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ABSTRACT 

           
Repeated measures dose-response mortality studies usually involve obtaining responses at 

different times on the same group of subjects, which often leads to correlation. A commonly used 

method for correlated dose-response mortality data is the Probit analytical technique which is 

suitable for data collected at one point in time and not for repeated measures. This study developed 

a Generalized Estimating Equations (GEE) using logistic regression for estimating the model 

parameters in repeated measures dose-response mortality data. The GEE model was applied to 

adult-termites mortality data observed at 6, 12, 18 and 24 hours respectively from an experiment 

conducted in the Entomology Division of the Nigerian Institute for Oil Palm Research, NIFOR, 
Edo State, Nigeria. In the experiment conducted, adult-termites were exposed to two plant extracts; 

Jatropha Curcas and Ricinus Cummunis at varying concentration levels (10%, 20% and 35%) 

respectively. The GEE estimated LT50 results for each plant extracts at varying concentration 

levels were given as J.Curcas (LT50=12.47hrs, 12.47hrs and 12.47hrs) and R.Cummunis 

(LT50=12.47hrs, 12.47hrs and 12.47hrs) which shows that the potency of the concentration levels 

is the same considering the time to mortality. Repeated measures logistic regression using GEE 

has proven to be a robust method in estimating LT50 since it consistently gave precise LT50 

estimates with a smaller confidence interval, thus should be incorporated into studies of this nature 

as other existing methods for analyzing data from bioassay experiments. 

 

Keywords: Repeated measures, dose-response, correlation, Probit analysis, GEE, Survival data, 

plant extracts, and mortality. 

 

1.0 INTRODUCTION 

Dose-response relationships commonly occur in agricultural research in areas such as plant 

science, soil science, entomology and animal science e.tc (Ritz et al. 2015; Dungan et al 2001; 

Turner, et al 1995).  

To access selectivity and efficacy of various chemical formulations, a group of dose response is 

usually individually compared by evaluating the estimated potencies (Seefeldt et al 1995). 
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In dose response relationships study, when subjects are exposed to a particular stressor and its 

effect (mortality) from the same experimental unit is observed at different time intervals, say, t₁, 
t₂, t3…. tn. Data collected this way are usually correlated because successive observations are made 

on the same group of subjects at several concentrations over time (Robertson and Preisler, 1992; 

Thomsen and Eilenberg, 2000).  

Correlated mortality data cannot be analyzed using standard probit analysis technique (Finney, 

1964; Finney, 1971) which is the usual way of analyzing data from bioassay experiment (Thorne 

et al., 1995.). This is because Probit analysis is adequate if the responses are independently, true 

for data collected at once after a given time point. 

When measurements from dose-response mortality studies are correlated in addition to taking 

interest in the speed of death, there is need for an alternative method that will take care of the 

correlation in the data set while estimating lethal time. Such method includes the use of 

Generalized Estimating Equations (GEE) and the Survival Analysis technique.  

The Generalized Estimating Equations (GEE) was introduced by Liang and Zeger (1986) as an 

extension of Generalized Linear Model (GLM) method (McCullagh and Nelder, 1983; McCullagh 

and Nelder, 1989) to handle correlated data. GLM are a generalization of standard linear regression 

that allows the response variables to have a distribution other than the normal distribution. The 

primary difference is that GEE has the ability to account for the within-subject covariance structure 

for the various types of response data. Zeger and Liang (1986), Ziegler et al. (1998). The available 

covariance structures specify how observations within a subject or cluster are correlated with each 

other.  

In this study, Generalized Estimating Equations (GEE) is used in estimating lethal time (LT50) for 

correlated termite’s dose-response mortality data. Also, its performance using its confidence 

intervals was shown. 

2.0 METHODOLOGY 

2.1 DISCRIPTION OF DATA 

The data for this study was obtained from a laboratory experiment conducted at the Entomology 

Division of the Nigerian Institute for Oil Palm Research (NIFOR), Benin City to test the effect of 

two botanical extracts with a positive control on mortality of adult-soldier termites as part of insect-

plant control project.  

The two botanical plant extracts used, were from Jatropha curcas (Physic seed) and Ricinus 

communis (Castor seed). Cypermethrin 25% EC and water served as positive and negative control 

respectively. The group of subjects (adult termites) was exposed to the botanicals extracts at three 

concentration levels: 10%, 20% and 35% (w/v).  

A total of three hundred and twenty (320) adult termites were selected from the stock and a total 

of ten (10) termites were introduced into the each petri dish containing the impregnated filter 

papers containing botanical extracts at the different concentrations as well as those for the control. 

Each concentration with different botanical extracts was replicated four times. The response 

variable was adult-termites mortality observed at 12 hours and 24 hours, after exposure.  
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There was no death in negative control which consisted of water only and hence will not appear in 

the analysis. R statistical software version R 3.1.0 was used for the data analysis. 

2.2 The Generalized Logistic Regression: 

The logistic (logit) regression model which can be generalized for a dependent variable having 

two more categories is a type of regression analysis used for predicting the outcome of a categorical 

dependent variable based on one or more predictor variables (McCullagh and Nelder, 1983; 

McCullagh and Nelder, 1989). 

Dose-response mortality data is a set of Bernoulli trials (a special case of Binomial distribution) in 

which the appropriate GLM to use is the Generalized Logistic Regression. Here, the values of 

response variable (mortality) are 1 if there is a success and 0 otherwise. 

The p.d.f of the binomial distribution 𝐵(𝑛𝑖 , 𝜋𝑖)  is given as: 

                           𝑓(𝑦𝑖) = (
𝑛𝑖
𝑦𝑖
)𝜋𝑖

𝑦𝑖(1 − 𝜋𝑖)
𝑛𝑖−𝑦𝑖                                          (1)    

Taking logs of both sides and collecting like terms of equation (1) gives 

log 𝑓(𝑦𝑖) = 𝑦𝑖 log (
𝜋𝑖

1 − 𝜋𝑖
) + 𝑛𝑖 log(1 − 𝜋𝑖)  + log (

𝑛𝑖
𝑦𝑖
)                 (2)  

Equation (2) has the general form of the exponential family  

                             log 𝑓𝑦(𝑦; 𝜃, 𝜙) =
[𝑦𝜃 − 𝑏(𝜃)]

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)                  (3) 

When compared, so that 

𝜃 = log (
𝜋𝑖

1 − 𝜋𝑖
) , 𝑏(𝜃) =  𝑛𝑖 log(1 − 𝜋𝑖),   𝑐(𝑦, 𝜙) =  log (

𝑛𝑖
𝑦𝑖
) 

Thus, for the response variable 𝑌𝑖, and a set of n predictor variables (dose or time), 𝑋𝑖 we will 

consider a binary response variable with a logistic transformation or logit function defined by  

               𝑌𝑖 = 𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛 +∈𝑖              (4)    

Where 𝜋𝑖   is the probability of success,  𝛽₀  is the intercept (slope), 𝛽₁ is the regression coefficients 

for each corresponding predictor variable, 𝑋𝑛 (dose or time), and ∈𝑖 is the error. 

2.3 Generalized Estimating Equations (GEE): 

The generalized logistic regression under GLM works with the assumptions that the response 

variables are correlated as with repeated measures data. An extension of GLM to handle such 

correlation in the data set is the GEE. Thus, the GEE is used to fit a specified model, which in this 
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case is the generalized logistic regression model to cater for within-subject/within-group 

correlations.  

2.4 Derivation of GEE 

Recall that the logistic regression (McCullagh and Nelder, 1989) has the general form of the 

exponential family as shown in equation (2). 

   ⇛  𝑓𝑦 (𝑦𝑖; 𝜃, 𝜙) = 𝑒𝑥𝑝 {
[𝑦𝑖ℎ(𝛽𝑖

′𝑋𝑖) − 𝑏[ℎ(𝛽𝑖
′𝑋𝑖)]]

𝑎(𝜙)
+ 𝑐(𝑦𝑖, 𝜙)}              (5)           

𝑤ℎ𝑒𝑟𝑒 

 𝜃 = ℎ(𝛽𝑖
′𝑋𝑖), 𝑖 = 1,…𝑛 , 𝛽𝑖 𝑖𝑠 𝑎 (𝑃 + 1) × 1 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, and 𝜙 𝑎 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 

The first two moments of 𝑌𝑖 is given as 

𝐸(𝑌𝑖) = 𝜇𝑖 = 𝑏
′(𝜃𝑖) = 𝑏

′(ℎ(𝛽𝑖
′𝑋𝑖)) 

𝑉𝑎𝑟(𝑌𝑖) =  𝑏
′′(𝜃) 𝑎(𝜙) =  𝑏′′(ℎ(𝛽𝑖

′𝑋𝑖)) 𝑎(𝜙) 

We define,  𝜇𝑖 = 𝛽𝑖
′𝑋𝑖 if the subject within a group responds independently, then the regression 

parameters 𝛽𝑖 can be estimated by the estimating equations as 

                                      𝑔(𝛽) =∑𝑋𝑖
𝑇

𝑛

𝑖=1

Δ𝑖(𝑌𝑖 − 𝐸(𝑌𝑖)) = 0,                                      (6) 

where            Δ𝑖 = 𝑑𝑖𝑎𝑔 (
𝜕𝜃𝑖
𝜕𝜇𝑖
) = 𝑑𝑖𝑎𝑔(ℎ′(𝛽′𝑋𝑖)) 

is an  𝑛𝑖 × 𝑛𝑖 ‘‘working’’ covariance matrix of 𝑌𝑖,  𝑋𝑖 is an 𝑛𝑖 × (𝑝 + 1) covariate matrix, and  𝑌𝑖 

is a 𝑛𝑖 × 1 response vector. If  Δ𝑖 = 𝑐𝑜𝑣(𝑦𝑖) is correct, then �̂� is asymptotically unbiased and 

efficient (i.e it has the smallest variance of all other possible estimations).  

Similarly, If  Δ𝑖 ≠ 𝑐𝑜𝑣(𝑦𝑖) , when the subjects within a group do not respond independently, then 

�̂� is asymptotically unbiased but not efficient. Thus, the GEEs that can be used to estimate 

regression parameters is of the form 

                           𝑔(𝛽𝑖) =∑𝐷𝑖
𝑇

𝑛

𝑖=1

𝑉𝑖
−1(𝑌𝑖 − 𝐸(𝑌𝑖)) = 0                                          (7) 

Where 

 𝐷𝑖 = 𝜕{𝑏𝑖
′(𝜃)} 𝛿𝛽𝑖, ⁄ the 𝑗𝑡ℎ row of 𝐷𝑖 correspond to 𝐷𝑖𝑗 = 𝜕𝐸(𝑌𝑖𝑗) 𝜕𝛽𝑖 = 𝑏

′′(𝜃𝑖𝑗)⁄ ℎ′(𝛽𝑖
′𝑋𝑖𝑗)𝑋𝑖𝑗   
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𝑡ℎ𝑒𝑛,     𝐷𝑖 = (

𝐷1
𝑇

𝐷2
𝑇

⋮
𝐷𝑛
𝑇

) =

(

 
 

𝑏′′(𝜃𝑖1)ℎ
′(𝛽1

′𝑋1)𝑋1𝑛
𝑇

𝑏′′(𝜃𝑖2)ℎ
′(𝛽2

′𝑋2)𝑋2𝑛
𝑇

⋮
𝑏′′(𝜃𝑖𝑛)ℎ

′(𝛽𝑛
′𝑋𝑛)𝑋𝑛𝑛

𝑇 )

 
 

 

= (

𝑏′′(𝜃𝑖1) 0        ⋯                 0
0 𝑏′′(𝜃𝑖2)        ⋯                 0
⋮
0

⋮
0

          
⋮
⋯

       
        ⋮ 
𝑏′′(𝜃𝑛𝑛)

)(

ℎ′(𝜃𝑖1) 0     ⋯             0
0 ℎ′(𝜃𝑖2)     ⋯             0
⋮
0

⋮
0

          
⋮
⋯

       
⋮ 

ℎ′(𝜃𝑛𝑛)

)(

𝑋1
𝑇

𝑋2
𝑇

⋮
𝑋𝑛
𝑇

) 

Therefore, 𝐷𝑖 = 𝐵𝑖∆𝑖𝑋𝑖 is an 𝑛𝑖 × 𝑝 matrix, where 𝐵𝑖 = 𝑑𝑖𝑎𝑔(𝑏
′′(𝜃𝑖)). Let’s define V𝑖 =

𝐵
𝑖

1
2𝑅𝑖(𝛼)𝐵𝑖

1
2 𝜙⁄ , where 𝑅𝑖(𝛼) is an 𝑛 × 𝑛 correlation matrix of  𝑌𝑖, and 𝛼 is a vector of unknown 

parameters that defines the correlation matrix. 𝑅𝑖(𝛼) is called the working correlation matrix 

because consistent estimators can be obtained even when 𝑅𝑖(𝛼) is not correctly specified. V𝑖 is a 

function of 𝛽, 𝜙 𝑎𝑛𝑑 𝛼, where 𝛽 is the parameter of interest, 𝜙 𝑎𝑛𝑑 𝛼 are nuisance parameter.  

Thus equation (7), becomes 

                  𝑔(𝛽𝑖) =∑(𝐵𝑖∆𝑖𝑋𝑖)
𝑇

𝑘

𝑖=1

[
𝐵
𝑖

1
2𝑅𝑖(𝛼)𝐵𝑖

1
2

𝜙
]

−1

(𝑌𝑖 − 𝐸(𝑌𝑖))                                          (8)    

Thus, equation (8) can be expressed in matrix form as 

       = ∑[(

𝑏′′(𝜃𝑖1) 0 ⋯               0

0 𝑏′′(𝜃𝑖2) ⋯               0

⋮
0

⋮
0

                   ⋮
⋯ 𝑏′′(𝜃𝑛𝑛)

)(

ℎ′(𝜃𝑖1) 0 ⋯      0   

0 ℎ′(𝜃𝑖2) ⋯      0   

⋮
0

⋮
0

⋮
⋯ ℎ′(𝜃𝑛𝑛)

)(

𝑋1
𝑇

𝑋2
𝑇

⋮
𝑋𝑛
𝑇

)]

𝑇

𝑛

𝑖=1

 

       

(

 
 

√𝑏′′(𝜃𝑖1) 0 ⋯                 0

0 √𝑏′′(𝜃𝑖2) ⋯                 0

⋮
0

⋮
0

      
               ⋮

⋯ √𝑏′′(𝜃𝑛𝑛))

 
 

−1

(

 
 

𝑟11 𝜙⁄ 𝑟12 𝜙⁄ ⋯ 𝑟1𝑛 𝜙⁄

𝑟21 𝜙⁄ 𝑟22 𝜙⁄ ⋯ 𝑟2𝑛 𝜙⁄
⋮

𝑟𝑛1 𝜙⁄

⋮

𝑟𝑛2 𝜙⁄

⋮

⋯ 𝑟𝑛𝑛 𝜙⁄ )

 
 

−1

 

(

 
 

√𝑏′′(𝜃𝑖1) 0 ⋯                 0

0 √𝑏′′(𝜃𝑖2) ⋯                 0

⋮

0

⋮

0
      
 ⋮

⋯ √𝑏′′(𝜃𝑛𝑛))

 
 

−1

(

 
 

𝑌𝑖1 − 𝐸(𝑌𝑖1)

𝑌𝑖2 −

⋮     

𝐸(𝑌𝑖2)

⋮
𝑌𝑛𝑛 − 𝐸(𝑌𝑛𝑛))

 
 

 

When all responses within clusters are independent, 
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𝑅𝑖(𝛼) =

(

  
 

1 0 ⋯ 0
0 1 ⋯ 0

⋮

0

⋮

0

⋮

⋯

⋮

1)

  
 

 

Then, equation (7) is equal to (6). 

2.5 GEE Working Correlation Matrix: 

According to (Zuur et al., 2009; Liang and Zeger, 1986), choices for the correlation structure 

within GEE include the following: Independent, Exchangeable, Autoregressive AR(1), 

Unstructured correlation etc. One main feature of the GEE model is that the estimators are robust 

to departures from the true correlation patterns. Although, a loss in estimator efficiency can occur 

but this loss decreases as the sample becomes larger. 

The GEE model works best if the numbers of observations per subject is small and the number of 

the subjects is large. Also, it is useful in longitudinal studies if the measurements are taken the 

same time for all subjects. However, the exchangeable correlation matrix was adopted since it is 

assumed that the correlation is different for each pair made. 

2.6 Choosing the Correlation Structure in GEE:  

The Quasi-likelihood Information Criterion (QIC) which is an extension of the Akaike Information 

Criterion (AIC) which applies to model fit by GEE was used to find an acceptable working 

correlation structure (Hardin and Hilbe, 2003).     

                          𝑄𝐼𝐶 = −2𝑄(𝜇; 𝐼) + 2𝑡𝑟𝑎𝑐𝑒(𝐴𝐼
−1𝑉𝑅)                                          (9) 

Where, I is the independent covariance structure used to calculate the quasi-likelihood 𝜇𝑖 =
𝑔−1(𝑋𝑖𝛽𝑖) and 𝑔−1(. ) 𝑖s the inverse link function for the the model (logit). 𝐴𝐼

−1 , is the variance 

inverse matrix under the assumption of independence model. VR is the robust variance estimator 

obtained from a general working covariance structure R. The model with the smaller statistic was 

preferred.  

 

2.7 Covariances of 𝜷𝒊 : 

In GEE (Liang and Zeger, 1986) we have both model-based and empirical covariance’s produced 

as shown in equation (6) and (7). 

2.7.1 The Model-based Estimate: 

The model-based estimator of the covariance matrix of 𝛽𝑖  is given by                                   

                                        𝐶𝑜𝑣(𝛽𝑖)𝑛 = ∑ (𝛽𝑖) = 𝐼0
−1                                                     (10)𝑛   
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                                      𝐼0 = ∑
𝜕𝜇𝑖

′

𝜕𝛽𝑖

𝑛
𝑖 𝑉𝑖

−1 𝜕𝜇𝑖

𝜕𝛽𝑖
                                                                 

                             𝐼0 = 𝑋
𝑇𝑉−1𝑋                                                              (11) 

 From the above,  𝐶𝑜𝑣(𝛽𝑖)𝑛 consistently estimates  𝑐𝑜𝑣(𝛽𝑖) if the mean model and the working 

correlation are correct. 

2.7.2 Empirical-sandwich Estimate: 

The empirical or robust estimator of the covariance matrix of 𝛽𝑖 is given by 

 

                                 𝐶𝑜𝑣(𝛽𝑖)𝑒 =∑(𝛽𝑖) =  𝐼0
−1

𝑒

𝐼1𝐼0
−1                                             (12) 

So that from equation (7),  

      

                                         𝐼1 = ∑
𝜕𝜇𝑖

𝜕𝛽𝑖

𝑛
𝑖=1 𝑉𝑖

−1𝐶𝑜𝑣(𝑦𝑖) 𝑉𝑖
−1 𝜕𝜇𝑖

𝜕𝛽𝑖
                                                 (13)   

𝐼1 can also be written as 

                               𝐼1 = 𝐷
𝑇𝑉−1(𝑦𝑖 − 𝜇𝑖)(𝑦𝑖 − 𝜇𝑖)

𝑇𝑉−1𝐷                                     (14) 

 

Here 𝐶𝑜𝑣(𝛽𝑖)𝑒 is a consistent estimator of 𝐶𝑜𝑣(𝛽𝑖) even if the working correlation is mis-

specified, i.e. 𝑐𝑜𝑣(𝑦𝑖) ≠ ∑ .𝑖  In computing ∑ ,𝑒  𝛽𝑖 and 𝜙 are replaced by estimates, and 𝑐𝑜𝑣(𝑦𝑖) is 

replaced by the estimate  (𝑦𝑖 − 𝜇(𝛽𝑖))(𝑦𝑖 − 𝜇(𝛽𝑖))
′ . 

The robust or model-based standard errors is used in estimating the GEE model for large sample 

size regardless of the true form of 𝑐𝑜𝑣(𝑦𝑖). If smaller it could be rather noisy. 

REMARK: 

When within-subject correlations are not strong, (Zeger 1988) suggests that the use of GEE with 

empirical estimator is highly efficient.  

3.0 RESULTS AND DISCUSSION 

Descriptive Graphical Display 

Fig 1: Boxplot for Number of dead termites/group with the Control Agents. 
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Cochrane Q test for three or more matched pairs suggests that the three control agents are 

significantly different from each other (Q test statistics was 16.384 with a p-value = 0.0257). 
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Fig 2: Box plot for the number of dead termites/group by concentration levels. 

The Cochrane Q test for the four different concentration levels was 4.398 (p-value = 0.00121). 

Hence, the four concentration levels are significantly different from each other in achieving 50% 

mortality. 

 

 

3.2 GEE Analysis Results 

Since insect mortality may vary with time, other factors inclusive, a more meaningful approach 

using GEE was to estimate the time (LT50) it takes for 50% of the group of test organisms to die 

at differing dose levels. The different correlation structures for the model fitting processes were 

chosen to reflect the nature of the data. The results of parameter estimates using the standard 

logistic regression and that of logistic regression model using GEE are given in Table 1 as well as 

the standard errors for the given variance estimator. 

In two out of GEE-type cases in Table 1, the estimates of β (which is the estimated amounts by 

which the log odds of the response variable would increase if the covariates were a unit higher) 

are in agreement except for the independent and unstructured working correlation structure. The 

same applies to the standard errors for the working correlation fitting methods. Also, comparing 

results of the estimates β and its standard error for the ordinary logistic regression and that of 
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logistic regression using GEE shows that GEE is more efficient in estimating the model parameters 

as it gives population standard error estimates which are generally bigger. 

 

 

 

 

 

 

Table 1:  Results of the parameter estimates and standard errors of the regression analysis of the 

insect-mortality data using different user-defined model fitting processes for GEE and GLM. 

 

Table 2:  Estimated unstructured correlation coefficients within mortality-responses from adult-

termites, 𝑅(𝛼𝑖𝑖). 

 

Model 

Fitting 

 

 

GLM 

 

Type=Exchangeabl

e 

(geeglm) 

 

Type=AR1 

(geeglm) 

 

Type=Independen

ce 

 (geeglm)  

 

Type=Unstructured 

(geeglm) 

 
Paramet
er 
  

 
Estimate 

 
Standard 
Error 

 
Estimate 

 
Standar
d 
Error 

 
Estimate 

 
Standar
d 
Error 

 
Estimate 

 
Standar
d 
Error 

 
Estimate 

 
Standar
d 
Error 

Intercept -20.8733 1981.053
8 

-4.69e+01 9.93e+0
6 

-
4.69e+0
1 

9.93e+0
6 

-
4.62e+0
1 

1.14e+0
7 

-4.56e+01 1.73e+0
7 

Time(hrs) 1.6519 165.0878 3.89e+00 8.27e+0
5 

3.89e+0
0 

8.27e+0
5 

3.84e+0
0 

9.52e+0
5 

3.76e+00 1.44e+0
6 

Conc. 0.048 0.0339 4.80e-02 6.95e-02 4.80e-02 6.95e-02 4.80e-02 6.95e-
02 

2.68e-02 6.69e-02 

Mortality   𝛼𝑖1          𝛼𝑖2                 𝛼𝑖3                  𝛼𝑖4 

𝛼𝑖1     1           0.7792         0.779             0.304 
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3.3: Lethal Time Estimates (LT50) from Repeated measures Logistic Regression using GEE: 

Since mortality may vary with time (other factors inclusive), hence the need to estimate the time 

it takes for 50% of the test organisms to die as a function of % concentration. The estimated LT50 

together with their confidence intervals for the different concentration levels for control agents are 

summarized in Table 3 below. 

As shown in the given table, its lethal time (LT50) ranged between 12.47 hours to 12.47 hours for 

extract J.Curcas; 12.47 hours to 12.47 hours for extract R.Cummunis. Similarly, the LT50 values 

for the different concentration levels ranged between 12.47 hours to 12.47hrs for 10% 

concentration; 12.47hours to 12.47 hours for 20% concentration; and 12.47hours to 12.47hours for 

35% concentration. From Table 3 below, the % concentration for all extracts have the same 

potency alongside the control. 

Table 3: LT50 Estimates from repeated measures logistic using GEE   

Control Agents Conc. (%)  LT50 (hrs) Lower 95% CI Upper 95% CI 

J.curcas 10 12.47 0.548 24.4 

J.curcas 20 12.47 0.548 24.4 

J.curcas 35 12.47 0.548 24.4 

R.cummunis 10 12.47 0.548 24.4 

R.cummunis 20 12.47 0.548 24.4 

R.cummunis 35 12.47 0.548 24.4 

cypermethrin 1 12.47 0.548 24.4 

 

𝛼𝑖2                    1            0.925                 0.440 

𝛼𝑖3                                    1                      0.440 

𝛼𝑖4                                                                1 
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CONCLUSION   

This research work contributes immensely by giving a detailed insight in using GEE to fit a logistic 

regression model, a statistical method in analyzing repeated measures dose-response mortality 

data. A comparison of GLM and repeated measures logistic regression using GEE was also shown 

from the analysis results indicating the efficiency in using GEE. 

The analysis results showed that the percentage (%) concentration of the different plant extracts 

were not significantly different from each other for achieving 50% insects mortality (LT50) using 

GEE. The lethal time estimated corresponds to different extracts as well as its concentration levels. 

As shown from the results of this method, all concentration levels of the plant-extracts showed 

high toxicity level (potency) in achieving 50% mortality of each sampled insect’s population.  

 

 

RECOMMENDATION 

The implications of this study are that there is need to improve on the way repeated measures 

mortality data is being analyzed by adopting or using the Generalized Estimating Equations (GEE) 

instead of the usual Analysis of variance (ANOVA) or MANOVA. In addition, the kind of the 

information obtained from such study will serve as a guide in analyzing and interpreting results 

from repeated measures data.  
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