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Abstract 

Background: Existing joint model for longitudinal and survival data captured both types of data, 

but there is dearth of information about methodologies that captured simultaneously the 

trajectories of multiple biomarkers over time. This study developed a joint statistical model that 

captured concurrent trajectories of multiple biomarkers using longitudinal and survival data. Data 

from the Mayo Clinic trial on Primary Biliary Cirrhosis was used to validate the model. The dataset 

comprised 424 patients that met eligibility criteria, with 312 actively participated in the trial. An 

additional 112 cases that participated not in the trial consented to basic measurements and survival 

monitoring  

Methods: The joint model was developed by integrating a longitudinal sub-model (longitudinal 

outcomes over time) and a survival sub-model (the time until a specified event occurs) and 

compared with Mayor’s models. The longitudinal sub-model was represented by a linear mixed-

effects model and the survival sub-model by the Cox proportional hazards model. The two sub 

models were   connected using a shared random effect to capture the correlation between 

longitudinal trajectory and event risk.  The model parameters were   estimated using the 

Expectation-Maximization algorithm and diagnostic checks were carried out to validate the model. 

Results: The results revealed consistent trends in serum bilirubin levels, significant differences in 

serum cholesterol between placebo and D-penicillamine groups, and gender-related disparities in 

survival outcomes. A 55% observed survival rate highlighted positive health outcomes, while an 

8% incidence of liver transplants underscored the complexity of the targeted medical conditions. 

An even distribution of participants between interventions ensured a fair comparison, emphasizing 

the efficacy of D-penicillamine while acknowledging the challenging nature of the addressed 

health conditions. Gender-specific analyses showed significant associations, with females 

exhibiting a hazard of survival approximately 0.4913 times that of males.  

Conclusion: The survival model identified significant associations between survival time and 

biochemical measurements with high predictive accuracy.  
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1. Introduction 

The development of joint model for longitudinal and survival data to identifying biomarkers with 

strong prognostic capabilities combines statistical methodology, medical research, and data 

analysis. This type of model helps in  understanding of disease progression, treatment efficacy and 

patient outcomes (McHunu et al., 2020). 

Longitudinal data are repeated measurement taken over time from the same subject to capture the 

evolution of variables within individuals’ survival data, on the other hand, deals with the time until 

an event of interest occurs, (Lawson et al., 2014a). Combining these types of data in a joint model 

provides a comprehensive approach to studying how diseases spread and evolve within 

populations and using this understanding to make predictions about future trends and outcomes 

related to the disease (Zhang et al., 2012). 

The identification of biomarkers with strong prognostic capabilities is important in modern 

medicine (Li et al., 2021). Biomarkers are measurable indicators that reflect normal or pathological 

biological processes and they play a pivotal role in early disease detection, patient ratification, 

treatment monitoring and personalized medicine. Developing a sustainable joint model helps in 

identifying these biomarkers accurately. Survival analysis helps to assess and model the influence 

of socio-demographic, cultural, and economic factors on the age at first childbirth, (Fagbamigbe 

and Idemudia, 2016). Survival analysis concepts within a Bayesian framework is relevant for 

modelling the probability and progression of hidden diseases, (Olayiwola et al., 2020). 

Longitudinal measurements from the same subject can be correlated and survival times might vary 

due to patient-specific factors (Erango et al., 2018). The model must account for such correlations 

and heterogeneities. It may have missing values due to various reasons. Dealing with missing data 

appropriately is crucial to ensure accurate modelling (Huang et al., 2011). 

 

Joint models are inherently complex because they need to capture both longitudinal trajectories 

and survival outcomes (Rustand et al., 2023). The development of a sustainable joint model 

involves a combination of statistical techniques, data preprocessing and validation steps. This 

includes handling missing data, scaling and transforming variables and identifying outliers. 

Identifying relevant biomarkers is crucial. Techniques like LASSO (Least Absolute Shrinkage and 

Selection Operator) can help select important features, (Niekerk et al., 2021). This joint model 

could involve shared random effects models, frailty models, or joint latent class models, among 

others. Bayesian or Likelihood-based methods are often employed for estimating model 

parameters. Markov Chain Monte Carlo (MCMC) techniques might be used for Bayesian 

estimation, (Law, 2002).  

 

Cross-validation, bootstrap resampling, Concordance index (C-index), Time-Dependent Receiver 

Operating Characteristics (ROC) curve, brier score, calibration plots, external validation, model 

complexity and overfitting, clinical relevance and sensitivity analysis are used to assess the 

model’s predictive performance and generalizability (Sweeting and Thompson, 2011). The model 

can predict patients’ survival probabilities based on longitudinal measurements and biomarker 

values. It can assess the impact of treatments on disease progression and survival outcomes, 

(Alafchi et al., 2021). By analysing the estimated coefficients of biomarkers, the model helps 

identifying those with strong prognostic capabilities.  
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In the literature, there have been various efforts to model longitudinal and survival data 

simultaneously, The data occur together in medical and epidemiological studies, (Andrinopoulou 

et al., 2020; Baghfalaki et al., 2014; Köhler et al., 2018; Sweeting and Thompson, 2011). The 

proposed modelling approaches aim to capture the relationship between time-varying longitudinal 

measurements (such as biomarker levels) and the time until an event of interest.   Some of the 

challenges and pitfalls of this model is misspecification, computational complexity, identification 

of shared latent variable that links the longitudinal and survival processes, incorrect results from 

the model due to assumption violation, selection bias in longitudinal data introduces bias into the 

survival analysis, and model validation may not fully capture the model's performance in 

predicting future events  (Rustand et al., 2023). 

 

There are certain challenges and limitations that affect sustainability of longitudinal and survival 

data modelling; incomplete or missing data and measurement errors, (Huang et al., 2011). 

Interpretation challenges, especially for non-experts can limit the utility of these models in clinical 

practice. . 

(Henderson et al., 2000) used a semi-parametric approach in the joint modelling of Longitudinal 

and Time-to-Event Data. (Lawson et al., 2014b) work on joint analysis of time-to-event and 

multiple binary indicators of latent classes. (Alafchi et al., 2021), (Sun et al., 2019), (Henderson et 

al., 2000) revisited the likelihood Approach in Joint Modelling of Survival and Longitudinal Data 

using Semi-parametric Approaches with Time-Varying Coefficients in 2007 among others. Other 

authors who also studied the trend of repeated outcomes conditional on survival time include, 

(Martins et al., 2016). (Köhler et al., 2018; Law, 2002; Rustand et al., 2022; Sweeting and 

Thompson, 2011; Yu et al., 2004) presented joint modelling of longitudinal data and time to an 

event. Joint modelling with software application was presented by (Erango et al., 2018) and (Yuen 

and Mackinnon, 2016). According to the aforementioned literatures, homogeneity, normality, and 

other symmetric distribution assumptions are frequently utilized with a mixed effect model for the 

longitudinal component of the model. However, the majority of this research uses diverse samples 

whose measurements is highly skewed or contain some outliers. 

(Baghfalaki et al., 2014; Huang et al., 2011; Rizopoulos et al., 2014a; Sène et al., 2014; Yuen and 

Mackinnon, 2016) discussed heterogonous random effects using a parameterization of the typical 

random effects. To study the impact of incorrectly specifying the random effects distributions on 

the parameter estimates and associated standard errors,(Fully Exponential Laplace Approximations 

for the Joint Modelling of Survival and Longitudinal Data on JSTOR, n.d.). This research study 

delved into developing a novel multivariate joint statistical model that handled both longitudinal 

and survival data with heterogeneous assumptions for the identification of biomarkers with strong 

prognostic capabilities. 

 

2. Material and Method 

2.1 Study design and setting. 

This study introduced a joint statistical model to identify biomarkers with significant prognostic 

capabilities. Validation of the model was carried out using data from Mayo Clinic trial that 

investigated the effects of D-penicillamine compared to a placebo on individuals with Primary 

Biliary Cirrhosis. 
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 2.2 Data Source and Study population 

The dataset was obtained from Mayo Clinic trial that focused on Primary Biliary Cirrhosis (PBC) 

of the liver, (Dickson et al., 1989). Within the ten-year timeframe (1974 - 1984), a total of 424 

PBC patients referred to the Mayo Clinic met the eligibility criteria for inclusion in a randomized 

placebo-controlled trial involving the drug D-penicillamine. Among these, the first 312 cases 

actively participated in the randomized trial, providing a dataset with predominantly complete 

information. Additionally, 112 cases from the same patient pool did not partake in the clinical trial 

but consented to recording basic measurements and agreed to be monitored for survival outcomes. 

Six of these cases were lost to follow-up shortly after diagnosis. Therefore, the dataset includes 

information on the remaining 106 cases who did not participate in the trial, along with the 312 

individuals who were randomized participants.  

 

2.3 Data collection 

The Mayo Clinic trial on Primary Biliary Cirrhosis (PBC) of the liver employed a combination of 

research methodologies, including Randomized Controlled Trial (RCT) Procedures, 

administration of questionnaires and interviews, clinical assessments, laboratory tests, and follow-

up with survival monitoring, 

 

2.4 Ethical consideration 

During the Mayo Clinic trial, participants willingly and knowingly gave their informed consent to 

take part in the trial 

Study variables. 

Case Number (A unique identifier for each participant in the study), Number of Days Between 

Registration and, Status (Categorized as 0 (alive), 1 (liver transplant), or 2 (dead)], Drug 

(Designated as 1 for D-penicillamine and 2 for placebo), Age in Days (The age of the participant 

measured in days), Sex (Coded as 0 for male and 1 for female), Serum Bilirubin (Measured in 

mg/dL), Serum Cholesterol (Measured in mg/dL), Albumin (Measured in gm/dL), Alkaline 

Phosphatase (Measured in U/liter), SGOT (Serum Glutamic Oxaloacetic Transaminase measured 

in U/ml), Platelets per Cubic mL / 1000 (The platelets count per cubic millilitre, scaled by a factor 

of 1000), Prothrombin Time (Measured in seconds) were considered. 

 

2.5 Joint Model for Survival and Longitudinal Data  

In joint modelling, a usual practice is to combine the linear mixed-effects sub-model (for the 

longitudinal process) and Weibull proportional hazards sub-model (for the time-to-event process). 

The survival sub-model includes the association parameter 𝜙 in the Weibull PH model, in which 

𝜙𝑢𝑖 defines the nature of association structure between the two processes, 𝜙 measures the strength 

of association between the two processes. The joint model is fitted by the ML approach. Both the 

longitudinal and event processes were linked using an association parameter which can be a shared 

latent structure or shared random effect. 

Rizopoulos et al  proposed a joint model, where the main interest is in the time-to-event process, 

which is influenced by a longitudinal time-dependent covariate measured with error, (Rizopoulos 

et al., 2014a). Hickey developed a shared random effects model, where the focus is on both survival 

and longitudinal processes (Hickey et al., 2018). 
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This work considered the joint approach proposed by Rizopoulos et al (Rizopoulos et al., 2014a) 

with the heterogeneous assumption of random effect proposed by Baghfalaki et al (Baghfalaki et 

al., 2017).  

Let 𝑌𝑖 , 𝑖 = 1, 2, 3, . . . , 𝑛 denote the vector of 𝑛𝑖 longitudinal measurement for the 𝑖𝑡ℎ individual 

such that 𝑌𝑖 = {𝑦𝑖(𝑡𝑖𝑗), 𝑗 = 1,2, … , 𝑛𝑖)} where 𝑦𝑖(𝑡𝑖𝑗) represent the longitudinal measurement for 

𝑖𝑡ℎ individual at time 𝑡𝑖𝑗.   If we have 𝑛 subjects with their lifetimes represented by  𝑇1, 𝑇2, … , 𝑇𝑛 

. If the data are right censored, 𝑇𝑖 be the true event time and where 𝐶𝑖 > 0  indicates a potential 

censoring time then, 𝑡𝑖 = min(𝑇𝑖, 𝐶𝑖) indicates the observed survival time for any 𝑖𝑡ℎ individual, 

𝑖 = 1, 2, 3, . . . , 𝑛. If 𝛿𝑖  represents the censoring indicator which is 0 for right-censored and 1 for 

completely observed individuals. 

such that  

𝛿𝑖  = {

1         𝑖𝑓             𝐼(𝑇𝑖  ≤  𝐶𝑖 )
 

0         𝑖𝑓      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
 

                                                                          (1) 

For each subject 𝑖, a pair of data will be observed for the survival outcome i.e.{ 𝑇𝑖, 𝛿𝑖}, for 𝑖 =
1,2, . . . , 𝑛  and  𝑇𝑖 is the true survival time according to whether  the value of 𝛿𝑖 = 1 𝑜𝑟 0 

respectively;  . 

If an event occurs at a time 𝑇𝑖,  then after that event longitudinal measurements cannot be observed. 

Therefore, 𝑌𝑖 can be portioned into 𝑌𝑖,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝑚𝑖(𝑡) =  {𝑌𝑖(𝑡𝑖𝑗): 𝑡𝑖𝑗 < 𝑇𝑖 ,𝑗 = 1,2, … , 𝑛𝑖} 

which contains all observed longitudinal measurements for the 𝑖th individual before the observed 

event time 𝑇𝑖, and 𝑌𝑖,𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = {𝑌𝑖(𝑡𝑖𝑗): 𝑡𝑖𝑗 ≥ 𝑇𝑖 ,𝑗 = 1,2, … , 𝑛𝑖}which contains the 

longitudinal measurements that should have been taken until the end of the study. In this context, 

some individuals are missing (dropout or death). If the probability of the event occurring is 

dependent on the unobserved outcome, then missingness is non-ignorable or dropout is non-

random.  

Also, let 𝑢𝑖 = 𝑏𝑖  (vector of random effects shared by both processes) with density function  

𝑓(𝑏𝑖; 𝜃𝑏).  If conditional independence of  𝑦𝑖 and ( 𝑇𝑖 , 𝛿𝑖)  provided 𝑏𝑖, the joint conditional 

distribution is given by   𝑓(𝑦𝑖, 𝑇𝑖, 𝛿𝑖| 𝑏𝑖; 𝜃) = 𝑓(𝑦𝑖, 𝑏𝑖; 𝜃𝑦) × 𝑓(𝑇𝑖, 𝛿𝑖|𝑏𝑖; 𝜃𝑡)  where  𝜃 =

(𝜃′𝑦, 𝜃
′
𝑡 , 𝜃

′
𝑏)′   

 

2.6 Longitudinal Sub-model 

The hazard function ℎ𝑖(𝑡) in the hazard model depends on the true unobserved value of the 

longitudinal outcome, 𝑚𝑖(𝑡) at time t, Wu and Liu, (2012). However, the longitudinal 

measurements 𝑦𝑖𝑗 are collected with error on each subject at times 𝑡𝑖𝑗 ;i = 1, 2, · · · , N, j = 1, 2, · 

· · , 𝑛𝑖. Therefore, estimation of 𝑚𝑖(𝑡) and reconstruction of the true longitudinal history 𝑀𝑖(𝑡) is 

need for each subject to measure the impact of the longitudinal outcome to the hazard for an event, 

(Rizopoulos et al., 2014b).  A suitable mixed-effects model with the observed repeated 

measurements 𝑦𝑖𝑗  = {𝑦𝑖 (𝑡𝑖𝑗 ), j = 1, 2, · · ·, 𝑛𝑖} of each subject 𝑖, was fitted to describe the subject-
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specific time evolutions. Sub-model for the longitudinal process is a linear mixed-effects (LME) 

model, given by  

𝑦𝑖𝑗 = 𝛽1𝑥1𝑖𝑗 +⋯+ 𝛽𝑝𝑥𝑝𝑖𝑗+𝑢𝑖1𝑧1𝑖𝑗 +⋯+ 𝑢𝑖𝑞𝑧𝑞𝑖𝑗 + 𝜖𝑖𝑗, 𝑢𝑖𝑘 ~𝑁(0, 𝜎𝑘
2), Cov(𝑢𝑖𝑘 , 𝑢𝑖𝑘) where 

𝑦𝑖 = (𝑦𝑖1 , 𝑦𝑖2 , … , 𝑦𝑖𝑛𝑖 )
′ is an 𝑛𝑖-dimensional vector of longitudinal responses for subject 𝑖, 𝛽 is a 

p-dimensional vector for fixed effects parameters, 𝑋𝑖 is an (𝑛𝑖 × 𝑝) design matrix of fixed effects 

𝛽 and 𝑢𝑖 is a q-dimensional vector of random effects parameters that represents the 

characterization of between-individual variation. Also, 𝑍𝑖  is a (𝑛𝑖 × 𝑞) design matrix of random 

effects 𝑢𝑖, and 𝜀𝑖 is an 𝑛𝑖-dimensional vector of random errors that represents the characterization 

of within-individual variation.It is assumed that random effects 𝑢𝑖 and random error 𝜀𝑖  follow a 

multivariate normal distribution with mean 0 and variance-covariance matrix 𝐷, within-individual 

error 𝜀𝑖   is independent, and 𝑢𝑖  is assumed to be independent of the random errors 𝜀𝑖  (Nguyen et 

al., 2023). 

 The linear mixed effect model is a hierarchical two stage model because it allows the analysis of 

within-subject and between-subject sources of variation, where stage 1 specifies the within-subject 

variation, which is given by equation 2  

                            𝑌𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑈𝑖 + 𝜖𝑖;𝑖 = 1,2, … ,𝑁                                                     (2)              

and stage 2 specifies the between-subject variation, given by equation 3. 

                                          {

𝑦𝑖(𝑡) = 𝑚𝑖(𝑡) + 𝜀𝑖(𝑡),

𝑚𝑖(𝑡) = 𝑥𝑖
′(𝑡)𝛽 + 𝑧𝑖

′(𝑡)𝑢𝑖 ,

𝑢𝑖~𝑁(0, 𝐷), 𝜀𝑖(𝑡)~𝑁(0, 𝜎𝜖
2),

                                                 (3)                                

where 𝑧𝑖(𝑡)  is the design vector for the random effects 𝑢𝑖~𝑁(0, 𝐷) and 𝜀𝑖~ 𝑁(0, 𝑅𝑖) 

As a result, we have equation 4. 

                                                                      𝐸 [𝑢𝑖
𝑒1
] = [0

0
],                                                     (4) 

The random effects 𝑢𝑖  is the deviations of individual 𝑖 from the population mean, while the mean 

parameters 𝛽 is interpreted as the same as in a linear regression model. 

𝑅𝑖 represents the diagonal matrix 𝜎𝜀
2𝐼𝑛𝑖 , with 𝐼𝑛𝑖  being an 𝑛𝑖 × 𝑛𝑖 identity matrix. 

The marginal mean vector and covariance matrix of the response vector 𝑦𝑖(𝑡) are  

                        𝐸(𝑌𝑖) = 𝜇𝑖 =  𝑋𝑖𝛽.                                                                                            (5)                                                                    

                                       𝑉𝑎𝑟(𝑌𝑖) = 𝑉𝑖 = 𝑍𝑖𝐷𝑍′𝑖 + 𝜎𝜖
2𝐼𝑛𝑖.                                                       (6) The 

covariance of 𝑌𝑖  is given as   

                                                                       𝑉𝑎𝑟 [𝑢𝑖
𝑒1
] = [𝐷

0
0
𝑅𝑖
]                                                  (7) 

And the conditional and marginal distributions of the response 𝑌𝑖, is given as 𝑌𝑖|𝑢𝑖~𝑁(𝑋𝑖𝛽 +
 𝑍𝑖𝑈𝑖, 𝜎𝑛

2𝐼𝑛𝑖). 

2.7 Maximum Likelihood Estimation of Linear Mixed Effects Model parameters 

The statistical inference of an LME model is based on the maximum likelihood and restricted 

maximum likelihood methods (Rizopoulos et al., 2014a). 
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Let 𝜃 = (𝛽, 𝜎𝑖𝑗
2 , 𝐷) denotes all parameters in LME model, 𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑈𝑖 + 𝑒𝑖 ;  𝑖 = 1,2, … ,𝑁 

such that 𝑈𝑖~𝑁(0, 𝐷) and 𝑒𝑖~𝑁(0, 𝑅𝑖)  

The likelihood function for the observed data 𝑦 = (𝑦1
′ … 𝑦𝑁

′ )′ is given by 

                                                             𝐿(𝜃|𝑦) = ∏ 𝑓(𝑦𝑖: 𝜃)
𝑁
𝑖=1                                               (8) 

                                                          = ∏ 𝑓(𝑦𝑖|𝑢𝑖; 𝛽, 𝜎𝑖𝑗
2) 𝑓(𝑢𝑖|𝐷)𝑑𝑢𝑖

𝑁
𝑖=1                                (9) 

where 𝑓(𝑦𝑖|𝑢𝑖; 𝛽, 𝜎𝑒
2) is the normal density with mean vector (𝑋𝑖𝛽 + 𝑍𝑖𝑢𝑖) and covariance matrix 

𝜎𝜀
2𝐼𝑛𝑖 , and 𝑓(𝑢𝑖|𝐷) is the normal density with mean vector 0 and covariance matrix D 

Maximization of the likelihood function is based on an iterative algorithm, e{Expectation 

maximization (EM) algorithm or the Newton-Raphson method}. If the longitudinal responses of 

subjects are independent conditionally on their random effects, the log-likelihood of the LME 

model is given by 

                                               𝜌(𝜃) = ∑ log 𝑓(𝑦𝑖|𝑢𝑖; 𝛽, 𝜎𝑖𝑗
2)𝑁

𝑖=1  𝑓(𝑢𝑖|𝐷)𝑑𝑢𝑖                             (10)                          

For a known covariance matrix 𝑉𝑖, the MLE of the fixed effects parameter 𝛽 is given by 

                                                �̂� = (∑𝑋𝑖
′𝑉𝑖

−′𝑋𝑖)
−1
∑𝑋𝑖

′𝑉𝑖
−′𝑦𝑖                                                (11) 

which is an unbiased estimate of β. The asymptotic distribution of �̂� is multivariate normal with 

the mean being the true value of β and the covariance given by 

                                                         𝐶𝑜𝑣(�̂�) = (∑  𝑋𝑖
′ 𝑉𝑖

−′ 𝑋𝑖
𝑁
𝑖=1 )−1                                       (12) 

In case 𝑉𝑖 is unknown, we use the estimate 𝑉�̂� to find an estimate of β.  

 

 

2.8 Survival Sub-model  

Survival data are generally described and modelled in terms of survival function and the hazard 

function.   Given the hazard function for the  𝑖𝑡ℎ individual as shown in equation   ℎ(𝑡𝑖|𝑥𝑖, 𝑧𝑖 , 𝑏𝑖) =
ℎ0(𝑡𝑖)exp {𝑥

′
𝑖𝛽 + 𝑧

′
𝑖𝑏𝑖}                                            (13) 

the density function of survival time was expressed as                                          

  ℎ𝛿𝑖(𝑡𝑖|𝑥𝑖, 𝑧𝑖 , 𝑏𝑖) × exp{−𝐻0(𝑡𝑖)exp {𝑥
′
𝑖𝛽 + 𝑧

′
𝑖𝑏𝑖}},                                                           (14)        

where 𝐻0(𝑡) = ∫ ℎ0
𝑡

0
(𝑢)𝑑𝑢, we have the 𝑝2 and 𝑞2 dimensional vectors of explanatory variables 

represented in the equation by 𝑥 and 𝑧  respectively. 

 𝛽 = (𝛽1 , … , 𝛽𝑝2)
𝑇
 is a vector of  𝑝2 dimension of time to event fixed-effect parameters; 𝑏𝑖 =

(𝑏𝑖1, … , 𝑏𝑖𝑞2)
𝑇 ,  is a  vector of the time-to-event random effect of 𝑞2 dimension such that 𝑏𝑖 ∽

𝑁𝑞2 (0, 𝐷2). 

The proposed model is built with the assumption that 𝑏𝑖~ ∑ 𝜋𝜅𝜇𝑞
𝑔
𝑘=1 (𝜇𝜅 , 𝐷) and 
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𝜖𝑖 ~ 𝑆𝑁𝑛𝑖 (√
2

𝜋
 𝛿𝑒 , Ψ, Δ𝑒) , considering the population as heterogeneous.  

Survival data are generally described and modelled in terms of two related functions: the 

survivor function and the hazard function. However, the natural approach is to postulate a 

proportional hazards model of the AFT form to describe the event hazard process at time t, as  

    ℎ𝑖(𝑚𝑖(𝑡), 𝑤𝑖) = {lim
𝛿→0

𝑃[𝑡 ≤ 𝑇𝑖 < 𝑡 + 𝛿𝑡|𝑇𝑖 ≥ 𝑡,𝑚𝑖(𝑡), 𝑤𝑖]}                                         

Hazard function= 𝜆0(𝑔𝑖(𝑡))exp  [𝑤𝑖
′𝜓 + 𝜑𝑚𝑖(𝑡)],  𝑡 > 0                                       (15) 

Where 𝑀𝑖(𝑡) = {𝑚𝑖(𝑡),0 ≤ 𝑠 < 𝑡 } indicates the history of the true unobserved values of 

longitudinal covariate up to time point t, 

                                𝑔𝑖(𝑡) = 𝐻0(𝑡) = ∫ 𝑒𝑥𝑝
𝑡

0
(𝑤𝑖

′𝜓 + 𝜑𝑚𝑖(𝑢))𝑑𝑢.                                    (16) 

 𝜆0(𝑡) is the baseline hazard function, and  𝑤𝑖 is a vector of baseline covariates with a 

corresponding vector of regression coefficients, 𝜓. The parameter ϕ measures the impact of the 

underlying longitudinal outcome on the risk for an event. 

The corresponding survival function depends on the whole history of the true unobserved 

longitudinal process up to time point t, the 𝑀𝑖(𝑡). That is 

𝑆𝑖(𝑡|𝑚𝑖(𝑡), 𝑤𝑖) = 𝑃(𝑇𝑖 > 𝑡,𝑚𝑖(𝑡), 𝑤𝑖) 

                                            𝑆𝑖(𝑡) = 𝜆0(𝑔𝑖(𝑡))                                                                      (17) 

                               = 𝑒𝑥𝑝 [−∫ 𝜆0(𝑡) exp[𝑤𝑖
′𝜓 + 𝜑𝑚𝑖(𝑡)𝑑𝑠]

𝑡

0
]                                 (18) 

Both the hazard function and survivor functions are written as a function of the baseline hazard 

𝜆0(t). To avoid the issue of underestimation of the standard errors of the parameter estimates in 

the joint model, the Weibull was used. 

In this study, Weibull model was studied for 𝜆0(𝑡).  The survival times follow a Weibull 

distribution,𝑊(𝜆, 𝜏), with the scale parameter λ and shape parameter τ. The (Weibull model) 

hazard function was obtained as equation (19) 

                    ℎ(𝑡) = 𝜆𝜏𝑡𝜏−1    , 0 ≤ t < ∞.                                                                               (19) 

If τ = 1, the survival times with exponential distribution as a special case of the Weibull 

distribution. For other values of τ, the hazard function increases or decreases monotonously for τ 

> 1 and τ < 1, respectively.  

For this choice of hazard function with the distribution 𝑊(𝜆 exp(𝑤𝑖
′γ) 𝜏), the (Weibull model) 

survival sub-model was written as equation (20) 

                       ℎ𝑖(𝑚𝑖(𝑡), 𝑤𝑖) = ℎ0(𝑡) exp[𝑤𝑖
′𝜓 + 𝜑𝑚𝑖(𝑡)]                                                 (20) 

                       = 𝜆𝜏𝑡𝜏−1 exp[𝑤𝑖
′𝜓 + 𝜑𝑚𝑖(𝑡)]                                                          (21) 

              = 𝜆𝜏𝑡𝜏−1 exp[𝑤𝑖
′𝜓 + 𝜑𝑚𝑖(𝑡)], (𝜆 = 𝑒𝜆0)                                                (22)                          
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where 𝑚𝑖(𝑡) involves random effects 𝑢𝑖, which  is independent N(0, D), with covariance D = D(ξ) 

(Crowther et al., 2013). 

Assume a data set given as  {(𝑡𝑖, 𝛿𝑖); 𝑖 = 1, 2, . . . , 𝑁}, the likelihood function for the frailty model 

parameters is obtained as 

L(ψ, T, D, φ) = ∏ ∫ [𝑓(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)]
𝛿𝑖

∞

−∞
𝑁
𝑖=1 [𝑠(𝑡𝑖|𝑢𝑖;  ψ𝑖 , 𝑇, 𝜑)]

1−𝛿𝑖𝑓(𝑢𝑖|𝐷)𝑑𝑢𝑖             (23) 

   = ∏ ∫ [ℎ(𝑡𝑖|𝑢𝑖;  ψ𝑖 , 𝑇, 𝜑)]
𝛿𝑖

∞

−∞
𝑁
𝑖=1 𝑠(𝑡𝑖|𝑢𝑖;  ψ𝑖 , 𝑇, 𝜑) 𝑓(𝑢𝑖|𝐷)𝑑𝑢𝑖                        (24)           

where 𝑓(𝑡𝑖 |𝑢𝑖; γ, τ, ϕ) is the conditional density function of the event time, given the frailty 𝑢𝑖, 
S(𝑡𝑖 |𝑢𝑖; γ, τ, ϕ) is the conditional survivor function for the 𝑖 th subject at time 𝑡𝑖, and 𝑓(𝑢𝑖|𝐷) is 

the conditional density of the random effects 𝑢𝑖. In this setting, the density function for the random 

effect 𝑢𝑖 is given by 𝑢𝑖~ ∑ 𝜋𝜅𝑁𝑞
𝑔
𝑘=1 (𝜇𝜅 ,  𝐷)  instead, as expressed in equation (25). 

                                              𝑓(𝑢𝑖|𝐷) =
exp[−1 2⁄ 𝑈𝑖

−1𝐷−1𝑈𝑖]

(2𝜋)
𝜀
2⁄  |𝐷|

1
2⁄

                                               (25)                                        

whereas the conditional density for survival times is given by the Weibull distribution 

  𝑓(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑) = [ℎ(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)]
𝛿𝑖  𝑠𝑖(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)               (26)  = [𝑇𝑡𝑇−1 exp(𝜆𝑤𝑖

′𝜓 +

𝜑𝑚𝑖(𝑡))]
𝛿𝑖
exp[−𝑇𝑡𝑇−1 exp(𝜆𝑤𝑖

′𝜓 + 𝜑𝑚𝑖(𝑡))]                            (27)               

The corresponding log-likelihood function for the frailty sub-model is given by 

𝜌(ψ, T, D, φ) = ∑ ∫ [𝛿𝑖 log ℎ𝑖 (𝑡𝑖|𝑢𝑖;  ψ𝑖, 𝑇, 𝜑) + log 𝑠𝑖(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)]
∞

−∞
𝑁
𝑖=1  𝑓(𝑢𝑖|𝐷)𝑑𝑢𝑖  

 

2.9 Estimates of model parameters 

Let θ = (γ, τ,D, ϕ) denote the vector of all model parameters that need to be estimated. The ML 

estimators of θ may be obtained by using a numerical maximization method. Given some initial 

estimates θ(0), we can obtain the ML estimates by solving the Newton-Raphson iterative equations 

θ(m+1) = θ(m) + {I(θ(m) )}−1 {U(θ(m) )} 

form = 0, 1, 2, · · · , where U(θ(m) ) is the likelihood score function U(θ), given by 

   𝑈(𝜃) =
𝜕 log𝐿(𝜃)

𝜕𝜃
= ∑ ∫ [𝛿𝑖

𝜕 logℎ𝑖(𝑡𝑖|𝑢𝑖; ψ𝑖,𝑇,𝜑)

𝜕𝜃
|
𝜕 log𝑆𝑖(𝑡𝑖|𝑢𝑖; ψ,𝑇,𝜑)

𝜕𝜃
]

−∞

∞
𝑁
𝑖=1 𝑓(𝑢𝑖|𝑡𝑖; 𝜃)𝑑𝑢𝑖 ,                

When evaluated at θ(m), the Fisher information matrix I(θ)(m) will be obtained from the first 

derivative of the score function U(θ) with respect to θ evaluated at θ(m) .  

𝐼(𝜃) =∑∫ [𝛿𝑖
𝜕2 log ℎ𝑖(𝑡𝑖|𝑢𝑖;  ψ𝑖, 𝑇, 𝜑)

𝜕𝜃𝜃′
+
𝜕2 log 𝑆𝑖(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)

𝜕𝜃𝜃′
]

−∞

∞

𝑁

𝑖=1

 𝑓(𝑢𝑖|𝑡𝑖; 𝜃)𝑑𝑢𝑖 

+∑∫ [𝛿𝑖
𝜕 log ℎ𝑖(𝑡𝑖|𝑢𝑖;  ψ𝑖, 𝑇, 𝜑)

𝜕𝜃
+
𝜕 log 𝑆𝑖(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)

𝜕𝜃
]

−∞

∞

𝑁

𝑖=1
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× [𝛿𝑖
𝜕 log ℎ𝑖(𝑡𝑖|𝑢𝑖;  ψ𝑖 , 𝑇, 𝜑)

𝜕𝜃′
+
𝜕 log 𝑆𝑖(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)

𝜕𝜃′
] 𝑓(𝑢𝑖|𝑡𝑖; 𝜃)𝑑𝑢𝑖 

−∑∫ [𝛿𝑖
𝜕 log ℎ𝑖(𝑡𝑖|𝑢𝑖;  ψ𝑖, 𝑇, 𝜑)

𝜕𝜃
+
𝜕 log 𝑆𝑖(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)

𝜕𝜃
]

−∞

∞

𝑁

𝑖=1

𝑓(𝑢𝑖|𝑡𝑖; 𝜃)𝑑𝑢𝑖 

               × ∫ [𝛿𝑖
𝜕 logℎ𝑖(𝑡𝑖|𝑢𝑖; ψ𝑖,𝑇,𝜑)

𝜕𝜃′
|
𝜕 log𝑆𝑖(𝑡𝑖|𝑢𝑖; ψ,𝑇,𝜑)

𝜕𝜃′
]

−∞

∞
 𝑓(𝑢𝑖|𝑡𝑖; 𝜃)𝑑𝑢𝑖 .                              (28) 

The likelihood function does not have a closed form. Also, both the likelihood score function and 

Fisher information matrix involve the calculation of multi-dimensional integrations with respect 

to the conditional distribution of the random effects, 𝑢𝑖 given time 𝑡𝑖 i.e 𝑢𝑖|𝑡𝑖, which does not have 

a closed form. The integrations involving the conditional expectations may be computed 

numerically using existing software (Rizopoulos, 2012). In this study, R function was used to 

obtain the maximum likelihood (ML) estimates 𝜃 of 𝜃 in the Weibull frailty model. 

 

2.10 The Proposed Joint Model 

Longitudinal Part of the model  

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑢𝑖 + ℰ𝑖  

Where 𝑦𝑖 is the longitudinal response for subject 𝑖, 𝑋𝑖 is the design matrix for the fixed effects in 

the longitudinal sub-model, 𝛽 is the vector of fixed effects coefficients, 𝑍𝑖 is the design matrix for 

the random effects in the longitudinal sub-model, 𝑢𝑖 is the vector of random effects for subject 𝑖 
and ℰ𝑖  is the error term for subject 𝑖. 

 

Survival part of the model 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑢𝑖 + ℰ𝑖  and  ℎ𝑖(𝑡) = 𝜆𝑇𝑡
𝑇−1exp{𝓌𝑖

𝑇𝜓} 

Where: 

ℎ𝑖(𝑡) is the hazard function for an individual with covariates x at time t, λ is the scale parameter, γ 

is the shape parameter, 𝜓 is a vector of regression coefficients and 𝓌 is a vector of covariates for 

an individual. 

The joint model was linked through shared random effects by allowing the random effects 𝑢𝑖 from 

the longitudinal model to influence the baseline hazard function or survival model in some way. 

 

The Link Structure 

For implementation, 𝑉𝑖(𝑡) = 𝜚𝑈𝑖(𝑡) was used to capture the dependence between the longitudinal 

and time-to-occurrence of an event sub-models; where 𝜚 is measure of link or association induced 

by the fitted longitudinal responses. Random intercept and random slopes can equally be used to 

formulate the association structure (Henderson et al., 2000).  

 

Log-Logistic Sub-Model 

By using equation    ℎ𝑖(𝑡) = ℎ0(𝑔𝑖(𝑡)) exp(𝒛
′
𝒊𝜷 + 𝑉𝑖(𝑡))    and 𝑉𝑖(𝑡) = 𝜚𝑈𝑖(𝑡) = 𝜚𝒓

′
𝑖(𝑡)𝒃𝑖 , the 

hazard function at time 𝑡𝑖 can be written as  
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                                    ℎ𝑖(𝑡𝑖) =
𝑘𝜌 (𝜌𝑔𝑖(𝑡𝑖))

𝑘−1

1 +  (𝜌𝑔𝑖(𝑡𝑖))
𝑘   exp(𝑧′𝑖𝛽 + 𝜚𝑟

′
𝑖(𝑡𝑖)𝑏𝑖),                                  (29)  

where 𝑔𝑖(𝑡𝑖) =  ∫ exp(𝑧′𝑖𝛽 + 𝜚𝑟
′
𝑖(𝑢)𝑏𝑖)𝑑𝑢 

𝑡𝑖
0

 and 

 ℎ𝑜(𝑔𝑖(𝑡𝑖)) = 𝑘𝜌 (𝜌𝑔𝑖(𝑡𝑖))
𝑘−1  [1 + (𝜌𝑔𝑖(𝑡𝑖))

𝑘]⁄  . 

Also, the survival function is given as: 

 

                                            𝑆𝑖(𝑡𝑖) = 𝑆𝑜(𝑔𝑖(𝑡𝑖)) = [1 + (𝜌𝑔𝑖(𝑡𝑖))
𝑘]−1                                (30) 

The density function of (𝑡𝑖 , 𝛿𝑖) given 𝑏𝑖 and 𝜃 can be determined using equations (29) and (30)   as  

𝑓(𝑡𝑖, 𝛿𝑖|𝑏𝑖, 𝜃) = {
𝑘𝜌 (𝜌𝑔𝑖(𝑡𝑖))

𝑘−1

1+ (𝜌𝑔𝑖(𝑡𝑖))
𝑘 exp(𝑧

′
𝑖𝛽 + 𝜚𝑟

′
𝑖(𝑡𝑖)𝑏𝑖)}

𝛿𝑖 × [1 + (𝜌𝑔𝑖(𝑡𝑖))
𝑘]−1                                               

( 31) 

 

Weibull Sub-Model 

 Weibull model (or a Cox proportional hazard model) may be linked to the longitudinal model 

through shared random effects.  

   𝑇𝑖 ~ Weibull (𝑧′𝑖𝛽 + 𝜚𝑟
′
𝑖(𝑡𝑖)𝑏𝑖)                                                      (32 ) 

Where  𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)
′
, is a 𝑝 −dimensional vector of fixed parameters, 𝑧𝑖 =

(𝑧𝑖1, 𝑧𝑖2, . . . , 𝑧𝑖𝑝2)
′
 is a 𝑝2- dimensional vector of explanatory variables, 𝑏𝑖 is shared between the 

two models and 𝑟 is a 𝑞- dimensional vector of association parameters. If 𝑟 = 0,  the event time 

and the longitudinal measurements are independent.  Also, the scalar 𝜚 is the shape parameter 

To obtain the hazard function at time 𝑡𝑖, we can write 𝐸(𝑌𝑖) = 𝜇𝑖 = 𝜇0 +√
2

𝜋
 𝛿2  𝑎𝑛𝑑 𝑉𝑎𝑟(𝑌𝑖) =

𝑉𝑖 = 𝛹 + (1 −
2

𝜋
)𝛥2. and 𝑉𝑖(𝑡) = 𝜚𝑈𝑖(𝑡) =  𝜚𝒓′𝑖(𝑡)𝒃𝑖 as  

                                             ℎ𝑖(𝑡𝑖|𝑧𝑖, 𝒓, 𝒃𝑖) = ℎ0𝑖 (𝑡𝑖)exp(𝒛′𝒊𝜷 + 𝜚𝒓
′
𝑖(𝑡𝑖)𝒃𝑖),    (33)  

= 𝑘𝜌 (𝜌𝑔𝑖(𝑡𝑖))
𝑘−1exp(𝒛′𝒊𝜷 + 𝜚𝒓

′
𝑖(𝑡𝑖)𝒃𝑖) 

where  

𝑔𝑖(𝑡𝑖) = ∫ exp(𝒛′𝒊𝜷 + 𝜚𝒓
′
𝑖(𝑢)𝒃𝑖)𝑑𝑢 

𝑡𝑖
0

 and  ℎ𝑜(𝑔𝑖(𝑡𝑖)) = 𝑘𝜌 (𝜌𝑔𝑖(𝑡𝑖))
𝑘−1 

where ℎ0𝑖 (𝑡𝑖) is the base line hazard function. The baseline hazard was assumed to be a step 

function, 

ℎ0 (𝑡) = ℎ𝑘 , for 𝑠𝑘−1 < 𝑡 ≤ 𝑠𝑘, 𝑘 = 1, 2, … , 𝐾 where 0 = 𝑠0 < 𝑠1 < 𝑠2 < . . . < 𝑠𝑘 < ∞ is a 

partition of (0,∞) and 𝐾 indicates the number of steps for the baseline hazard. Hence, the 

cumulative baseline hazard is given by  
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𝐻0(𝑡) = (ℎ𝑗(𝑡 − 𝑠𝑗−1) + ∑ ℎ𝑖(𝑠𝑖 − 𝑠𝑖−1)
𝑗−1
𝑖=1 )𝐼(𝑡 ∈ (𝑠𝑖−1, 𝑠𝑗)) . 

 Sensitivity analysis of the results with respect to different values of K can be investigated.   

Assuming ℎ0 (𝑡𝑖)= 𝑟𝑡𝑖
𝑟−1 the proportional hazard model reduced to Weibull model.  In application 

section, Weibull and the Cox models was used for analyzing the dataset. 

In the above-mentioned structures, typical models assume that the random effects 𝑏𝑖 follows a 

multivariate normal distribution with mean 0 and covariance matrix D. This model is sometimes 

called the homogeneity mixed model. In contrast, the heterogeneity model was introduced. 

 Hence, the survival function can be given as 

                           𝑆𝑖(𝑡𝑖) = 𝑆𝑜(𝑔𝑖(𝑡𝑖)) = exp[− (𝜌𝑔𝑖(𝑡𝑖))
𝑘].                                                   (34) 

Also, both equation (33) and (34) can be used to express the density function (𝑡𝑖 , 𝛿𝑖) given 𝑏𝑖 and 

𝜃 under Weibull model as  

𝑓(𝑡𝑖, 𝛿𝑖|𝒃𝒊, 𝜽) = {𝑘𝜌 (𝜌𝑔𝑖(𝑡𝑖))
𝑘−1

exp(𝒛′𝒊𝜷 + 𝜚𝒓
′
𝑖(𝑡𝑖)𝒃𝑖)}

𝛿𝑖 × exp[− (𝜌𝑔𝑖(𝑡𝑖))
𝑘],(35) 

 

The heterogeneity model 

 The proposed model is based on the following assumptions: 

 𝑢𝑖~ ∑𝜋𝜅𝑁𝑞

𝑔

𝑘=1

(𝜇𝜅,  𝐷) 

Where g is the number of components such that the probability of belonging to component k is 𝜋𝜅 

and ∑ 𝜋𝑘 = 1
𝑔
𝑘=1 . Also, 𝜇𝜅 is the mean of the kth component and each component has the same 

covariance matrix D. 

Further, 𝐸[ 𝒖𝒊] = ∑ 𝜋𝑘𝜇𝑘,
𝑔
𝑘=1  and var [[𝒖𝒊] = ∑ 𝜇′𝑘𝜋𝑘𝜇𝑘(1 − 𝜋𝑘) + 𝑫

𝑔
𝑘=1 . 

                        𝜖𝑖 ~ 𝑆𝑁𝑛𝑖 (√
2

𝜋
 𝜹𝑒 ,𝜳,  𝜟𝑒)  . 

where, 𝑦𝑖(𝑡) ~ 𝑆𝑁𝑛,𝑖(𝜇0, 𝜳, 𝜟𝑒) ,𝜇0 ∈ ℝ
𝑛 is a location vector, 𝜳 is a scale matrix (n x n positive 

definite matrix), 𝜟𝑒 is the skewness matrix (n x k); if 𝜟𝑒  is set at 0 then, we have the usual 

symmetric multivariate normal distribution. 𝜹 = (𝛿1, 𝛿2…𝛿𝑛)
𝑇  is the skewness parameter vector.  

where β denotes the vector of the regression coefficients for the fixed effects covariates 𝑥1and 𝑧𝑖 
denotes the covariate vector for the random effects 𝒖𝒊.  The fixed and random effects refer to the 

population-average and subject-specific effects, respectively. The error terms 𝜀𝑖
∗(𝑡) are mutually 

independent, skew normal distribution with variance 𝜎𝜖
2 , and independent of 𝒖𝒊, (Rizopoulos, 

2012).  The random effects 𝒖𝒊 in the model not only incorporate heterogeneity in the data but also 

incorporate correlation between the multiple measurements within each individual or cluster. The 

random effects 𝒖𝒊 follow a heterogeneous normal distribution with covariance matrix 𝐷. 
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The random effects 𝑢𝑖  is the deviations of individual 𝑖 from the population mean, while the mean 

parameters 𝛽 is regression coefficients  

The proposed Joint Model assumes that the random effects  𝑢𝑖~ ∑ 𝜋𝜅𝑁𝑞
𝑔
𝑘=1 (𝜇𝜅 ,  𝐷) and the error 

term 𝜖𝑖 ~ 𝑆𝑁𝑛𝑖 (√
2

𝜋
 𝛿𝑒 , 𝛹,  𝛥𝑒). 

The survival model here may as well be written as  

                          ℎ𝑖(ℳ𝑖(𝑡),𝓌𝑖) = ℎ0(𝑡) exp{𝓌𝑖′𝜓 + 𝜑[𝑥𝑖
′(𝑡)𝛽 + 𝑧𝑖

′(𝑡)𝑢𝑖]}.                        (36)                                                  

Under the Weibull PH model,  ℎ(𝑡) = 𝜆𝜏𝑡𝜏−1 ,  0 ≤ t < ∞ the above hazard function may be written 

a   = 𝜆𝜏𝑡𝜏−1 exp[𝑤𝑖
′𝜓 + 𝜑𝑚𝑖(𝑡)], (𝜆 = 𝑒

𝜆0)                                                        

               ℎ𝑖(ℳ𝑖(𝑡),𝓌𝑖) = 𝜆𝜏𝑡
𝜏−1exp{𝓌𝑖′𝜓 + 𝜑[𝑥𝑖

′(𝑡)𝛽 + 𝑧𝑖
′(𝑡)𝑢𝑖]}, (𝜆 = 𝑒𝜆0)               (37)                       

 

The joint model is given by 

 

                     

{
 
 

 
 𝑦𝑖(𝑡) = [𝑥𝑖

′(𝑡)𝛽 + 𝑧𝑖
′(𝑡)𝑢𝑖] ≡ 𝑚𝑖(𝑡) + 𝜀𝑖(𝑡),

ℎ𝑖(ℳ𝑖(𝑡),𝓌𝑖) = 𝑇𝑡𝑇−1exp{𝓌𝑖′𝜓 + 𝜑[𝑥𝑖
′(𝑡)𝛽 + 𝑧𝑖

′(𝑡)𝑢𝑖]},

𝑢𝑖~ ∑ 𝜋𝜅𝑁𝑞
𝑔
𝑘=1 (𝜇𝜅 ,  𝐷) , 𝜖𝑖 ~ 𝑆𝑁𝑛𝑖 (√

2

𝜋
 𝛿𝑒 , 𝛹,  𝛥𝑒)

                         (38)  

where in the longitudinal sub-model, 𝑥𝑖(𝑡) and 𝑧𝑖(𝑡) are vectors of possibly time-dependent 

covariates associated with the p-vector of fixed effects β and the q-vector of individual random 

effects 𝑢𝑖, with 𝑢𝑖~ ∑ 𝜋𝜅𝑁𝑞
𝑔
𝑘=1 (𝜇𝜅 ,  𝐷). The error terms 𝜀𝑖(𝑡) and 𝑢𝑖 are assumed independent. 

In the survival submodel, ℎ0(𝑡)= λτtτ−1 is the baseline hazard when survival times follow the 

Weibull distribution.  

Usually, the baseline hazard is parametric (e.g., Weibull, piecewise constant, or a small number of 

B-splines). It is rare to keep ℎ0(𝑡) unspecified (like in the Cox model); the partial likelihood of the 

Cox model cannot be employed, and the full likelihood has to be defined. As a solution, one might 

consider a piecewise constant function with jumps at each event time, but this would produce too 

many parameters and lead to computational problems, (Hsieh et al., 2006). The vector 𝑤𝑖 denotes 

baseline covariates associated with the vector of coefficients γ, while the multivariate function of 

marker  𝑚𝑖(𝑡) = 𝑥𝑖
′(𝑡)𝛽 + 𝑧𝑖

′(𝑡)𝑢𝑖 is associated with the parameter ϕ, which quantifies the degree 

of association between the longitudinal outcome evaluated at time t and the corresponding hazard 

for an event 

Another commonly used joint model framework is to link the survival and longitudinal models via 

shared random effects, called shared parameter models. In this case, the random effects may be 

interpreted as a summary of individual-specific longitudinal characteristics, or a latent process 

(shared variables) which governs both longitudinal and event progressions. Such a shared 

parameter model may be written as  
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                                          {
𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑢𝑖 + ℰ𝑖

ℎ𝑖(𝑡) = 𝑇𝑡𝑇−1exp{𝓌𝑖′𝜓 + 𝜑′𝑢𝑖},
                                                   (38)                    

where the Weibull PH model and LME model share the same random effects 𝑢𝑖. This joint model 

framework is frequently used when the survival risk is influenced by summaries of the longitudinal 

process (e.g., individual-specific intercepts and slopes) 

 

2.11 Estimation of Joint Model Parameters 

The method of estimation of this joint model parameters follows the maximum likelihood (ML) 

method.  

Given observed data {𝑦𝑖, 𝑡𝑖 , 𝛿𝑖}; (i = 1, 2, · · · , N) from both survival and longitudinal outcomes, 

the joint likelihood  is given by  

𝐿(𝜃|𝑦) = ∏ 𝑓(𝑡𝑖 , 𝛿𝑖,𝑦𝑖|𝜃)
𝑁
𝑖=1 = ∏ ∫𝑓(𝑡𝑖, 𝛿𝑖,𝑦𝑖, 𝑢𝑖|𝜃)

𝑁
𝑖=1 𝑑𝑢𝑖 =

∏ ∫𝑓(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)
𝑁
𝑖=1 𝑓(𝑦𝑖|𝑢𝑖; 𝛽, 𝜎𝑒

2)𝑓(𝑢𝑖|𝐷)𝑑𝑢𝑖      =

∏ ∫𝑓𝑁
𝑖=1 (𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)∏ 𝑓

𝑛𝑖
𝑗=1

(𝑦𝑖|𝑢𝑖; 𝛽, 𝜎𝑒
2) 𝑓(𝑢𝑖|𝐷)𝑑𝑢𝑖 …………………     (39)    

       
where θ denotes the vector of all model parameters that need to be estimated. The conditional 

density for the Weibull survival time 𝑡𝑖 takes the form; 

𝑓(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑) = {ℎ𝑖(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑)}
𝛿𝑖 𝑆𝑖(𝑡𝑖|𝑢𝑖;  ψ, 𝑇, 𝜑) 

                                = {𝑇𝑡𝑇−1exp(𝓌𝑖
′𝜓 + 𝜑′𝑢𝑖)𝛿𝑖 exp(−𝑡𝑖

𝑇−1exp (𝓌𝑖
′𝜓 + 𝜑′𝑢𝑖)}.                     

The conditional density for the longitudinal outcome 𝑦𝑖𝑗 is having mean 𝜇𝑖𝑗 = 𝑥𝑖𝑗
′ 𝛽 + 𝑧𝑖𝑗

′ 𝑢𝑖 and 

variance 𝜎𝜀
2 . The conditional density for of 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛𝑖)

′ is given by 

                               𝑓(𝑦𝑖|𝑢𝑖; 𝛽, 𝜎𝜀
2) = ∏ 𝑓

𝑛𝑖
𝑗=1 (𝑦𝑖𝑗|𝑢𝑖; 𝛽, 𝜎𝜀

2)                                                                          

             = (2𝜋𝜎𝜀
2)−

𝑛𝑖

2 exp{−1||𝑦𝑖 − 𝑥𝑖𝑗
′ 𝛽 + 𝑧𝑖𝑗

′ 𝑢𝑖||
2 2𝜎𝜀

2⁄ }, 

where ||𝑥|| = {∑ 𝑥𝑖
2

𝑖 }1 2⁄ is the norm of the Euclidian vector. The two outcome processes are 

linked via the random effects 𝑏𝑖, 𝑏𝑖~ ∑ 𝜋𝜅𝑁𝑞
𝑔
𝑘=1 (𝜇𝜅,  𝐷). When the association parameter ϕ = 0, 

the joint analysis is equivalent to the separate analysis.  

The observed data log-likelihood for all individuals in the study can be formulated as 

ℓ(𝜃) =∑log∫𝑓(𝑡𝑖, 𝛿𝑖,𝑦𝑖, 𝑏𝑖|𝜃)𝑑𝑏𝑖

𝑁

𝑖=1

,  

                  = ∑ log ∫𝑓(𝑡𝑖|𝑏𝑖;  ψ, 𝑇, 𝜑)∏ 𝑓
𝑛𝑖
𝑗=1 (𝑦𝑖𝑗|𝑏𝑖; 𝛽, 𝜎𝜀

2)𝑁
𝑖=1 𝑓(𝑏𝑖|𝐷)𝑑𝑏𝑖                         (40) 

The ML of estimator of θ was obtained by maximizing the log-likelihood function with respect to 

θ using a Newton-Raphson iterative algorithm.  

 

2.12 Model Diagnostic Check and comparison. 
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Diagnostic checks were employed to evaluate the adequacy of fit for the proposed joint models 

and the fitted model was compared with existing model (Mayor Model), (Dickson et al., 1989).  

The same dataset and variables were used in both models. 

 

3. Results and discussion 

 From the Kaplan-Meier estimate presented in Figure 1, the D-penicil group demonstrates slightly 

higher survival rates than the placebo group after one month of follow-up. However, this trend 

changed after six months, wherein the placebo group began to exhibit higher survival rates. The 

difference in survival between the two groups appeared to diminish by the ninth month, and by the 

end of fourteen months of follow-up, there is a noticeable decline in survival for the placebo group.  

Figure 1: Probability of survival for the placebo and D-penicil treatment groups. 

From the Cox proportional hazards model, the dependent variable, which is the outcome being 

modelled, is survival time (years) and censoring status (status2), where status2 indicates whether 

the event of interest (death, transplant, alive) occurred or not. The independent variables, also 

known as predictor variables or covariates, are drug, sex, serum bilirubin, serum cholesterol, 

albumin, alkaline, SGOT, platelets and prothrombin.  These variables are assumed to influence the 

survival time and censoring status of individuals in the dataset. 

In table 1, the coefficient for the variable "sex-female" is -0.711, indicating that females have a 

hazard of survival that is approximately 0.491 times that of males when other variables are held 

constant. The associated p-value (<0.001) is highly significant, and provides strong evidence that 

gender is indeed associated with survival in the studied population. Moreover, the Likelihood ratio 

test, Wald test (261.1), and Score (log-rank = 302) test all yielded extremely low p-values (p = < 

<0.001), underscoring the overall statistical significance of the model. This Cox proportional 

hazards model revealed significant associations between survival time and serum bilirubin, serum 

cholesterol, albumin, alkaline, platelets, and prothrombin, even after adjusting for other covariates. 

The collective statistical significance of the model suggested that at least one of the considered 

predictors plays a crucial role in influencing survival outcomes. Furthermore, the Concordance 

statistic, measuring predictive accuracy, was reasonably high at 0.757 (standard error = 0.013), 

indicating the model's effectiveness in predicting survival times. 

 

Table1: Estimates of survival model 

 

The dependent variables in the Linear Mixed-Effects Model as shown in Table 2 are the 

biochemical measurements (serum bilirubin, serum cholesterol, albumin, alkaline, platelets, 

prothrombin and SGOT). The independent variables are drug (this is a fixed effect, meaning it's a 

predictor variable that is of interest for assessing the relationship with the dependent variables), 

year (this is also a fixed effect, representing time) and the interaction term drug * year. 

 

Table 2: Linear mixed-effects model estimates 

 

In terms of fixed effects coefficients, as shown in Table 2, the model provided valuable insights 

into the expected values of serum bilirubin, serum cholesterol, albumin, alkaline, platelets, and 

prothrombin. The estimated intercept is 3.447, indicating the anticipated value of these 
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measurements when all predictors are set to zero. The coefficient for drug-D-penicillamine is -

0.736, signifying the alteration in biochemical measurements (serum bilirubin, serum cholesterol, 

albumin, alkaline, platelets, and prothrombin) associated with the use of drug-D-penicillamine in 

comparison to the placebo. Meanwhile, the coefficient for the variable "year" is 0.896, representing 

the anticipated change in biochemical measurements for each additional year. Additionally, the 

interaction term between drug-D-penicillamine and year yields a coefficient of -0.165. This 

implied that the impact of the D-penicillamine on survival changes over time, and the rate of 

change is captured by the interaction term. The negative sign indicated a decreasing effect between 

the D-penicillamine and survival as time progressed. 

The standard deviation of the random intercepts across various ID levels is calculated as 4.0173 as 

shown in table 2, offering insights into the variability in baseline biochemical measurements 

between different individuals. Similarly, the standard deviation of the random slopes for distinct 

ID levels is 1.111, captured the variability in the rate of change of biochemical measurements over 

time. The high correlation coefficient of 0.982 between random slopes and intercepts indicated a 

strong relationship, suggesting that individuals with higher baseline measurements tend to 

experience steeper changes over time.  

The residual standard deviation, quantified at 1.910, Table 2, denoted the unaccounted variability 

in serum bilirubin, serum cholesterol, albumin, alkaline, platelets, and prothrombin after 

incorporating both fixed and random effects. This metric served as a measure of the model's ability 

to explain the observed variations in the data. The log-restricted-likelihood, standing at -2842.63 

for the linear mixed-effects model, reflected the model's goodness of fit. This model, encompassing 

fixed effects associated with drug, year, and their interaction, as well as random effects 

accommodating individual-level variations, provided valuable insights into the temporal dynamics 

of serum bilirubin, serum cholesterol, albumin, alkaline, platelets, and prothrombin. The log-

restricted-likelihood serves as a critical metric for model evaluation, and the consideration of 

random effects aids in capturing the nuanced individual-level variations in both baseline levels and 

temporal trajectories of biochemical measurements. 

 

The findings derived from the joint model provided valuable insights into the intricate connections 

between the longitudinal and event processes. Within the longitudinal process, the estimated 

intercept stands at 0.554, accompanied by a standard error of 0.033, a z-value of 16.765, and a 

remarkably significant p-value of less than 0.0001. This intercept signified the expected values of 

serum bilirubin, serum cholesterol, albumin, alkaline, platelets, and prothrombin when all other 

predictors were at zero. The coefficient for the 'year' variable is 0.185, indicating the anticipated 

change in serum bilirubin, serum cholesterol, albumin, alkaline, platelets, and prothrombin for a 

one-unit increase in the 'year' variable. The coefficient for 'drug-D-penicillamine' is 0.031, 

suggesting a modest impact on serum bilirubin, serum cholesterol, albumin, alkaline, platelets, and 

prothrombin, although statistical significance is achieved (p = 0.040). The interaction term 'drug-

D-penicillamine and year' has a coefficient of 0.013, signifying how the effect of 'drug-D-

penicillamine' changes for each additional year, this interaction is statistically significant (p = 

0.016). Moving to the event process, the coefficient for 'drug-D-penicillamine' is 0.048, 

accompanied by a standard error of 0.182, a z-value of 0.263, and a p-value of 0.039. This suggests 

that the impact of 'drug-D-penicillamine' on the event process is statistically significant. The 

coefficient for 'sex-female' is 0.324, indicating that females exhibit a high hazard compared to 

males. This effect is statistically significant (p = 0.016). On the other hand, the coefficient for 

association term or the association parameter between the longitudinal and survival processes is 
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1.258, with a standard error of 0.096, a z-value of 13.175, and a highly significant p-value of less 

than 0.0001, suggesting a substantial impact on the event process. Additionally, spline terms 'bs1' 

to 'bs9' contribute to the spline-approximated baseline risk function. 

The proposed joint model, as evidenced by a log-likelihood of 31485.34, Information Criterion 

(BIC) of -64226.81, Integrated Completed Likelihood (ICL) of -64482.31 and coefficient of 

determination (0.891), Table 3, demonstrates a superior fit compared to the existing model (Mayor 

Model). The higher log-likelihood indicates that the proposed model better explains the data. 

Moreover, the lower BIC and ICL values suggest that the proposed model more effectively 

captures underlying patterns in serum bilirubin, serum cholesterol, albumin, alkaline, platelets, and 

prothrombin and higher coefficient of determination compared with the existing model showed 

that it has a better goodness of fit.  

 

Table 3: Estimates for the proposed and existing Models 

 

4. Conclusion 

The proposed joint model, which integrates both longitudinal and survival data, enhances predictive 

accuracy compared to using survival or longitudinal models independently. It provides a more 

comprehensive understanding of how changes in longitudinal measurements influence the timing and 

probability of survival events, enabling better-informed clinical decision-making and patient care. 

 

4.1 Recommendations 

The joint model offered a powerful framework for capturing the intricate interplay between 

longitudinal processes and survival outcomes. By simultaneously modelling longitudinal 

trajectories and time-to-event data, this model provided a nuanced understanding of how changes 

in longitudinal measurements influence the risk of experiencing events such as disease 

progression, relapse, or mortality. This comprehensive approach enables researchers and clinicians 

to gain deeper insights into the underlying mechanisms driving disease progression or treatment 

response, facilitating more informed decision-making in clinical practice and research settings. 
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Tables 

  

Table1: Estimates of survival model             

Coefficient for the variable "sex-female"  -0.711 

p-value  <0.001 

Wald test  261.1 (p-values <0.001) 

Log-rank  302.0 (p-values <0.001) 

Concordance statistic 0.757 (standard error = 0.013) 
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Table 2: Linear mixed-effects model estimates 

Variables Estimates Pr(>|z|) 

serum bilirubin 0.051 <0.001 
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serum cholesterol 0.001 <0.001 

Albumin -0.685 <0.001 

Alkaline 0.0002 <0.001 

SGOT 0.0006 0.031 

Platelets -0.002 0.002 

Prothrombin 0.075 0.016 

Linear mixed-effects model 

Residual standard deviation 1.91 

log-restricted-likelihood  -2842.63 

Fixed Effects Coefficients 

Estimated intercept 3.44 

Coefficient for drug-D-penicillamine -0.71 

Coefficient for year 0.90 

Coefficient for   interaction term between drug-D-penicillamine and 

year 

-0.16 

Random Effect 

Deviation of the random intercepts across various ID levels 4.02 

standard deviation of the random slopes for distinct ID levels 1.11 

Correlation coefficient between random slopes and intercepts  0.98 
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 Table 3: Estimates for the proposed and existing Models 

 Estimates Pr(>|z|) 

Variables Mayor 

Model 

Proposed 

Model 1 

Proposed 

Model 2 

Mayor Model Proposed 

Model 1 

Proposed 

Model 2 

serum bilirubin 0.8707 0.690 0. 773 **** *** *** 

serum 

cholesterol 

  0.018   *** 

Albumin -2.533 -1.440 -0.491 *** *** *** 

Alkaline   0.003   *** 

SGOT   0.091   ** 

Platelets   -0.051   *** 

Prothrombin 2.380 4.237 1.632 ** *** ** 

       

log-likelihood    31485.34    
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BIC    4226.81    

   64482.31    

R-Square 0.578 0.687 0.891 **** *** *** 

Adjusted R-

Square 

 0.674 0.885  *** *** 

* for p < 0.05, ** for p < 0.01, *** for p < 0.001, **** for p < 0.0001 

  

 


