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Abstract 

Stochastic differential equation (SDE) have become an important tool for modeling the dynamics 

of many random phenomena such as financial assets. In real applications, parameters of the 

equation are unknown and need to be estimated and many times only discretely sampled data of 

the process are available. Financial assets such as stock price are very chaotic and dynamic and 

are often represented using stock price index, to reflect overall market sentiments and directions 

of stock prices. Investing in stocks or equities is a speculative risk that is complex and complicated 

to understand due to its chaotic behaviour. In this paper, attempt was made to study this chaotic 

bahaviour via Ito SDE, the forward Kolmogorov equation (FKE). The parameters estimation was 

done using Euler-Maruyama method. The model’s mean, variance and Akaike Information 

Criterion (AIC) were obtained as 0.08, 896.56 and 4764.08 respectively, as against ARIMA 

(1,0,0), (3,1,1) and (6,0,0) having AIC values of 5482.92, 5401.00 and 5433.50, respectively. 

Hence the Ito SDE was better in describing stock price index and is therefore recommended for 

practitioners and policy makers for sound decision making regarding stocks.   

 

Keywords: Chaos; Diffusion process; Kolmogorov equation; nonlinear dynamics; stochastic 

differential equation; Stock price index. 

1. Introduction 

Chaos, the science of nonlinear systems has provided a new set of tools for understanding the 

prediction of random behaviour in time series modelling. The body of chaotic models is fascinating 

since time series data that seems random may in reality be chaotic. Chaos theory as a branch of 

mathematics focuses on the behaviour of dynamical systems that are highly sensitive to initial 

conditions.  

Most economic and financial systems (or processes) are chaotic time series since their evolution 

appears disorderly and the linear stochastic approach of modelling and forecasting is not adequate 

for such random processes (Boaretto et al, 2021). Chaotic behaviour exists in many natural 

systems, such as weather and climate and also occurs spontaneously in some systems with artificial 

components such as road traffic. This behaviour can be studied through analysis of a chaotic 

mathematical model, or through analytical techniques such as recurrence plots and Poincare maps 

and these has provided a new set of tools for understanding the prediction of random behaviour in 
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time series modelling (Sandubete and Escot, 2020). Modeling and predicting the future evolution 

of a given time series from a chaotic dynamical system is one of the main tasks of nonlinear time 

series analysis (Agwuegbo et al, 2011).  

A stochastic differential equation (SDE) is a mathematical equation relating a stochastic process 

to its local deterministic and random components. According to Oksendal (2003) and Karatzas and 

Shreve (1991), stochastic differential equation is defined as a white noise driven differential 

equation in which one or more of the terms is a stochastic process. The theory of stochastic 

differential equations (SDEs) has been extensively developed and is discussed in many books 

including Papoulis (1984), Karatzas and Shreve (1994), Friedman (2006) and Davis and Mikosch 

(2008). Stochastic differential equations are used to model diverse phenomena such as stock prices 

or physical systems subject to thermal fluctuations. Typically, SDEs incorporate white noise which 

can be thought of as the derivative of Brownian motion (or the Weiner process). Brownian motion 

is a Gaussian process and is considered as a very good approximation to many real-life phenomena 

(Mikosch, 1998).  

Brownian motion is a fundamental building block of modern quantitative finance and indeed the 

basic model for financial asset prices. The essence of stochastic differential equations in this study 

is to reconstruct possible chaotic behaviour of financial time series examined in financial markets. 

The explicit solutions of the stochastic differential equations are in terms of the coefficient of the 

underlying Wiener and the diffusion processes. Diffusion processes is also a solution to stochastic 

differential equations (SDEs) and are primarily used as approximations to discrete processes 

(Zitkovic, 2016). These approximations sometimes can be solved explicitly when the motivating 

discrete model is intractable (Heyman and Sobel, 2004).  Loosely speaking, the term diffusion 

(Karatzas and Shreve, 1994) is attributed to a Markov process which has continuous sample paths 

and can be characterized in terms of its infinitesimal generator.  

Stochastic differential equations (SDEs) have become an indispensable ingredient for modeling 

the dynamics of a variety of random phenomena such as the chaotic behavior of financial assets. 

In real applications the parameters of the equation are unknown and need to be estimated. In most 

cases what is available is only discretely sampled data of the process and then it is a common 

practice to use the discretization of the original continuous time process for the modeling. Unlike 

deterministic models such as ordinary differential equations, which have a unique solution for each 

appropriate initial condition, SDEs have solutions that are continuous-time stochastic processes. 

This is a major motivation for SDEs in modeling chaotic time series, in which interest is in 

nonlinear dependence of the level of a series on previous data points (Allen, 2007).  

In financial markets, stochastic processes occur whenever dynamical systems experience random 

influences. Mathematical models are useful for understanding these chaotic behaviours in financial 

processes. The chaotic behaviour and characteristics are often observed and commonly 

encountered in different fields of economics and finance, particularly in the capital markets. 

Financial market analysts are always looking for explanations of large movements in asset prices 
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and one explanation is that there is some (unanticipated) news which caused prices in commodities 

to drastically mark down the value of equities. Another explanation was that the financial market 

is a chaotic process which is characterized by occasional large movements (Hsieh, 1990).  

There has been a growing interest in the use of diffusion for describing chaotic system such as 

stock price index since the variances changes through time.  In particular, security prices in itself 

is a random process because of the actions of many different factors, both human and materials, 

which give rise to uncertainties in the system. The motivation of this study stems from Boaretto et 

al, (2021) and focused on the use of a diffusion process in the analysis of chaotic behaviour in 

Nigeria stock price index.  Diffusion processes are important in several areas of science for 

modeling real life phenomena and can be characterized in terms of its infinitesimal generator 

(Karatzas, and Shreve, 1994).  

Nonlinear dynamics is the branch of physics that studies systems governed by equations more 

complex than the linear forms. Nonlinear systems such as stock prices, inflationary rates, exchange 

rates, interest rates, appear chaotic, unpredictable or counter intuitive and yet their behavior is not 

random. Nonlinear dynamical systems describing changes in financial assets over time may appear 

chaotic and are difficult to solve (Bruce et al, 2017). The systems can commonly be approximated 

by linear equations (linearization) using a differential equation. In particular, a differential 

equation is linear if it is linear in terms of the unknown function and its derivatives. Complex 

behaviors that arise from deterministic nonlinear dynamic systems exhibit two special properties 

such as; sensitive dependence on initial conditions, and characteristic structure. In nonlinear 

dynamics, speaking about a dynamical system usually means to speak about an abstract 

mathematical system which is a model for such an entity.  

2. Methodology  

2.1 Chaotic Time Series Stochastic Model 

Chaotic processes are random process that can be described mathematically as a set of dynamical 

differential equations. Suppose a scalar time series },......,2,1),({ Ntt =  is a measurement on a 

chaotic dynamical system in the state space.  The scalar time series )}({ tX  is a stochastic process. 

A stochastic process )}({ tXX =  is a collection of random variables. More precisely, for every 

RtXt → :)(),,0[  is a random variable corresponding to some infinite set of outcomes .  

For every possible outcome ,  the stochastic process give rise to a trajectory .),0[: RX →  

The stochastic process  for the chaotic series is considered to be a Markov process,  and can be 

written as a function ,),0[: RX → where the randomness of X is determined by the choice 

of . .  By letting X  be any stochastic process and dt an infinitesimal time step, the increment 

of X  over the time interval ],[ dttt +  is defined as 

).()()( tXdttXtdX −+=                                                   (1) 
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For any fixed t  and dt , the increment )(tdX  is a random variable. If the increment )(sdX  and 

)(tdX  over disjoint intervals ][ dss +  and ][ dtt +  are independent, then X  has independent 

increments. If the distribution of every increment is normal, then X  is a Gaussian process. 

Equipped with these definitions, the chaotic time series can be modelled by means of the general 

equation 

 Z(t) 
)(

      )( =+
dt

tdX
taX                               (2) 

where a  is a constant, and )(tZ  denotes  continuous white noise.  The behaviour of )(tZ  follows 

a wiener process. Wiener process is a particular type of Markov stochastic process describing the 

behaviour of the well-known Brownian motion. The Wiener process is a continuous-time 

stochastic process and is Gaussian. Brownian motion is the most common example of a Wiener 

process. More importantly, the mathematical models used to describe Brownian motion are the 

fundamental tools on which all financial asset pricing and derivatives pricing are based.  If 

}0),({ ttX  is a Brownian motion, then the process }0),({ ttZ  defined by 

=
t

dssXtZ
0

)()(                                                            (3) 

is an integrated Brownian motion. The chaotic time series can be modelled as an integrated 

Brownian motion by assuming that the rate of change of }0),({ ttZ   follows a Brownian motion. 

Hence the rate of change is then 

).()( tXtZ
dt

d
=                                                        (4) 

Hence  

+=
t

dssXZtZ
0

)()0()(                                           (5) 

It follows from the fact that Brownian motion is a Gaussian process. As }0),({ ttZ  is a Gaussian, 

it follows that its distribution is characterized by its mean value and covariance function.  When 

}0),({ ttX  is a standard Brownian motion, then 

=
t

dssXtZ
0

])([)]([  

 
t

dssX
0

)]([  = 0                    (6) 

for ts   
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)](),([)](),([ tZsZtZsZCov =  

=   
t s

dvvXduuX
0 0

])()([  

=   
t s

dudvvXuX
0 0

)()([  

=    
t s

dudvvXuX
0 0

)()([  

=   
t s

dudvvu
0 0

),min(  

=   +
t s

vdvudu
0 0

 

=  )
62

(2 st
S − .                                (7) 

2.2 Chapman Kolmogorov Formula 

In the theory of Markovian stochastic processes in probability theory, the Chapman–Kolmogorov 

equation is an identity relating the joint probability distributions of different sets of coordinates on 

a stochastic process. 

When the stochastic process under consideration is Markovian, the Chapman–Kolmogorov 

equation is equivalent to an identity on transition densities. In the Markov chain setting, one 

assumes that i1 < ... < in. Then, because of the Markov property, 

𝑝𝑖1, … , 𝑖𝑛
(𝑓1, … , 𝑓𝑛) = 𝑝𝑖1(𝑓1)𝑝𝑖1,𝑖1

(𝑓2|𝑓1) ⋯ 𝑝𝑖𝑛,𝑖𝑛−1
(𝑓𝑛|𝑓𝑛−1),                          (8) 

where the conditional probability 𝑝𝑖;𝑗(𝑓𝑖|𝑓𝑗) is the transition probability between the times 𝑖 > 𝑗. 

So, the Chapman–Kolmogorov equation takes the form 

𝑝𝑖3;𝑖1
(𝑓3|𝑓1) = ∫ 𝑝𝑖3;𝑖2

∞

−∞
(𝑓3|𝑓2)𝑝𝑖3;𝑖2

(𝑓2|𝑓1)𝑑𝑓2                                                   (9) 

Informally, this says that the probability of going from state 1 to state 3 can be found from the 

probabilities of going from 1 to an intermediate state 2 and then from 2 to 3, by adding up over all 

the possible intermediate states 2. 

When the probability distribution on the state space of a Markov chain is discrete and the Markov 

chain is homogeneous, the Chapman–Kolmogorov equations can be expressed in terms of 

(possibly infinite-dimensional) matrix multiplication, thus: 
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𝑃(𝑡 + 𝑠) = 𝑃(𝑡)𝑃(𝑠)                                                            (10) 

where P(t) is the transition matrix of jump t, i.e., P(t) is the matrix such that entry (i,j) contains the 

probability of the chain moving from state i to state j in t steps. 

As a corollary, it follows that to calculate the transition matrix of jump t, it is sufficient to raise the 

transition matrix of jump one to the power of t, that is 𝑃(𝑡) = 𝑃𝑡, which is the differential form of 

the Chapman–Kolmogorov equation and is known as master equation. 

2.2.1 Backward and Forward Kolmogorov Equations 

The Kolmogorov backward equation and its adjoint sometimes known as the Kolmogorov forward 

equation are partial differential equations that arise in the theory of continuous-time continuous-

state Markov processes. Informally, the Kolmogorov forward equation addresses such problem as 

when there is information about the state x of a system at time t (namely a probability 

distribution 𝑝𝑡(𝑥)); we want to know the probability distribution of the state at a later time 𝑠 > 𝑡. 

The adjective 'forward' refers to the fact that 𝑝𝑡(𝑥) serves as the initial condition and the partial 

differential equation is integrated forward in time (in the common case where the initial state is 

known exactly,  𝑝𝑡(𝑥) is a Dirac delta function centered on the known initial state). 

The Kolmogorov backward equation on the other hand is useful when we are interested at time t in 

whether at a future time s the system will be in a given subset of states B, sometimes called 

the target set. The target is described by a given function 𝑢𝑠(𝑥) which is equal to 1 if state x is in 

the target set at time s, and zero otherwise. In other words, 𝑢𝑠(𝑥) = 1𝐵, the indicator function for 

the set B. We want to know for every state x at time  t, (𝑡 < 𝑠) what is the probability of ending 

up in the target set at time s (sometimes called the hit probability). In this case 𝑢𝑠(𝑥) serves as the 

final condition of the PDE, which is integrated backward in time, from s to t. 

The backward Kolmogorov equation assumes that the system 𝑋𝑡 evolves according to the 

stochastic differential equation  

𝑑𝑋(𝑡) = 𝜇(𝑡, 𝑋)𝑑𝑡 + 𝜎(𝑡, 𝑋)𝑑𝑊(𝑡)                                                  (11) 

Then the backward Kolmogorov equation is as follows (according to Risken (1996)) 

𝜕𝑝(𝑡, 𝑥)

𝜕𝑡
= −

𝜕(𝜇(𝑡, 𝑥)𝑝(𝑡, 𝑥))

𝜕𝑥
+

1

2

𝜕2(𝜎(𝑡, 𝑥)𝑝(𝑡, 𝑥))

𝜕𝑥2
                    (12) 

for 𝑡 ≤ 𝑠, subject to the final condition 𝑝(𝑡, 𝑠) = 𝑢𝑠(𝑥),  and the corresponding forward 

Kolmogorov equation is 

𝜕𝑝(𝑠, 𝑥)

𝜕𝑠
= −

𝜕(𝜇(𝑠, 𝑥)𝑝(𝑠, 𝑥))

𝜕𝑥
+

1

2

𝜕2(𝜎2(𝑠, 𝑥)𝑝(𝑠, 𝑥))

𝜕𝑥2
                  (13) 
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for 𝑠 ≥ 𝑡, with initial condition 𝑝(𝑡, 𝑥) = 𝑝𝑡(𝑥).  

One property of homogeneous Markov process is the Chapman Kolmogorov formula relation: 

𝑝𝑖,𝑗
(𝑙+𝑛)

= ∑ 𝑝𝑖,𝑚
(𝑙)

𝑝𝑚,𝑗
(𝑛)

∞

𝑚=0

 𝑓𝑜𝑟 𝑙, 𝑛 ≥ 0                              (14) 

where 𝑝𝑖,𝑗 = 𝑃{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖}, 𝑖 ≥ 0, 𝑗 ≥ 0 define the transition probabilities for discrete times 

𝑡𝑛 = 𝑛∆𝑡 so that 𝑡𝑛+𝑘 = 𝑡𝑛 + 𝑡𝑘. 

But the property for a nonhomogeneous discrete stochastic process is contained in the forward 

Kolmogorov equation which is of interest in developing models with stochastic differential 

equation. Let 𝑝𝑘(𝑡) = 𝑃(𝑋(𝑡) = 𝑥𝑘) be the probability distribution at time 𝑡. Then, 𝑝𝑘(𝑡 + Δ𝑡) 

satisfies 

𝑝𝑘(𝑡 + Δ𝑡) = 𝑝𝑘(𝑡) + 

[𝑝𝑘+1(𝑡)𝑠(𝑡, 𝑥𝑘+1) − 𝑝𝑘(𝑡)(𝑟(𝑡, 𝑥𝑘) + 𝑠(𝑡, 𝑥𝑘)) + 𝑝𝑘−1(𝑡)𝑟(𝑡, 𝑥𝑘−1)]Δ𝑡/𝛿2           (15) 

As Δ𝑡 → 0, the discrete stochastic process approaches a continuous-time process. Then as Δ𝑡 → 

0, 𝑝𝑘(𝑡) satisfies the initial-value problem: 

𝑑𝑝𝑘(𝑡)

𝑑𝑡
= − (

𝑝𝑘+1(𝑡)𝑎(𝑡,𝑥𝑘+1)−𝑝𝑘−1(𝑡)𝑎(𝑡,𝑥𝑘−1)

2𝛿
) + (

𝑝𝑘+1(𝑡)𝑏(𝑡,𝑥𝑘+1)−2𝑝𝑘(𝑡)𝑏(𝑡,𝑥𝑘)+𝑝𝑘−1(𝑡)𝑏(𝑡,𝑥𝑘−1)

2𝛿2 )(16) 

for 𝑘 = . . . , −2, −1,0,1,2, …  where {𝑝𝑘(0)}𝑘=−𝑚
𝑚  are known. Equations (16) are the forward 

Kolmogorov equation for the continuous-time stochastic process which approximates the partial 

differential equation 

𝜕𝑝(𝑡,𝑥)

𝜕𝑡
= −

𝜕(𝑎(𝑡,𝑥)𝑝(𝑡,𝑥))

𝜕𝑥
+

1

2

𝜕2(𝑏(𝑡,𝑥)𝑝(𝑡,𝑥))

𝜕𝑥2                                       (17) 

 and corresponds to a diffusion Process having the stochastic differential equation (Allen, 2007) 

𝑑𝑋(𝑡) = 𝑎(𝑡, 𝑋)𝑑𝑡 + √𝑏(𝑡, 𝑋)𝑑𝑊(𝑡)                                     (18) 

There exists a close relationship between the discrete stochastic process defined by the forward 

Kolmogorov equation and the continuous process defined by (18) in particular, for small ∆𝑡 and 

𝛿, the probability distribution of the solution (18) will be approximately the same as the probability 

distribution of solutions to the discrete stochastic process. 

We may then be able to construct a realistic discrete stochastic process model for the dynamical 

system under investigation. Then, an appropriate stochastic differential equation model is inferred 

from the above argument. The approach here is to develop a stochastic differential equation model 

by first constructing a discrete stochastic process model. As time is made continuous, the 
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probability distribution of the discrete stochastic model approaches that of the continuous 

stochastic model. 

2.2.2 Fokker-Planck Equations and Stochastic Dynamics 

Fokker-Planck equations describe probability densities of state vectors of systems governed by 

stochastic differential equations of Ito or Stratonovich type. Here we illustrate how a dynamic 

equation described by an Ito stochastic differential equation generates a Fokker-Planck equation. 

𝑑𝑥𝑖(𝑡) = 𝐾𝑖[𝑥(𝑡)]𝑑𝑡 + ∑ 𝑔𝑖,𝑗

𝑗

[𝑥(𝑡)]𝑑𝑤𝑗(𝑡), 

for 𝑖 = 1, … , 𝑛. (19) 

We let 𝑢(∙) be an arbitrary function of an economic state vector 𝑥. We write its differenatial 

retaining terms of 𝑜𝑝(𝑑𝑡) as: 

𝑑(𝑢) = ∑ (
𝜕𝑢

𝜕𝑥𝑖
) 𝑑𝑥𝑖 +

𝑖

(
1

2
) ∑(𝜕2

𝑖,𝑗

/𝜕𝑥𝑖𝑥𝑗)𝑑𝑥𝑖𝑑𝑥𝑗 

by substituting the expression for 𝑑𝑥’s in the above. 

Using the relation 〈𝑑𝑤𝑗〉 = 0 and 〈𝑑𝑤𝑖𝑑𝑤𝑗〉 = 𝜖𝑑𝑡𝛿𝑖,𝑗, where the terms in the angle brackets 

denote the average over 𝑥, we note that, given 

〈𝑢(𝑥)〉 = ∫ 𝑢(𝑥) 𝑝(𝑥, 𝑡|𝑥0, 𝑡0)𝑑𝑥, 

its time derivative 

𝑑〈𝑢〉

𝑑𝑡
= ∫ 𝑢(𝑥) 𝜕𝑝(𝑥, 𝑡|𝑥0, 𝑡0)𝜕𝑡𝑑𝑡 

is rewritten as 

𝑑〈𝑢(𝑥)〉

𝑑𝑡
= ∑ ∫ 𝑢(𝑥)

𝜕

𝜕𝑥𝑖

[𝐾𝑖(𝑥)𝑝]𝑑𝑥

𝑖

+ 𝜖 2⁄ ∑ ∫ 𝑢(𝑥)
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(∑ 𝑔𝑖,𝑚𝑔𝑗,𝑚𝑝)

𝑚

𝑑𝑥

𝑖,𝑗

.  

Since 𝑢 is arbitrary, this relation yields the Fokker-Planck equation: 

𝜕𝑝(𝑡, 𝑥)

𝑑𝑡
= − ∑

𝜕

𝜕𝑥𝑖

[𝐾𝑖(𝑥)𝑝] +

𝑖

(𝜖 2⁄ ) ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑄𝑖,𝑗𝑝)            (20) 

where we define the matrix 𝑄 by 
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𝑄𝑖,𝑗 = ∑ 𝑔𝑖,𝑚𝑔𝑗,𝑚 .

𝑚

 

With large initial population size, the forward Kolmogorov equation (20) satisfies the Fokker-

Planck equation. The probability distribution 𝑝(𝑡, 𝑥) is the probability distribution to the Ito SDE 

𝑑𝑋(𝑡) = (𝑏 − 𝑑)𝑋(𝑡)𝑑𝑡 + √(𝑏 + 𝑑)𝑋(𝑡)𝑑𝑊(𝑡)                                   (21) 

This implies that solutions to the stochastic differential equation (21) have approximately the same 

probability distribution as the discrete stochastic forward Kolmogorov equation and hence is a 

reasonable model for the dynamical process. 

2.3 Parameter Estimation of Model Coefficients  

As the exact solution to a stochastic differential equation is generally difficult to obtain, it is useful 

to be able to approximate the solution. Numerical methods like Euler’s method can be applied to 

Itô stochastic differential equation in differential form 

𝑑𝑋(𝑡) = 𝑓(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑔(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡)                                (22) 

for 0 ≤ 𝑡 ≤ 𝑇 with 𝑓 and 𝑔 called the drift and diffusion coefficients respectively.  

For the Itô stochastic differential equation (22), a continuous piecewise linear approximation to 

the solution 𝑋(𝑡) from Euler’s approximation is �̂�(𝑡) given as 

�̂�(𝑡) =
𝑋𝑖(𝑡𝑖+1−𝑡)

∆𝑡
+

𝑋𝑖+1(𝑡−𝑡𝑖)

∆𝑡
                                         (23) 

for 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 and 𝑖 = 0,1,2, … , 𝑁 − 1 where {𝑋𝑖}𝑖=0
𝑁  is the Euler approximation to equation 

(22) at the 𝑁 + 1 nodal points {𝑡𝑖}𝑖=0
𝑁 . This approximate solution is commonly plotted as 

trajectories of sample paths. The function �̂�(𝑡) is a continuous linear approximation to the solution 

X(t). 

2.4 Geometric Brownian Motion 

Geometric Brownian motion is a stochastic process constructed and often used to model financial 

processes subject to random noise. Suppose 𝑊 = {Wt: t ∈ [0, ∞)} is standard Brownian motion 

and that 𝜇 ∈ ℝ and 𝜎 ∈ (0, ∞). Let  

𝑋𝑡 = exp [(𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑊𝑡],                                                  (24) 

The stochastic process 𝑋 = {𝑋𝑡: 𝑡 ∈ [0, ∞)} is a geometric Brownian motion with drift parameter 

𝜇 and volatility parameter 𝜎. 
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We note that the stochastic process {(𝜇 −
𝜎2

2
) 𝑡 + 𝜎W𝑡: 𝑡 ∈ [0, ∞)} is a Brownian motion with 

drift parameter 𝜇 −
𝜎2

2
 and scale parameter 𝜎, so geometric Brownian motion is simply the 

exponential of this process. In particular, the process is always positive and this is one of the 

reasons it is used to model financial and other processes that cannot be negative. 

Geometric Brownian motion 𝑋 = {𝑋𝑡: 𝑡 ∈ [0, ∞)} satisfies the stochastic differential equation 

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑W𝑡                                                     (25) 

and for 𝑡 ∈ (0, ∞),  𝑋𝑡 has the lognormal distribution with parameters (𝜇 −
𝜎2

2
) 𝑡 and 𝜎√𝑡. This 

forms the basis for modeling the dynamics of stock prices.  

This standard geometric Brownian motion is often assumed for stock price where the drift and 

diffusion coefficients are proportional to the initial stock price and it differs from our proposed 

approach already set forth. Specifically, stock price follows geometric Brownian motion if it 

satisfies the stochastic differential equation of the form equation (25).  

Considering the model for financial variables, 𝑋𝑡 over an infinitesimal period [𝑡, 𝑡 + 𝑑𝑡]. 

According to Central limit theorem, the assumption is that 𝑋𝑡 is normally distributed, with mean 

and variance both proportional to the time interval given by 

𝑑𝑋𝑡

𝑋𝑡
~𝑁(𝜇𝑑𝑡, 𝜎2𝑑𝑡),         𝜇, 𝜎2 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Now, since 𝑑𝑊𝑡~𝑁(0, 𝑑𝑡), it follows that 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡~𝑁(𝜇𝑑𝑡, 𝜎2𝑑𝑡), one therefore take our 

model to be 

𝑑𝑋𝑡

𝑋𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡                                                             (26) 

Then 

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡                                                  (27) 

This is a stochastic differential equation for the variable 𝑋𝑡. Given an initial value 𝑋0, by first 

observing that the Ito’s lemma implies that: 

𝑑𝑙𝑜𝑔𝑋𝑡 =
𝑑𝑋𝑡

𝑋𝑡
−

1

2

(𝑑𝑋𝑡)2

𝑋𝑡
2 = (𝜇 −

𝜎2

2
) 𝑡 + 𝜎𝑊𝑡                            (28) 

Then 

𝐿𝑜𝑔 𝑋𝑡 = 𝑙𝑜𝑔𝑋0 + (𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑊𝑡                                            (29) 
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Taking exponential of both sides, we have 

𝑋𝑡 = 𝑋0𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝑊𝑡                                                                     (30) 

The process is called the diffusion process with drift 𝜇 and volatility 𝜎2. 

3 Results and Discussion 

3.1 Data Description of the Chaotic System 

Figure 1 below shows the time series plot of the Nigeria Stock price Index from 1993 to 2019 on 

a monthly basis. The series shows no seasonal component, although there is an increasing trend.  

 

Figure 1. Time Series Plot of Stock Price Index 

 

3.2 Selecting a Candidate ARIMA Model 

An appropriate ARIMA model for the raw stock price index is arrived at as given in Table 1 below. 

The suitable model can be obtained with the “auto.arima” function in R. Table 4 shows the ARIMA 

model, ARIMA(3,1,1) of order 1 as the best choice for the stock price index with difference 1 and 

also the coefficients of the model and diagnostic statistics of the model.  

 

Table 1: Coefficients of ARIMA of Order(3,1,1) for Stock Price Index Data 
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Coefficients ar1 ar2 ar3 ma1 

Value -0.5846 0.2675 0.4090 0.7151 

s.e 0.0731 0.0596 0.0517 0.0648 

 

The AIC for the ARIMA is 5401 which gives the lowest AIC amongst the candidate models for the 

stock price index. 

3.3 Predicting Stock Price Index with the ARIMA Model 

Figure 2 shows the forecasts of stock price index, the blue line, using the ARIMA model of order 

(3,1,1). The 80% and 95% prediction intervals are shown by the grey and light grey shaded area 

around the blue line. 

 

Figure 2. ARIMA (3,1,1) Forecast Plot of Stock Price Index 

 

To investigate whether the forecast errors of the ARIMA model are normally distributed with mean 

zero and constant variance, and whether there are correlations between successive forecast errors, 

the correlogram of the forecast errors for our ARIMA(3,1,1) model for the stock price index is 

checked and the Ljung-Box test for lags 1-40 is performed. 
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Figure 3. ACF Plot of Forecast Residuals of Stock Price Index 

 

Since the correlogram shows that only lag 1 exceeds the significance bounds and the p-value for the 

Ljung-Box test is 0.142, it can be concluded that there is very little evidence for non-zero 

autocorrelations in the forecast errors at lags after 1. 

The histogram and time plot (with overlaid normal curve) of the forecast errors show the forecast 

errors are normally distributed with mean zero and constant variance, The time plot of forecast errors 

shows that the forecast errors seem to have roughly constant variance over time and mean zero.  

 

Figure 4. Histogram Plot of Forecast Residuals of Stock Price Index 

The time plot of the in-sample forecast errors shows that the variance of the forecast errors seems to 

be roughly constant over time (though perhaps there is slightly higher variance for the second half 

of the time series). The histogram of the time series shows that the forecast errors are roughly 
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normally distributed and the mean seems to be close to zero. Therefore, it is plausible that the forecast 

errors are normally distributed with mean zero and constant variance. 

Since successive forecast errors do not seem to be correlated, and the forecast errors seem to be 

normally distributed with mean zero and constant variance, the ARIMA(3,1,1) does seem to provide 

an adequate predictive model for the stock price index. 

3.4 Forward Kolmogorov Equation Model  

The forward kolmogorov equation (FKE) defines the system under study and Table 2 below shows 

the coefficient of SDE model of the Ito type for the stock price index evaluated with Euler-

Maruyama scheme implemented in R package, which is given as  

𝑑𝑋𝑡 = 𝜃1𝑋𝑡𝑑𝑡 + √𝜃2𝑋𝑡𝑑𝑊(𝑡) 

Table 2: Estimates of FKE Model for Stock Price Index 

Coefficient Estimate Std. Error 2.5% 97.5% 

𝜃1 0.08233 0.05471 -0.02490 0.18956 

𝜃2 896.5623 71.911 755.62 1037.50 

 

The FKE model is therefore 

𝑑𝑋𝑡 = 0.0823 ∗ 𝑋𝑡𝑑𝑡 + √896.562 ∗ 𝑋𝑡𝑑𝑊(𝑡)                                  (34) 

with solution given as 

�̂�𝑡 = 111.3 ∗ 𝑒(0.0823−448.281)𝑡+29.94265𝑊𝑡                                                (35) 

The solution in equation (35) is a function that is commonly plotted as simulated trajectories of 

sample paths. The 95% confidence interval of the estimates are given in the table and AIC is 

4764.075 which is less than the AIC from the ARIMA models.  

3.5 Diffusion Process of the Forward Kolmogorov Equation Model  

Figure 5 shows the time plot of the simulated one trajectory of the diffusion process of the FKE in 

equation (35) for the stock price model. It can be seen that the FKE models the path of the stock 

price better with the increasing trend as observed in the actual times series plot of the data.  
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Figure 5. Simulated 1 trajectory of the 

Stock price Index process  

𝑑𝑋𝑡 = 0.0823 ∗ 𝑋𝑡𝑑𝑡 + √896.562 ∗ 𝑋𝑡𝑑𝑊(𝑡) 

Figure 6 shows the plot of the simulation for 100 trajectories of the diffusion process with the 95% 

confidence interval shown by the blue lines and the mean path indicated by the red line.  

 

Figure 6. Simulated 100 trajectories of the Stock Price Index process 
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Table 3 shows the Monte-Carlo Statistics for diffusion process X(t) for the SDE model of stock 

price index obtained in equation (4.1).  

Table 3. Monte-Carlo Statistics of the Diffusion Process X(t) 

Statistics Value 

Mean 556.2 

Variance 259213.6 

Skewness 0.9949 

Kurtosis 3.077 

Coef-variation 0.91544 

Figure 7 shows the histogram of the simulation and its distribution as also confirmed by the kernel 

density plot in Figure 8. Both plots show that the simulations are approximately normal and hence 

indicate a better fit of the FKE diffusion model for the stock price index with mean zero and 

constant variance 446.04.  

 

Figure 7. Histogram of the Simulation Values 
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Figure 8. Estimated Density of Random Stock Price Index 

3.6 Comparing the ARIMA and FKE Models 

Models comparison with criteria such as Akaike Information Criterion (AIC) and Bayesian 

information criterion (BIC) are usually used. This study employs the AIC, where the minimum 

value rule of AIC is taken into consideration for selecting the best model to fit. Table 4 shows the 

FKE model has the minimum AIC. 

Table 4: AICs of Fitted Models for Stock Price Index 

Model AR(6) ARIMA(1,0,0) ARIMA(3,1,1) SDE 

AIC 5433.50 5482.92 5401.00 4764.08 

 

Hence, the stochastic differential equation diffusion process models the stock price index better 

than the conventional ARIMA models.  

The following can therefore be drawn as conclusion from the data analysis of stock price index 

under stochastic differential equation modeling framework. 

The stock price index modeled by ARIMA model of order (3,1,1) was best fitting.  With stochastic 

differential equations model, using the forward Kolmogorov equation of the Ito type, the stock 

price index was better modelled than the ARIMA models as indicated by their AICs. 

The diffusion process of the FKE model was solved numerically by multi-dimensional Euler-

Maruyama scheme as implemented in R statistical package and the plot shown by the diffusion 

plot in Figure 6. 
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4. Conclusion 

One of the basic economic problems facing every society whether developed or underdeveloped 

is the problem of stocks. Stock prices have enormous consequences on the economy and by 

extension on the investors.  In particular, the stock prices in themselves are random process 

because of the actions of many different factors, both human and materials, which give rise to 

uncertainties in the system. Stock prices are amongst the most important economic indices 

affecting every economic system. It is related to indicators like exchange rates, interest rates, 

unemployment rate, gross domestic product and so on. Stocks influence all sectors of the economy 

all over the worlds since inflation is marked with increases in the prices of goods and services. It 

is always seen as the basic economic problem of every society. Several discrepancies have surfaced 

recently regarding the structure of stock prices and unemployment rates in Nigeria. These 

discrepancies can be translated into dubious national policies if they are left unchecked. These 

discrepancies in the structure of stock prices in Nigeria define controversial points as hypotheses 

in nonlinear dynamics. 

Nonlinear dynamical systems describing changes in stock prices over time, may appear chaotic 

and are difficult to solve. The systems can commonly be approximated by linear equations 

(linearization) using a differential equation. Unlike deterministic models such as ordinary 

differential equations, which have a unique solution for each appropriate initial condition, SDEs 

have solutions that are continuous-time stochastic processes.  

In summary, the procedure described was a stochastic differential model for a dynamical process 

with a discrete stochastic model which is the forward kolmogorov equation. The process carefully 

observes the possible changes along with the corresponding probabilities for a short time step Δt 

and as the short time approaches zero, the discrete model approaches the distribution of the 

continuous-time process corresponding to the forward kolmogorov equation. The procedure 

described provides, in a natural manner, an Ito stochastic differential equation model. 

Nigeria stock price index from 1993 to 2019 was considered to change in a small time interval ∆𝑡. 

An ARIMA(3,1,1) model of order 1 was discovered as a better choice from the pool of ARIMA 

models. However, the FKE model defined by distribution of solutions to the Ito stochastic 

differential equation gave a better fit to the stock price index.  

The Diffusion process for the FKE was simulated using the multi-dimensional Euler-Maruyama 

scheme for SDEs implemented in R statistical packages.  The diffusion process of the FKE for 

stock price index on the actual data obtained showed that the diffusion process modeled the chaotic 

movement of the stock price index. The AIC of the FKE model was 4764.075, which was less than 

the AIC of the best ARIMA model of order(3,1,1) with AIC of 5401. 

The study was able to advance a chaos analysis technique based on forward Kolmogorov equation 

for the continuous-time process corresponding to a Diffusion Process for the stochastic differential 
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equation. The model built a stochastic differential model using continuous-time Markov process 

with available discrete time realisations of the chaotic process of the stock price index of Nigeria.  

It is recommended that chaotic systems like stock price dynamics should be modeled using forward 

Kolmogorov equations that allow the approximation of a continuous time process using Markov 

chain through discrete realizations of the chaotic systems, as applied for stock prices. The 

modeling procedure can be extended to more than two stock prices for the purpose of financial 

portfolio analyses and management for decision making and competitive advantage. The modeling 

approach can be further extended to stochastic differential equations other than Ito type. 
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