emphasized the importance 

of choosing appropriate models for skewed data to ensure accurate predictions of system 

reliability. Several studies have employed this dataset to evaluate the performance of goodness-

of-fit tests for skewed distributions. For example, D'Agostino (2017) used this dataset to compare 

the power of various statistical tests, such as the Kolmogorov-Smirnov and Anderson-Darling 

tests, in detecting deviations from the inverse Gaussian distribution. The presence of extreme 

values, such as 22.0 and 24.5 hours, has made this dataset a subject of interest in extreme value 

theory. Researchers have used it to study the tail behavior of repair times and to develop robust 

models for predicting rare but critical events in system maintenance. 

Aim and Objectives 

This paper aims to bridge a gap by providing a thorough investigation of the Inverse Lomax 

Distribution and its applications. The specific objectives are: 

i. To evaluate the performance of the ILD and its variants in modeling real-world data from 

different domains. 

ii. To identify potential areas where the ILD can be effectively applied and suggest directions 

for future research. 

2 Methodology 

2.1 The Shapes of the ILD 

The probability density function (PDF), cumulative distribution function (CDF), and 
quantile function of Inverse Lomax distribution are given in equations (1), (2), and (3) as: 

  (1) 

      (2) 
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      (3) 

where λ and γ are the scale and shape parameters, and u is uniformly distributed between zero 
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Figure 1: The pdf plot of ILD at various parameter values 

 

Figure 2: The various hazard shapes of the ILD 

From figure 1, each combination of λ and γ would produce a different curve on the plot. As γ 

increases, the shape of the distribution might change, potentially becoming more skewed or 

peaked. Also form figure 2, the hazard function can be increasing and decreasing based on the 

values of the parameters. 

2.2 The Maximum Likelihood Estimates of the ILD 

The log-likelihood function oof the ILD based on equation (1) is : 
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The partial derivative of equation (4) with respect to λ is given as: 

      (5) 

The partial derivative of equation (4) with respect to γ is given as: 

     (6) 

Equations (5) and (6) can not be solve directly because the parameters are non-linear 

in parameters. Numerical methods like Newton-Raphson approaches can be used to 

solve the equations.  

3 Simulation and Applications 

3.1 The Simulation Studies 

Here, a simulation studies was conducted to evaluate the properties of the estimates and reported 

in Table 1. Equation (3) was used to draw samples from Inverse Lomax Distribution. Also, 1,000 

replications were considered. Sample sizes of 50, 100, 200, and 500 were considered. Estimates 

of the parameters, bias, and root mean squared errors (RMSE) were presented. The values of the 

parameters (guess) were 0.7 and 0.5 for λ and γ. 

Table 1:The Simulation Results 

Sample Size Metrics �̂� 
𝛾 

50 Means 0.7196 0.5434 

 Bias 0.0196 0.0434 

 RMSE 0.3769 0.1555 

100 Means 0.7037 0.5208 

 Bias 0.0037 0.0208 

 RMSE 0.2395 0.0862 

200 Means 0.7058 0.5088 

 Bias 0.0058 0.0088 

 RMSE 0.1751 0.0555 

500 Means 0.7051 0.5027 

 Bias 0.0051 0.0027 

 RMSE 0.1092 0.0339 
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Table 1 suggest that the estimates approach the true parameters as the sample sizes 

increases. The biases and RMSE approaches zero as the sample size increases. 

3.2 The Applications 

Goodness-of-fit Statistics used in this study are: Kolmogorov-Smirnov (KS), Cramer 

Von-Mises, and Anderson Darling statistics. While the Goodness-of-fit Criteria are the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 

The first dataset: The following extreme right skewed dataset, developed by Hogg and 

Klugman (2009), consists of 40 losses that occurred in 1977 due to wind-related 

catastrophes, and the observations are: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 

5, 5, 5, 6, 6, 6, 6, 8, 8, 9, 15, 17, 22, 23, 24, 24, 25, 27, 3243. 

Table2: Goodness-of-Fit Statistics 

Statistic ILD Weibull Gamma Lnorm Exp 

KS 0.17 0.34 0.43 0.21 0.73 
CvM 0.23 0.86 1.85 0.32 7.79 
AD 1.57 4.97 9.04 2.19 52.63 

 

Table 3: Goodness-of-Fit Criteria 

Criterion ILD Weibull Gamma Lnorm Exp 

AIC 246.74 297.64 328.03 266.28 413.28 
BIC 249.96 300.87 331.25 269.50 414.89 
-LL 121.37 146.82 162.01 131.14 205.64 

Mles 4.62 (0.01), 
8.21 (0.04) 

0.46 (0.04), 
13.89 (5.35) 

0.26 (0.05), 
0.01 (0.01) 

1.81 (0.22), 
1.38 (0.16) 

0.01 
(0.01) 

 

 

Table 2 presents the Goodness-of-fit Statistics for the first dataset (wind-related catastrophes). ILD 

is the best candidate with lower values of all the statistics. Moreover, Table 3 presents the 

Goodness-of-fit Criteria for first dataset. The table suggest that ILD is the best with minimum 

values of all the criteria. 

The second dataset was presented by Chhikara and Folks (1977). It presents the active repair times 

(in hours) for an Airborne Communication Transceiver. The dataset is: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 

0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 

3.0, 3.0,3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3,22.0, 24.5.  

Table 4: Goodness-of-Fit Statistics 

Statistic ILD Weibull Gamma Exp 

KS 0.07 0.12 0.15 0.16 

CvM 0.04 0.12 1.18 0.21 

AD 0.32 0.89 1.10 1.26 
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Table 5: Goodness-of-Fit Criteria 

Criterion ILD Weibull Gamma Exp 

AIC 205.23 212.94 213.86 212.01 
BIC 208.88 216.59 217.52 213.84 
-LL 100.61 104.47 104.93 105.01 

Mles 0.07 (0.19), 16.74 
(41.91) 

0.89 (0.09), 3.39 
(0.59) 

0.93 (0.17), 0.26 
(0.06) 

0.28 
(0.04) 

 

Table 4 presents the Goodness-of-fit Statistics for the second dataset (active repair times). ILD is 

the best candidate with lower values of all the statistics. Moreover, Table 5 presents the Goodness-

of-fit Criteria for second dataset. The table suggest that ILD is the best with minimum values of 

all the criteria. 

4 CONCLUSIONS 

In this study, ILD was considered and applied in two different areas. The shapes of the PDF 

of ILD can be decreasing and skewed to the right. Moreover, the hazard function can be 

increasing as well as decreasing depending the values of the parameters. These, can be 

achieved by fixing the scale parameter and then varies the shape parameter. Upon 

application to an extreme events dataset, the ILD proved its importance over the 

Exponential, Weibull, Gamma, as well as Log-Normal distributions. As area of further 

studies, other estimation procedure can be considered. Moreover, different datasets in some 

areas like medicines, hydrology, and social sciences can be explored. 
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