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Abstract  

This paper aims at presenting  Heston’s Stochastic-Jump model, then study the parameters 

influence of the model  on volatility smile. Complete derivation of the Heston’s Stochastic-

Jump model was presented. Simulation studies were conducted and results show that Heston’s 

Stochastic-Jump model addresses the shortcomings of the Black-Scholes because the way the 

volatility is modelled is more realistic from financial market’s point of view compared to the 

constant volatility assumption since it takes into consideration what is observed in financial 

markets. Hence, combining jumps and stochastic volatility therefore produces models which 

are more flexible and that can accurately fit observable market data. 
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1 Introduction 

The Heston model is one of the most popular stochastic volatility option pricing models which 

was developed to overcome the shortcoming of Black-Sholes model of having constant 

volatility but the Heston’s model sometimes does not produce good fit to market prices at short 

maturity. Hence, the quest to have a model that will be better at approximating market prices 

and produce fit better than Heston’s Stochastic model motivated Nwobi, et al. (2019) to 

combine jump components to the existing Heston’s model developed by Heston, (1993) which 

they called Heston’s Stochastic-Jump model. However, Black-Scholes model has been the 

standard benchmark for option pricing in the financial market but its assumption of constant 

volatility of returns which predicts a flat implied volatility surface is unrealistic as it is a well-

known empirical fact that implied volatility is not constant as a function of strike nor as a 

function of time to maturity and generally exhibits some skewness commonly referred to as a 
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volatility smile. If we consider options on an underlying asset with different strike prices, then 

the volatilities implied by their market prices should be the same. They measure the risk for 

the same underlying asset. In many markets the implied volatilities often represent a “smile” 

or “skew” instead of a straight line. The “smile” is however reflecting higher implied 

volatilities for deep in- or out of the money options and lower implied volatilities for at-the-

money options. 

In this paper, we aim at presenting the Heston’s Stochastic-Jump model where jump process is 

incorporated as done by Nwobi, et al. (2019), then study the parameters influence of Heston’s 

Stochastic-Jump model  on volatility smile. Section 2 gives brief description of Volatility smile, 

Section 3 presents Heston’s Stochastic-Jump model and its derivation. Section 4 introduces the 

parameters influence on volatility smile while section 5 concludes the paper. 

2 Volatility Smile 

Volatility smile is the pattern we can observe on a graph of implied volatility verses strike price 

for a given expiry date. It will form an upturned curve similar to the shape of a smile, because 

in the money and out of the money options are observed to have higher implied volatilities than 

at the money options.  The Black-Scholes model is a mathematical model developed by Fischer 

Black and Myron Scholes in 1973 to price European options. According Nwobi et al. (2018), 

Ken, (2022)  and Onyegbuchulem et al. (2024), the Black–Scholes call and put values depend 

on , , , , ,andS K r T   . Of all these parameters, only the asset volatility,   cannot be observed 

directly. One approach is to extract the volatility from the observed market data. Knowing a 

quoted option call value C, and based on observed , , , ,and ,S K r T   we can find such   that 

leads to this value. A   computed this way is known as an implied volatility (  is implied by 

data on the market). To find such   we can use for example MATLAB function sigma = 

blsimpv ( ),  ,  ,  ,  S K r C . It was mentioned in Hull (2006) that equity options traded in 

American markets did not show a volatility smile before the Crash of 1987 but began showing 
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one afterwards. Despite the disparities, the Black–Scholes theory continues to be highly 

regarded by both academics and market traders. It is common among traders for option values 

to be quoted in terms of volatility rather than price, because the implied volatility tends to be 

less variable than the option price. (Onyegbuchulem et al, 2020). 

Another approach to obtain volatility parameter   for the Black-Scholes model is to use the 

historical data. Historical volatility is the realized volatility of a financial instrument over a 

given time period. Generally, this measure is calculated by determining the average deviation 

from the average price of a financial instrument in the given time period.  

The Black-Scholes model is widely popular due to its simplicity and ease of calculation. One 

of the implications of this is that the Black-Scholes stochastic differential equation results in 

a lognormal distribution of the random variable 
tS  (its log is normally distributed) however, 

making a strong assumption by treating volatility as being constant when in real market data, fat 

tails and a high central peak can be observed in the return distribution.  The fat tails and highly 

skewed central peak observed in real market data is illustrated in the Figure 1, extreme events 

occur more frequently than a model based on normal random variables would predict.  

 

Figure 1: NASDAQ Daily Log-Returns vs. the Normal Distribution 

There have been numerous attempts to develop generalizations or alternatives to the lognormal 

asset price model. Many of these were motivated by the observations of the real market data. 

One known approach is to allow the volatility to be stochastic, another is to allow the asset to 

undergo ‘jumps’. We therefore introduce the Heston’s Stochastic-Jump model in the next 
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section which allows volatility to be stochastic and incorporates jump components in asset 

price.  

3.0  Heston’s Stochastic-Jump Model 

The Heston’s Stochastic-Jump Model is given as:  

 ( ) 1
t

t R t t t t t tdS r S dt v S dB R S dN= − + +                                   (1)   

 ( ) 2t t tdv v dt v dB  = − +   (2) 

                     1 2ov , ,c dB dB dt=  

                      Pr 1tdN dt= =  

 where  

r  is the riskless rate. 
tS  is the asset price at time t . 

tv  is the asset price variance at time t . 

tR  is the random variable that dictates the percentage jump size of the stock price conditional 

on the jump occurring, where ( )ln 1 tR+  is normally distributed with mean ( )
2

ln 1
2

t


+ −   

                  i.e. ( ) ( ) 2 21
ln 1 ln 1 ,

2tt RR   
 

+ + − 
 

N  

 and the variance 
2 , ( )1 tR+ has a lognormal distribution: 

 
( )

( ) ( )
2

2

2

ln 1 ln 1
21

exp
21 2

tt R

t

R

R




 

   
 + − + −  
   
 

+  
 
 

  

   is the long-term variance level,   is the mean reversion speed,    is the volatility of 

variance,    is the correlation between the Weiner processes (Brownian motions )
1B and

2B . 

tR is the mean of 
tR , 

2  is the variance of ( )ln 1 tR+  ,  is the annual frequency (intensity) 

of Poisson process tN . The three new parameters added to the original Heston’s model are 
tR
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,
2 and  . The parameters 

tR  and 
2  determine the distribution of the jumps and the Poisson 

process is assumed to be independent of the Wiener processes(Brownian motion). 

3.1 Derivation of Heston’s Stochastic-Jump Partial Differential Equation  

Assuming that the stock price and the variance satisfy equations (1) and (2), deriving the 

Heston-Jump Partial Differential Equation requires forming a riskless portfolio. Setting up a 

portfolio   which contains the option being priced with its value denoted by ( ), ,M M S v t=

  units of the stock S,  units of another options ( ), ,N N S v t=  which hedges the volatility.  

                                            M S N = −  −   (3) 

The change in the portfolio in time dt  is given by:  

 d dM dS dN = −  −   (4) 

We now apply ˆIto's Lemma to dM  and dN in (4) and differentiate with respect to the variables 

, ,andS v t . It should be noted that Cont and Tankov (2004) gives ˆIto  formula for the jump 

process as : 

 ( )
( ) ( ) ( )

( ) ( )2

2

, , ,1
,

2

t t t

t t t t t

f X t f X t f X t
df X t b f X cX f cX

t X X
 − −

  
= + + + + +    

  (5) 

Applying Cont and Tankov (2004) idea of ˆIto  formula for the jump process in (5) to dM  in 

(4) we have:  

 

( ) ( )

2 2
2 2

2 2

2

1 1

2 2

, ,t t

M M M M M
dM dt dS dv vS dt v dt

t S v S v

M
v S dt M R S t M S t dN

v S



 

    
= + + + +

    


+ + −   

  (6) 

The term ( ) ( ), ,t tM R S t M S t dN−    describes the difference in the option value when a jump 

occurs. Applying ˆIto's  Lemma again to dN  and differentiating with respect to the variables 

, ,andS v t , to obtain:  
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( ) ( )

2 2
2 2

2 2

2

1 1

2 2

, , t

N N N N N
dN dt dS dv vS dt v dt

t S v S v

N
v S dt N RS t N S t dN

v S



 

    
= + + + +
    


+ + −   

  (7)

Inserting equations (6) and (7) into (4), the change in the value of portfolio d is now written 

as: 

 
( ) ( )

( ) ( )

2 2
2 2

2 2

2

2 2
2 2

2 2

2

1 1

2 2

, ,

1 1

2 2

, ,

t t t t

t t

M M M M M
dt dS dv vS dt v dt

t S v S v
dS

M
v S dt M R S t M S t dN

v S
d

N N N N N
dt dS dv vS dt v dt

t S v S v

N
v S dt N R S t N S t dN

v S



 





 

     
+ + + +  

      − 
 
+ + −     

 = 
     

+ + + + 
     −

 
+ + −     












  (8) 

Rearranging equation (8),so that dt  terms for M , dt  for N , dS , dv  and 
tdN  terms are grouped 

together to have  

 

( ) ( ) ( ) ( )( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

1 1

2 2

1 1

2 2

, , , ,t t t t t

M M M M
vS v v S dt

t v SS v

N N N N
vS v v S dt

t v SS vd

M N M N
dS dv

S S v v

M R S t M S t N R S t N S t dN

  

   

 



    
+ + +  

     
    
− + + +  

    =   
      
+ − −  + −   

       


+ − − −        

  (9) 

The two terms ds and dv  in (9) contribute to risk in the portfolio according to Heston (1993). 

However, for the portfolio to be risk free dS and dv  must be eliminated by equating their 

coefficients to zero. The hedge parameters now become  

 ,

M

M Nv
N S S

v

 

 
  =  = − 

   
 

  (10) 
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 equation (9) now becomes  

 

( ) ( ) ( ) ( )( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

1 1

2 2

1 1

2 2

, , , ,t t t t t

M M M M
vS v v S dt

t v SS v

N N N N
d vS v v S dt

t v SS v

M R S t M S t N R S t N S t dN

  

   



    
+ + +  

     
     

 = − + + +  
     


+ − − −       



  (11) 

The portfolio should also earn a free risk rate, thus: 

 ( )d r M S N dt = −  −   (12) 

Equating the right hand of (11) to right hand side of (12), dividing both side by dt ,  

 

( ) ( ) ( ) ( )( )

( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

1 1

2 2

1 1

2 2

, , , ,t t t t t

M M M M
vS v v S

t v SS v

N N N N
vS v v S r M S N

t v SS v

M R S t M S t N R S t N S t dN

  

    



    
+ + +  

     
     

− + + + = −  − 
     


+ − − −       



  (13)

Plugging the values of and   from (10), we have  

 

( ) ( ) ( ) ( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

1 1

2 2

1 1

2 2

, , , ,t t t t t

M M M M
vS v v S

t v SS v

M v N N N N
vS v v S

N v t v SS v

M v
M R S t M S t N R S t N S t dN

N v

M v M vM N
r M S S N

S N v S N v

  

  

    
+ + + 

    

      
− + + + 
      

  
+ − − −         

      
= − + −  

       

  (14) 

Rearranging (14), such that M  terms will be one side and N terms will be in another   side, 

then divide both sides by 
M

v




 to obtain: 
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( ) ( )

( ) ( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

1 1

2 2

, ,

1 1

2 2

, ,

t t t t

t t t t

M M M M M
vS v v S rM rS M

t v S SS v
v

M R S t M S t dN

N N N N N
vS v v S rN rS N

t v S SS v
v

N R S t N S t dN

  

  

     
+ + + − +  

     
 + −   

     
+ + + − +  

    =  
 + −   

  (15) 

Taking expectation over the probability distribution of jumps, we obtain  

 
( ) ( )

( ) ( )

2 2 2
2 2

2 2

2 2 2
2 2

2 2

1 1

2 2

, ,

1 1

2 2

, ,

t t t t

t t t t

M M M M M
vS v v S rM rS M

t v S SS v
v

E M R S t M S t dN

N N N N N
vS v v S rN rS N

t v S SS v
v

E N R S t N S t dN

  



  



     
+ + + − +  

     
 + −   

     
+ + + − +  

    =  
 + −   

  (16) 

note that:  

 ( ) ( ) ( ) ( ) ( )
0

, , , ,t t t t t t t tE M R S t M S t M R S t M S t M R dR



− = −         (17) 

Equation (21) is the expected value of the change in the option price with respect to the jump 

probability distribution function. Equation (16) now becomes  

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
2 2

2 2

0

2 2 2
2 2

2 2

0

1 1

2 2

, ,

1 1

2 2

, ,

t t t

t t t t t

M M M M M
vS v v S rM rS

t v S SS v M

v
M R S t M S t M R dR

N N N N N
vS v v S rN rS

t v S SS v N

v
N R S t N S t N R dR

  



  







     
+ + + − + 

      
 

 + −    

     
+ + + − + 

      
=  

 + −    





  (18) 

The expression in terms of M and that in terms of N in (18) are the same but represent different 

options. This means that each of the two expressions can be written as a function ( ), ,M S v t   
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of , ,andS v t . Following Heston (1993), this function can be specified as 

( ) ( ) ( ), , , ,M S v t v S v t  = − − + ,that is  

 
( ) ( ) ( )

( ) ( )

2 2 2
2 2

2 2

0

1 1

2 2

, ,

, ,

t t t t t

M M M M M
vS v v S rM rS

t v S SS v M

v
M R S t M S t M R dR

v S v t

  



  



     
+ + + − + 

      
 

 + −    

= − − +


  (19) 

Multiplying both sides of (19) by 
dM

dv
 and rearranging to obtain  

 

( ) ( ) ( ) ( ) ( )

2 2 2
2 2

2 2

0

1 1

2 2

, , , , 0t t t t t

M M M M M
vS v v S rM rS

t v S SS v

M M
v S v t M R S t M S t M R dR

v v

  

   


   
+ + + − +

    

 
+ − − + − =    

  (20) 

 As written in Heston, the market price of risk is a linear function of the volatility, such that: 

( ), ,S v t v =  . Therefore, equation (20) can be written as  

 

( ) ( ) ( ) ( )

2 2 2
2 2

2 2

0

1 1

2 2
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  

   


   
+ + + − +

    

 
+ − − + − =    

  (21) 

Equation (21) is the Heston-Jump Partial Differential Equation with the inclusion of jump 

component which must be satisfied by the value of an option. 

4.0 Experiments and Results 

4.1 Calibration of Heston Stochastic-Jump Model to Real Market Prices 

This section n calibrates the Heston Stochastic-Jump model to real market data obtained from 

Bloomberg, comprising 576 daily NASDAQ index call option price quotations from September 21, 

2024, to November 20, 2024. The data includes information on mid-price, strike price, underlying price, 
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maturity, and corresponding rates. The Table 1 displays the average mid prices x  and standard 

deviation S per moneyness group. 

Table 1: Average Mid Prices x and Standard Deviation S per Moneyness 

Moneyness Call Put 
 x   S x  S 

Deep ITM 321.41 49.06 357.34 54.56 
ITM 213.72 27.25 217.32 31.76 

ATM 104.25 41.52 123.14 30.11 
ATM 64.73 35.58 87.38 32.33 
OTM 43.64 26.47 57.33 29.86 

Deep OTM 27.47 21.87 13.78 14.66 

 

The option data was categorized into moneyness groups. The data consists of 19.2% 

ITM, 35.2% ATM and 45.6% OTM options. In Table 1, the avarage mid-price and 

its standard deviation per moneyness group are displayed. The average call option 

prices vary between 27.47 and 241.85, whereas the put options vary between 13.78 

and 357.34. 

 

4.2 Implied Volatility Calculation 

Table 2 shows the implied volatility calculated using the Black-Scholes model from market data per 

moneyness group. 

 
Table 2: Average Implied Volatility xx  and Standard Deviation S per Moneyness 

Moneyness Call Put 
 x   S x  S 

Deep ITM 0.17 0.03 0.26 0.03 
ITM 0.17 0.02 0.28 0.04 

ATM 0.16 0.04 0.25 0.02 
ATM 0.17 0.02 0.25 0.02 
OTM 0.18 0.02 0.24 0.18 

Deep OTM 0.21 0.03 0.23 0.18 
 

Table 2 shows the implied volatility calculated with the Black-Scholes model from the 

market data per moneyness group. The implied volatility was calculated for each option 

and then the average per moneyness group was calculated. 

4.3 Calibration Procedure 

The calibration procedure involves minimizing the sum of squared percentage errors between 

model and market implied volatilities using a non-linear least squares procedure. 
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Let ( ),i tt S K  denote the market implied volatility of option i on day t and let 

( )* ,i tt S K denote the model implied volatility of the option i on day t. The Heston 

Stochastic-Jump model has eight unknown parameters 0, , , , , , ,j jv        =  (defined in 

section 3.0) which need to be calibrated, thus: 

                   
( ) ( )

( )

2
*

1

, , , ,
min , 1,...,

, ,

N
i t i t

i i t

t S K t S K
t T

t S K

 

=

 −
= 

 
                                                                       

where N denotes the number of options on day t, and T denotes the number of days in the 

sample.  

The MATLAB function lsqnonlin was used to estimate the parameters, with five different 

sets of initial parameters as shown in Table 3 

Table 3: Initial Parameter Estimates 

 

 
0           

j  j    

Initial Estimate A 0.30 0.4 0.30 -0.50 1.00 0.5 3 1 

Initial Estimate B 0.048 0.48 0.20 -0.36 1.37 -0.03 -0.3 0.05 

Initial Estimate C 0.067 0.067 0.20 -0.33 1.34 0.2 -0.12 0.02 

Initial Estimate D 0.054 0.054 0.20 -0.31 1.33 0.2 -0.10 0.02 

Initial Estimate E 0.041 0.041 0.20 -0.30 1.31 0.2 -0.10 0.02 

 

4 .4 The Hestons’ Stochastic-Jump Parameters’ Influence on the Implied Volatility 

This section analyses and presents the Hestons’ Stochastic-Jump parameters’ influence on the 

implied volatility. The following values were used in the simulations: 

the asset price 
tS = 1, the riskless rate r  = 0, time to maturity T = 1 year, strike prices range 

from 0.8 to 1.5, the speed of mean reversion  =1, the long-run volatility level   = 0.4, 

volatility of volatility   = 0.3, the correlation between the price and the volatility processes 

 = -0.5 , the initial volatility of the asset price 0v =0.4, the random jump size R =3, the mean 

of jump process
tR = 0.5, the annual frequency (intensity) of Poisson process  =1,  the 

variance of jump process 
2 =0.3. We will begin our analysis by showing the influence of some 

of the parameters on the implied volatility across different strikes. 
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4. 4.1 The Influence of Correlation,   and Volatility of Variance,   Parameters on the 

Implied Volatility  

The Correlation between the price and the volatility processes is denoted by   which 

determines the shape of volatility smile or skew, while the volatility of variance parameter   

controls the kurtosis. When   is high, the variance process is highly dispersed, so we expect 

the distribution of returns to have higher kurtosis and fatter tails than when   is small. Figure 

2 shows the effects of varying  and   on the volatility smile. 

 

Figure 2:  Effects of Varying  and   on the Volatility Smile 

 Looking at the case where 0 = , we notice that the implied volatility resembles a smile, rather 

than a skew, which implies that, when there is no correlation there is no impact on the skewness. 

In the case where 0.5 = − ,it can be observed   that the more the strike level increases, the 

more the implied volatility at expiry. At the money options (ATM) are options where the stock 

price is equal to the strike price. While out of the money options (OTM) are options where 

stock price is lower than the strike price and there would decreases. This will result, in the 

money (ITM) options having high volatility while out of the money (OTM) of the distribution 

options will have the low volatility. Also, when 0.5 = , the volatility increases as the strike 

level increases. However, ITM options will have the low implied volatility. As explained by 

Heston (1993) in (Onyegbuchulem et al, 2020), positive correlation implies a rise in variance 

when the stock price rises. Note that in the money (ITM) options are options where the stock 

price is higher than the strike price and there would be profits be no profits at expiry. 
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4. 4.2 Influence of Volatility and its Long-Term Level on Implied Volatility 

The volatility and its long-term level i.e. and tv  have a similar influence on the implied 

volatility smile. As can be seen from the Figure 3, different levels for and tv  barely change 

the shape of the smile. However, when there are higher values of and tv  there will be  an 

upward shift in the smile. 

 

Figure 3: Effect of Varying and tv on the Volatility Smile 

 

4. 4.3 Influence of the Speed of Mean-Reversion,   on Implied Volatility 

Another parameter to be analysed is the speed of mean-reversion  , which determines the 

degree of volatility clustering. Figure 4 illustrates the effects of different levels of  on the 

implied volatility.  

 

Figure 4: Effect of Varying  on the Volatility Smile 

The smile is more prominent when the value of   is low and gets flatter as   increases. 

 

 

 

0.8 1 1.2 1.4
0.19

0.195

0.2

0.205

0.21

Im
pl

ie
d 

Vo
la

til
ity

Strike

 

 

0.8 1 1.2 1.4
0.19

0.195

0.2

0.205

0.21

Im
pl

ie
d 

Vo
la

til
ity

Strike

 

 

v0=0.4

v0=0.2

v0=0.04

theta=0.4

theta=0.2

theta=0.04

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.3144

0.3146

0.3148

0.315

0.3152

0.3154

0.3156

0.3158

0.316

0.3162

0.3164

Im
pl

ie
d 

Vo
la

til
ity

Strike

Different values of Kappa

 

 

kappa=5

kappa=3

kappa=1



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

396 
 

4. 4.4 Influence of Jump Parameter 
tR on Implied Volatility 

The jump parameter 
tR affects the skewness of the distribution of price returns, positive 

skewed distributions are as a result of  positive values of 
tR while negative values result in the 

opposite effect. The effect of changing the skewness of the distribution also impacts on the 

shape of the implied volatility surface, such that the volatility increases as the asset return 

increases as illustrated in Figure 5. 

 

Figure 5: Effect of Varying 
tR on the Volatility Smile 

The variance of the random jump size 
2 influences the kurtosis of the distribution of returns. 

Higher values of 
2 result to a higher variance in the size of the jumps produced by the price 

process. Finally, the intensity parameter  of the Poisson process 
tN  determines the frequency 

of jump occurrence. Higher values of   result to higher number of jumps in the price process 

and consequently to a higher overall volatility. However,   affects the kurtosis of the 

distribution of returns similar to 
2 .  

5 Conclusion  

Having made this analysis on the implied volatility, we can now draw the conclusion that  

Heston’s Stochastic-Jump model addresses the shortcomings of the Black-Scholes because the 

way the volatility is modelled is more realistic from a financial market’s point of view 

compared to the constant volatility assumption since  it takes into consideration what is 

observed in financial markets, namely the volatility’s mean reversion, the leverage effect, 
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volatility clustering and the negative correlation between stock returns and volatility. Hence, 

combining jumps and stochastic volatility therefore produces models which are more flexible 

and that can accurately fit observable market data. 
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