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ABSTRACT 

The accurate modelling of return unpredictability remains a pivotal challenge in financial 

econometrics. Traditional models often assume a normal distribution for error terms, which fails 

to capture the leptokurtic and skewed nature of financial returns. This paper introduces the odd 

generalized exponential Laplace distribution (OGELAD) as an error distribution tailored for 

modelling asset return unpredictability. The proposed distribution addresses the limitations of 

conventional error distributions such as normal (NORM), skew normal (SNORM), normal 

inverse Gaussian (NIG), and skew generalized error distribution (SGED) in capturing key 

characteristics of financial returns, such as asymmetry and heavy tails. Using simulated data, the 

study evaluates the performance of the OGELAD within symmetric and asymmetric volatility 

models, demonstrating its effectiveness in modelling and forecasting return volatility. Diagnostic 

tests confirm that all error distributions, including the OGELAD, successfully eliminate ARCH 

effects from residuals, ensuring robust model performance. Notably, the positive and significant 

asymmetry parameter in the selected model highlights that positive shocks exert a smaller 

influence on volatility compared to negative shocks of the same magnitude. This finding 

underscores the relevance of the proposed distribution in capturing leverage effects observed in 

financial data. The OGELAD distribution consistently outperformed existing distributions in 

modelling and forecasting volatility, showcasing its potential for broader applications. It can be 
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extended to multivariate settings for portfolio risk management and applied to high-frequency 

financial data to test its robustness under varying market conditions. 

1. INTRODUCTION 

One prominent feature of financial time series is that they are mostly characterized by sudden 

changes which often result in the unpredictability of asset returns. This sudden change otherwise 

referred to as volatility has significant impact on risk control, asset pricing, and portfolio 

optimization in the financial markets. Engle (1982) with the introduction of the Autoregressive 

Conditional Heteroscedastic (ARCH) model, pioneered the study of conditional 

heteroscedasticity of asset returns. Engle (1982) model expressed conditional variance of returns 

as a weighted average of previous innovations, making it suitable for describing volatility 

clustering. Notwithstanding the success of ARCH model, it has faced criticism due to various 

weaknesses including difficulties in parameter estimation and the assumption of equal effects for 

both negative and positive shocks on volatility, among others. This led to the development of 

other heteroscedastic models such as the Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) model introduced by Bollerslev (1986), the Exponential GARCH 

(EGARCH) model developed by Nelson (1991). The EGARCH is the first in the family of 

asymmetric GARCH models, enabling the measurement of asymmetric effects between negative 

and positive returns. Other volatility models include the Integrated GARCH (IGARCH) by Engle 

& Bollerslev (1986), the Nonlinear GARCH (NGARCH) model by Bollerslev (1986), the 

ARCH-in-Mean (ARCH-M) model by Engle, Lilien & Robins (1987), the Asymmetric Power 

ARCH (APARCH) by Ding, Granger & Engle (1993), the Glosten-Jagannathan-Runkle GARCH 

(GJR-GARCH) model by Glosten, Jagannathan & Runkle (1993), the Threshold GARCH 

(TGARCH) by Zakoian (1994), the Quadratic GARCH (QGARCH) model by Sentana (1995), 
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and recently Zero-Drift  GARCH (ZD-GARCH) by Li, Zhang, Zhu & Ling (2018), among 

others. 

The modelling of asset returns has evolved significantly with the advent of volatility models like 

ARCH and GARCH. These models initially assumed normality, which was later extended to 

accommodate distributions like Student’s-t and GED to address leptokurtosis. Recent 

advancements have explored other skewed distributions, highlighting the need for more flexible 

error structures. Some of the empirical studies that have investigated the use of both normal and 

non-normal error distributions within the framework of GARCH models are hereby discussed. 

Hsieh (1989) used the heteroscedastic (ARCH and GARCH) models with some nonnormal 

innovations in modelling the exchange rate of five currencies (Canadian dollar, Swiss franc, 

Deutsche mark, Japanese yen, and British pound) and observed that the GARCH model with the 

selected nonnormal innovations explained a large part of the nonlinearities for the Canadian 

dollar, Swiss franc and the Deutsche mark currencies. Only one of the selected nonnormal 

innovations fit the Japanese currency while none fits the British pound. Hansen & Lunde (2005) 

compared multiple ARCH-type of models with Student’s-t distributed error in modelling 

exchange rate. They found that GARCH (1,1) outperformed other sophisticated models in actual 

out-of-sample forecast. Atoi (2014) studied the volatility in the Nigeria stock market using 

GARCH models with normal, Student’s-t and GED distributed error. Upon fitting, they found the 

specification of the volatility models with normal distributed error is inadequate. In particular, 

TGARCH (1,1)-GED is selected as the best model in fitting the volatility in the Nigeria stock 

market and PGARCH (1,1) with Student’s-t error is chosen as the best forecasting model. 

Asemota & Ekejiuba (2017) conducted an analysis of equity return volatility in six banks using 

GARCH models. They identified that, for two of the banks displaying ARCH effects, the 
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EGARCH (1,1) and CGARCH (1,1) models with a Student’s-t distribution outperformed other 

GARCH models. The study recommended the utilization of different GARCH model variants 

and alternative error distributions to enhance the robustness of results when modelling stock 

market volatility. In a separate study, Iwada, Omoyeni & Temitope (2018) fitted symmetric and 

asymmetric GARCH models with normal, Student’s-t and GED distributed errors to daily stock 

prices of Access and Fidelity Banks in Nigeria. They found asymmetric GARCH models; 

PGARCH (1,1)-GED and EGARCH (1,1)-GED as the best fitted models for Access and Fidelity 

Banks stock returns respectively and PGARCH (1,1) with GED error is selected as the best out-

of-sample forecasting model for the two returns. Gyamerah & Abaitey (2022) modelled the 

volatility of bitcoin using GARCH models with Student’s-t distribution and normal inverse 

Gaussian distribution. Their result indicates that IGARCH (1,1) with Student’s-t distribution 

among other models is selected as the best model prior to and during the financial crisis. 

Furthermore, the IGARCH (1,1) with NIG distributed error provided a better out-of-sample 

forecasts of volatility before and during the financial crisis.  

Recently, Adenomon & Idowu (2023) studied the impact of the COVID-19 on some selected 

Nigeria sectorial stocks using GARCH models with structural breaks. In their analysis, two error 

distributions, Student’s-t and skewed Student’s-t distributions, were used. Their findings 

indicated that GARCH models with Student’s-t innovations outperformed models utilizing 

skewed Student’s-t innovations across most of the sectors. Despite these efforts, gaps remain in 

capturing the complex stochastic behaviour of financial returns. This paper introduces the Odd 

Generalized Exponential Laplace Distribution error distribution aimed at addressing these 

limitations by accurately modelling the unpredictability of asset returns. 

2. METHODOLOGY 
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2.1 Proposed Error Distribution 

David and Obalowu (2023) defined the Odd Generalized Exponential Laplace Distribution as: 
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where m, θ, τ > 0, -∞ < λ, y > ∞. In (1), m and θ are shape parameters that control kurtosis, τ is a 

scale parameter that controls skewness and λ is a location parameter. 

Following the procedure of Ghalanos (2022), let, = −ta y , where   is a zero-mean process so 

that: 
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The innovation (error term) follows a GARCH model if it is specified in the form, 

 =t t ta                   (3) 
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where 
ta  in its standard form, represents an independent and identically distributed process with 

a mean of zero and a variance of one,  t
 is the conditional standard deviation. From (3), 
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is standardized residual series and the density is given as: 
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is the error distribution of the OGELAD. 

2.2 Model Specification 

The proposed error distribution is integrated into a GARCH model framework with the following 

equations: 

 = +t tr                   (6) 

 =t t ta                             (7) 

GARCH (1,1): 2 2 2

1 1 1   − −= + +t t ta b1                      (8) 

EGARCH (1,1): ( ) ( ) ( )log log      − − − −= + + − +2 2
1 1 1 1 1 1 1t t t t ta be eE                      (9) 



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

131 
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where at in Equation (7) follows the proposed error distribution. Equation (6) is the mean 

equation of the variance equations given in Equations (8) – (11). In Equations (8), (10), and (11), 

the parameters 1 1,   and  a b  are non-negative. Furthermore, 
1  represents the coefficient 

explaining the leverage or asymmetric effect. 

3.2 Parameter Estimation 

Parameters are estimated using the Maximum Likelihood Estimation (MLE) method. The 

likelihood function for observed realizations from a given distribution is 
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and the log likelihood function is given as: 
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In Equation (14), 2 t
 is the variance of the volatility equations given in (8) – (11). The log-

likelihood function for GARCH processes is maximized with respect to the parameters of the 

model. The parameter values obtained from this optimization represent the Quasi Maximum-

Likelihood Estimator (QMLE) for the GARCH process parameters (Zivot, 2009). Several 

optimization methods have been proposed in the literature to address the complexity of the 

conditional variance which exhibit non-linear structure (Hill & McCullough, 2019). Key 

examples include the Nelder-Mead method (Nelder & Mead, 1965), the Berndt-Hall-Hall-

Hausman (BHHH) algorithm (Berndt, Hall, Hall, & Hausman, 1974), and the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm, introduced independently by Broyden (1970), Fletcher 

(1970), Goldfarb (1970), and Shanno (1970). These algorithms, widely implemented in statistical 

software like R, are designed to maximize the likelihood function, which quantifies how well the 

model fits the observed data. 

3. RESULTS AND DISCUSSION 

3.1 Simulation Study Setup 

A simulation is conducted to compare the proposed distribution against normal, skew normal and 

skew GED. The robustness of the estimated GARCH models with specified error distributions 
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have been evaluated using data simulated from a known error distribution. In this study, the 

skewed Student’s-t error distribution has been used. The simulated data procedures are: 

i. assume good parameters values for the student’s-t error distribution; 

ii. simulate the data using the maximum likelihood estimation; 

iii. fit the different GARCH models under selected error distributions; 

iv. compare the parameter estimates for the fitted models; 

vi. examine the adequacy of the fitted models using LM test for heteroscedasticity; 

vii. make forecast using fitted models. 

A total of 8,000 returns are generated following the outlined procedures. To address potential 

starting errors, the most recent 4,000 observations are selected for further analysis. Of these, 

3,800 observations are used for model fitting, while the remaining 200 observations are set aside 

to evaluate the model's performance. 

3.2 Results and Discussion 

Table 1 presents the parameter estimates of specified GARCH models under various error 

distributions, including the normal, skewed normal, skewed generalized error, and odd 

generalized exponential Laplace distributions. In the GARCH (1,1) model, the ARCH term ( 1a ) 

is estimated to be zero across all error distributions, indicating no significant short-term volatility 

effects. Furthermore, the skew parameter of the OGELAD error distribution is also estimated to 

be zero, suggesting symmetry. 

For the EGARCH (1,1) model, no parameter values could produce a convergent result for any of 

the error distributions. This suggests potential convergence issues or a lack of suitable parameter 

estimates for the EGARCH (1,1) model, highlighting the importance of carefully considering the 

model selection and potential limitations when analyzing the data. 
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In contrast, the TGARCH (1,1) model provides statistically significant estimates for both the 

ARCH term ( 1a ) and the GARCH term ( 1b ) across all error distributions, suggesting robust 

modelling of short- and long-term volatility components. Additionally, the asymmetric term ( 1 ) 

in the OGELAD error distribution is statistically significant at all levels. This suggests the 

presence of leverage effects and that the TGARCH (1,1) model with the OGELAD error 

distribution successfully captures the asymmetric effects in the simulated returns.  

Similarly, the GJR-GARCH (1,1) model shows statistical significance for most parameters 

across all error distributions. However, the ARCH term ( 1a ) is consistently estimated as zero, 

suggesting that the lagged squared residuals do not contribute significantly to the volatility 

dynamics in the GJR-GARCH (1,1) model. The asymmetric parameter ( 1 ) is negative and 

statistically significant for all error distributions except the OGELAD error distribution, where it 

is not significant. This indicates that while the GJR-GARCH model effectively captures 

asymmetry in most cases – where negative shocks have a larger impact on volatility compared to 

positive shocks of the same magnitude, it may not align well with the OGELAD distribution for 

modelling leverage effects. 

Table 1: Estimation of GARCH models for simulated returns 

Model 

Error 

Distribution 

Estimates 

  1a  1b  1  Skew Shape 

GARCH 

(1,1) 

NORM 0.112630* 0.000000 0.995550***       

SNORM 0.111180* 0.000000 0.995600***  0.981700***  

SGED 0.109800* 0.000000 0.995660***  0.982190*** 1.975460*** 

NIG 0.123279* 0.000000 0.995135***  -0.068376 24.999810* 

OGELAD 0.120000*** 0.000000 0.980000***   0.000000 0.000020*** 

EGARCH 

(1,1) 

NORM 

NO CONVERGENCE 

SNORM 

SGED 

NIG 

OGELAD 

TGARCH 

(1,1) 

NORM 0.460734* 0.013629* 0.897723*** 0.999999     

SNORM 0.460931* 0.013715* 0.897614*** 1.000000 0.981084***  

SGED 0.461176* 0.013711* 0.897569*** 1.000000 0.981294*** 1.988835*** 
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NIG 0.466553* 0.013847* 0.896488*** 1.000000 -0.069850 24.999999* 

OGELAD 0.480000*** 0.01100*** 0.900000*** 0.980000*** 0.0000000 0.000030*** 

 

GJR- 

GARCH 

(1,1) 

 
 

NORM 0.114699** 0.000000 0.998126*** -0.005258***     

SNORM 0.113802** 0.000000 0.998129*** -0.005193*** 0.983822***  

SGED 0.114726** 0.000000 0.998113*** -0.005235*** 0.984320*** 1.975334*** 

NIG 0.058776*** 0.000000 1.000000*** -0.004601*** 
-

0.059078*** 
24.999935*** 

OGELAD 0.110000*** 0.000000 0.990000*** -0.005200 0.000000 0.000020***         

Note: Estimated parameters are significant at: 5% level ‘*’, 1% level ‘**’, and 0.1% level ‘***’ 

Following the fitting of various models, the standardized residuals and squared standardized 

residuals are examined for the presence of ARCH effects. Result shows that there is no ARCH 

effects left in the standardized residuals and squared standardized residuals of the fitted models 

for simulated returns. This suggests that the models adequately capture and account for the 

volatility dynamics present in the data. 

The model selection for the simulated returns have been assessed using the log likelihood and 

some information criteria. Result from Table 2 shows the GARCH models with OGELAD error 

distribution have superior performance to other error distributions. Specifically, the GJR-

GARCH (1,1) model with the OGELAD error distribution is selected as the best fitting model 

based on the maximum log likelihood and the lowest values for AIC, BIC, and HQIC. This 

suggests that the GJR-GARCH (1,1) model with the OGELAD error distribution provides the 

best fit to the volatility patterns in the simulated returns among the considered models and error 

distributions. 

Table 2: Selecting a volatility model for simulated returns 

Model Error Distribution Log likelihood AIC BIC HQIC 

GARCH (1,1) 

NORM -11540.170 7.2145 7.2202 7.2165 

SNORM -11539.870 7.2149 7.2225 7.2176 

SGED -11539.820 7.2155 7.2250 7.2189 

NIG -11540.290 7.2159 7.2254 7.2193 

OGELAD 52062.450 -32.5340 -32.5189 -32.5286 

TGARCH 

(1,1) 

NORM -11535.780 7.2117 7.2174  7.2138 

SNORM -11535.460 7.2122 7.2198 7.2149 

SGED -11535.450 7.2128 7.2223 7.2162 
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NIG -11536.210 7.2133 7.2227 7.2167 

OGELAD 43856.440 -27.4053 -27.3901 -27.3998 

GJR-GARCH 

(1,1) 

NORM -11537.330 7.2127 7.2184 7.2147 

SNORM -11537.100 7.2132 7.2208 7.2159 

SGED -11537.040 7.2138 7.2233 7.2172 

NIG -11537.360 7.2142 7.2236 7.2176 

OGELAD 52867.200 -33.0370 -33.0218 -33.0316 

 

Table 3 provides an evaluation of the predictive accuracy of the specified models. Notably, the 

OGELAD error innovation demonstrates superior forecast accuracy compared to the other error 

distributions for both the GARCH (1,1) and GJR-GARCH (1,1) models. Overall, the adequacy 

measures consistently indicate that the GARCH (1,1) model with the OGELAD error innovation 

outperforms other error innovations in actual out-of-sample forecast. This suggests that the 

GARCH (1,1) model with the OGELAD error distribution is well-suited for predicting the future 

volatility dynamics of the simulated returns. 

Table 3: Forecasting accuracy of volatility models for simulated returns 

Model Error Distribution MAE RMSE 

GARCH (1,1) 

NORM 2.4142 2.9427 

SNORM 2.4137 2.9423 

SGED 2.4237 2.9423 

NIG 2.4161 2.9443 

OGELAD 2.0595 2.7161 

TGARCH (1,1) 

NORM 2.4211 2.9478 

SNORM 2.4211 2.9478 

SGED 2.4207 2.9475 

NIG 2.4221 2.9486 

OGELAD 2.3129 3.1309 

GJR-GARCH 

(1,1) 

NORM 2.4009 2.9322 

SNORM 2.4020 2.9332 

SGED 2.4022 2.9333 

NIG 2.3723 2.9094 

OGELAD 2.0742 2.7590 

 



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

137 

 

The proposed distribution bridges the gap between traditional and modern approaches to 

modeling asset return unpredictability. Its flexibility in capturing higher moments enhances risk 

assessment and derivative pricing applications. 

6. Conclusion 

This study considers the error distribution for the odd generalized exponential Laplace 

distribution tailored for asset return modelling, addressing limitations of conventional 

distributions. The proposed distribution bridges the gap between traditional and modern 

approaches to modelling asset return unpredictability. All error distributions effectively 

eliminated any traces of ARCH effects in the residuals of the specified volatility models, as 

confirmed on the simulated data. Furthermore, the positive and significant asymmetry parameter 

in the selected model indicated that positive shocks have lower influence on volatility as opposed 

to negative shocks of same size. The symmetric and asymmetric models proved successful in 

capturing the volatility patterns of the simulated data. The proposed error distribution displayed 

clear advantages over existing distributions in the context of modelling and forecasting volatility. 

Thus, it can be extended to multivariate models for portfolio risk management. Likewise, the 

distribution can be applied to high-frequency financial data to assess robustness under different 

market conditions. 
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