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Abstract  

Capture-recapture analysis is widely used for population size estimation in various fields, 

including ecology, biology, social sciences and medicine. The Zelterman Poisson estimator 

obtained from Poisson distribution is commonly used for estimating population size in capture-

recapture but it tends to underestimate counts when dealing with overdispersed data. To address 

this limitation, this paper proposes the Zelterman-type estimator (Zelterman-DLD) developed 

under Zero-Truncated Discrete Lindley (ZTDL) distribution for improved population size 

estimation. The paper evaluates the performance of two estimators; Zelterman-DLD and 

Zelterman Poisson estimator (Zelterman-POIS) using count data derived from a one-inflated 

Poisson distribution. These estimators were assessed across different population sizes under 

varying levels of one-inflation (10% and 20%). Variance estimation was performed using the 

conditioning technique, while relative bias (RBIAS) and relative root mean square error (RRMSE) 

were used to measure the performance of the estimators. Simulation results and application to real-

life data shows that the Zelterman-DLD consistently outperforms the Zelterman-POIS, exhibiting 

lower RBIAS and RRMSE across all scenarios. 
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1. Introduction 

Capture-recapture (CR) is a statistical method used to estimate the population size of a 

particular species or a group of individuals based on multiple sampling events. It is commonly 

employed in situations where it is impractical to directly count every member of the population of 

interest (Seber, 1982). CR methods were originally applied to animal populations in which 

sequence of samples were taken from a well-defined population (Jibasen, 2016). CR analysis 

involves repeatedly sampling a population and using recapture data to estimate the number of 

individuals that were not captured (Anan et al., 2017). Population size estimation under the 

capture-recapture method has been used to model hidden data such as the number of unseen 

species, the number of hidden drug users, the number of drink-driving offenders, and the number 

of illegal immigrants (Chao & Bunge, 2002; Heraud-Bousquet et al. 2012; Van der Heijden et al. 

2003).  

According to Piatek and Bohning (2024), the zero-truncated (ZT) Poisson distribution is 

often used as a starting point for modeling the frequencies of positive count data. The widespread 

of zero-truncated Poisson (ZTP) distribution has prompted the development of mixed-Poisson 

models for population size estimation in capture. Some of the mixed-Poisson models in capture-

recapture includes the work of Rocchetti et al., (2011) and Bohning et al., (2013) who proposed 

population size estimators under a zero-truncated Poisson-Gamma mixture model. Pijitrattana 

(2018) developed a mixture of Poisson-Normal distributions to model the heterogeneity of an 

unobserved population. Wongprachan (2020) used a mixture of Poisson and Lindley distributions 

to estimate population size. Also, Wongprachan (2022) improved the Horvitz-Thompson estimator 

based on the zero-truncated Poisson-Shankar model for modeling hidden population size. 

However, the ZTP distribution assumes that the mean and variance are equal, which is frequently 
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not the case due to unequal capture probabilities among sample units (heterogeneity) leading to 

overdispersion or under dispersion.  

Rama and Simon (2018) proposed zero-truncated discrete Lindley (ZTDL) distribution and 

obtained some characteristics of the distribution. The application of ZTDL distribution to three 

datasets from the field of biology and demography demonstrated its suitability over competing 

models such as ZTP distribution and ZTPL distribution. This paper explores the issue of population 

size estimation by utilizing the Horvitz-Thompson (HT) estimator along with the zero-truncated 

discrete Lindley distribution to develop a Zelterman-type estimator. The effectiveness of this 

estimator is evaluated through simulations and real data applications, comparing its performance 

with the existing Zelterman Poisson estimator. 

2. Methodology  

2.1 Discrete Lindley distribution 

The discrete Lindley distribution has been used to model frequency data in biological, ecological, 

health and epidemiological studies (Abebe & Shanker, 2018). The benefit of discrete Lindley 

model is that it is more flexible and have the same number of parameters with Poisson distribution 

as compared to negative binomial and mixed-Poisson. Considering 𝑌, as a random variable which 

follows a discrete Lindley distribution with the parameter 𝜃 . The probability mass function of 𝑌 

having the discrete Lindley distribution is defined by; 

𝑝𝑦(𝑦; 𝜃) =
(𝑒𝜃−1)

2
(1+𝑦)𝑒−𝜃𝑦

𝑒2𝜃
         (1) 

for 𝑦 = 0,1,2… , ; 𝜃 > 0  
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2.2 Zero-Truncated Discrete Lindley (ZTDL) Distribution  

The zero-truncated distribution of 𝑌 obtained from equation (1) represents unidentified individuals 

from a target population having probability 𝑝0.  

Pr(𝑌 = 𝑦|𝑦 > 0) =
Pr(𝑌=𝑦)

1−Pr(𝑌=0)
         

It can be written as 𝑃𝑦
+ =

𝑃𝑦

1−𝑝0
, 𝑦 = 1,2, …         (2) 

To obtain the value of 𝑝0, let 𝑦 = 0 in (1), thus, the expression for the unknown probability 

becomes;  

𝑝0 =
(𝑒𝜃−1)

2

𝑒2𝜃
           (3) 

Thus, equation (2) which is the Zero-truncated Discrete Lindley distribution by Rama and Simon 

(2018) becomes;            

𝑃𝑦
+ =

(𝑒𝜃−1)
2
(1+𝑦)𝑒−𝜃𝑦

2𝑒𝜃−1
          (4)  

2.3 Zero-truncated Count of Capture-Recapture Data  

Zero-truncated count distribution modeling has been a longstanding method for estimating 

population size using CR data. This approach utilizes aggregate data on the number of sample 

units captured exactly once (𝑓1), twice (𝑓2), three times (𝑓3) till the last term (𝑓𝑡), across multiple 

capture occasions. These counts are then summarized into a frequency distribution of discrete 

values. The observed population (𝑛) consists of sample units captured at least once, while (𝑓0) 

represents the number of uncaptured sample units. The summation of the observed and unobserved 

units gives the total target population size as  𝑁 = 𝑛 + 𝑓0.   
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2.4 Horvitz-Thompson Estimator 

Horvitz-Thompson estimator as cited in Kaskasamkul, (2018) introduced a fundamental technique 

for estimating finite population using various sampling designs, whether with or without 

replacement. This method is commonly applied in capture-recapture studies to estimate the size 𝑁 

of the target population. Let  𝑌𝑖 = 1 as the identifying indicator variable for the 𝑖𝑡ℎunit in the 

population. It takes a value of 1 if the 𝑖𝑡ℎ individual is identified, and 0 otherwise. The sum of 𝑌𝑖 

from 𝑖 = 1 to 𝑁 gives the number of observed units. Each unit is observed independently with an 

identical probability of 1 − 𝑝0, which leads to a Binomial distribution for the probability of 

observing exactly 𝑛 units. Additionally, 𝑁(1 − 𝑝0) represents the expected number of observed 

cases, which can be approximated by 𝑛, that is, 𝐸(𝑛) = 𝑁(1 − 𝑝0).Thus, the estimate of the 

population size 𝑁 is given by equation: 

𝑁 = 𝑁(1 − 𝑝0) + 𝑁𝑝0 ≈ 𝑛 + 𝑁𝑝0        (5) 

The equation can be rearranged and solved to estimate 𝑁, resulting in the Horvitz-Thompson 

estimator: 

�̂� =
𝑛

1−𝑝0
           (6)  

By using the Horvitz-Thompson approach and substituting 𝑝0 , the population size estimator 

based on ZTDL distribution is; 

�̂� =
𝑛𝑒2�̂�

2𝑒�̂�−1
           (7) 
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2.4 Proposed Zelterman-type Population Size Estimator  

The Zelterman population estimator utilizes the ratio of the neighbouring probabilities  

𝑃𝑦
+(𝑦; 𝜃) and 𝑃𝑦

+(𝑦 + 1; 𝜃) of the truncated count to estimate the parameter 𝜃. The ratio of the 

neigbouring probabilities of the ZTDL probability is given; 

  𝜃 =
𝑃𝑦
+(𝑦+1;𝜃)

𝑃𝑦
+(𝑦;𝜃)

           (8) 

𝑃𝑦
+(𝑦+1;𝜃)

𝑃𝑦
+(𝑦;𝜃)

=
(𝑒𝜃−1)

2
(2+𝑦)𝑒−𝜃(𝑦+1)

2𝑒𝜃−1
×

2𝑒𝜃−1

(𝑒𝜃−1)
2
(1+𝑦)𝑒−𝜃𝑦

      

𝑃𝑦
+(𝑦+1;𝜃)

𝑃𝑦
+(𝑦;𝜃)

=
(2+𝑦)𝑒−𝜃𝑦𝑒−𝜃

(1+𝑦)𝑒−𝜃𝑦
   

Substituting the probabilities on the left-hand side with their corresponding relative frequencies, 

we have  

𝑓𝑦+1

𝑁
𝑓𝑦

𝑁

=
(2+𝑦)

𝑒𝜃(1+𝑦)
  

which can be expressed in terms of 𝑒𝜃 to obtain the unknown parameter 𝜃  

𝑒𝜃 =
(2+𝑦)𝑓𝑦

(1+𝑦)𝑓𝑦+1
           (9) 

Taking the ln of both side 

  𝜃 = 𝑙𝑛 (
(2+𝑦)𝑓𝑦

(1+𝑦)𝑓𝑦+1
)           (10) 

Kuhnert and Böhning (2009) endorsed using 𝑦 = 1 for two reasons: it provides the closest vicinal 

frequencies 𝑓1 and 𝑓2 to estimate 𝑓0 , and most counts typically fall into the ones and twos in many 
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applications. Zelterman as cited by Kaskasamkul (2018), asserted that individuals who are never 

seen should be more similar to those who are rarely seen, suggesting that 𝑦 = 1. 

Letting 𝑦 = 1, the parameter of Zelterman-type estimator (Zelterman-DLD) is: 

  𝜃 = 𝑙𝑛 (
3𝑓1

2𝑓2
)           (11) 

substitute θ̂ into the population size estimator based on zero-truncated Discrete Lindley 

distribution in equation (7) to obtain the Zelterman-type estimator; 

�̂� =
𝑛(

3𝑓1
2𝑓2

)
2

2(
3𝑓1
2𝑓2

)−1
          

�̂� =
𝑛(3𝑓1)

2

2𝑓2(6𝑓1−2𝑓2)
          (12) 

2.5 Variance Estimation of Zelterman-DLD Under Conditional Technique 

The following conditional technique can be utilized to produce the variance of the 

Zelterman-DLD. The variance of the Zelterman-DLD comprises of two sources of variation arising 

from the random sample 𝑛, and the other as a result of the predictive value �̂�0 based on the observed 

individuals 𝑛. 

𝑉𝑎𝑟(�̂�) = 𝑉𝑎𝑟𝑛{𝐸(�̂� 𝑛⁄ )} + 𝐸𝑛{𝑉𝑎𝑟(�̂� 𝑛⁄ )}      (13)  

Bishop et al., (2007) shows that  𝐸(�̂� 𝑛⁄ ) ≈
𝑛

1−𝑝0
, which is the same as Horvitz-Thompson 

expression in equation (6), thus solving the first term by the delta method becomes, 

𝑉𝑎𝑟𝑛{𝐸(�̂� 𝑛⁄ )} = 𝑉𝑎𝑟𝑛 {
𝑛

1−𝑝0
} =

1

(1−𝑝0)2
𝑣𝑎𝑟(𝑛) =

𝑁𝑝0(1−𝑝0)

(1−𝑝0)2
    (14) 

Since 𝐸(𝑛) ≈ 𝑁(1 − 𝑝0), the expression for the variance can be estimated thus,  

𝑉𝑎𝑟𝑛{𝐸(�̂� 𝑛⁄ )} =
𝑛𝑝0

(1−𝑝0)2
 . But from equation (3) and (6), 𝑝0 can be estimated as: 
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  �̂�0 =
((

3𝑓1
2𝑓2

)−1)

2

(
3𝑓1
2𝑓2

)
2 =

(3𝑓1−2𝑓2)
2

(3𝑓1)2
          (15) 

thus, 

𝑉𝑎𝑟𝑛{𝐸(�̂� 𝑛⁄ )} =
𝑛(3𝑓1)

2(3𝑓1−2𝑓2)
2

(12𝑓1𝑓2−4𝑓2
2)

2         (16) 

The second term on the right-hand side of equation (13) 

𝑉𝑎𝑟(�̂� 𝑛⁄ ) = 𝑣𝑎𝑟 (
𝑛(

3𝑓1
2𝑓2

)
2

2(
3𝑓1
2𝑓2

)−1
)         (17) 

where 𝑤 =
(
3𝑓1
2𝑓2

)
2

2(
3𝑓1
2𝑓2

)−1
= (

9

4
)

𝑓1
2

𝑓2(3𝑓1−𝑓2)
        (18) 

𝑉𝑎𝑟(�̂� 𝑛⁄ ) = 𝑣𝑎𝑟(𝑛𝑤) ≈ 𝑛2𝑣𝑎𝑟(𝑤)       (19)   

Hence, by applying the bivariate delta method on the expression 𝑣𝑎𝑟(𝑤), the approximation is 

obtained as; 

𝑣𝑎𝑟(𝑤) ≈ ∇𝜑(𝑓1, 𝑓2)
𝑇𝑐𝑜𝑣(𝑓1, 𝑓2)∇𝜑(𝑓1, 𝑓2)       (20) 

where,  

∇𝜑(𝑓1, 𝑓2) = [
(
𝛿(𝑤)

𝛿𝑓1
)

(
𝛿(𝑤)

𝛿𝑓2
)
] and ∇𝜑(𝑓1, 𝑓2)

𝑇 = [(
𝛿(𝑤)

𝛿𝑓1
) (

𝛿(𝑤)

𝛿𝑓2
)]  

𝛿(𝑤)

𝛿𝑓1
= [

27𝑓1
2𝑓2−18𝑓1𝑓2

2

(2𝑓2(3𝑓1−𝑓2))
2 ]          (21) 

Also, the derivative of 𝑤 with respect to 𝑓2 is obtained as follows; 

𝛿(𝑤)

𝛿𝑓2
=

18𝑓1
2𝑓2−27𝑓1

3

(2𝑓2(3𝑓1−𝑓2))
2          (22) 

The covariance matrix of the multinomial distribution conditional on 𝑛  for frequencies one and 

two provided as 

𝑐𝑜�̂�(𝑓1, 𝑓2) = (
𝑓1 (1 −

𝑓1

𝑛
)

−𝑓1𝑓2

𝑛
−𝑓1𝑓2

𝑛
𝑓2 (1 −

𝑓2

𝑛
)
)       (23) 

Hence equation (20) becomes: 
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𝑣𝑎𝑟(𝑤) = (
27𝑓1

2𝑓2−18𝑓1𝑓2
2

(2𝑓2(3𝑓1−𝑓2))
2

18𝑓1
2𝑓2−27𝑓1

3

(2𝑓2(3𝑓1−𝑓2))
2)(

𝑓1 (1 −
𝑓1

𝑛
)

−𝑓1𝑓2

𝑛
−𝑓1𝑓2

𝑛
𝑓2 (1 −

𝑓2

𝑛
)
)(

27𝑓1
2𝑓2−18𝑓1𝑓2

2

(2𝑓2(3𝑓1−𝑓2))
2

18𝑓1
2𝑓2−27𝑓1

3

(2𝑓2(3𝑓1−𝑓2))
2

) (24) 

which can further be simplified as; 

𝑣𝑎𝑟(𝑤) =
324𝑓1

3

16[3𝑓1−𝑓2]4
−

648𝑓1
4

16𝑓2[3𝑓1−𝑓2]4
−

243𝑓1
5

16𝑓2
2[3𝑓1−𝑓2]4

+
729𝑓1

6

16𝑓2
3[3𝑓1−𝑓2]4

    (25) 

Hence, equation (19) becomes: 

𝑉𝑎𝑟(�̂� 𝑛⁄ ) = 𝑛2𝑣𝑎𝑟(𝑤) = 𝑛2 (
324𝑓1

3

16[3𝑓1−𝑓2]4
−

648𝑓1
4

16𝑓2[3𝑓1−𝑓2]4
−

243𝑓1
5

16𝑓2
2[3𝑓1−𝑓2]4

+
729𝑓1

6

16𝑓2
3[3𝑓1−𝑓2]4

) (26) 

Hence, adding the variance estimate in equation (16) and (26) to obtain equation (27) 

Corollary 1. Consider the estimator  �̂� =
𝑛(3𝑓1)

2

2𝑓2(6𝑓1−2𝑓2)
 .Then: 

𝑉𝑎𝑟(�̂�) =
𝑛(3𝑓1)

2(3𝑓1−2𝑓2)
2

(12𝑓1𝑓2−4𝑓2
2)

2 + 𝑛2 (
324𝑓1

3

16[3𝑓1−𝑓2]4
−

648𝑓1
4

16𝑓2[3𝑓1−𝑓2]4
−

243𝑓1
5

16𝑓2
2[3𝑓1−𝑓2]4

+
729𝑓1

6

16𝑓2
3[3𝑓1−𝑓2]4

)  (27) 

2.6 Simulation Study  

The simulation was conducted to investigate the performance of the proposed estimator 

(Zelterman-DLD) and to compare it with Zelterman-POIS. The data were generated using R 

program and each condition was generated 1000 times. The population size was set at (𝑁 =

100𝑎𝑛𝑑500), under varying levels of one-inflation (10% and 20%) with parameter (λ =

1.0, 1.05, 1.10, 1.15, 1.30, 1.35, 1.40, 1.45). Zero counts from the generated population are 

replaced it with ones. Randomly sample  50% of the observations from the generated population, 

this yields zero-truncated one-inflated Poisson count data.  

  The performance of each of the estimators is measured in terms of relative bias (RBias) and 

relative root mean square error (RRMSE) given as: 

𝑅𝐵𝑖𝑎𝑠(�̂�) =
1

𝑁
[𝐸(�̂�) − 𝑁]  and  𝑅𝑅𝑀𝑆𝐸(�̂�) =

1

𝑁
√𝑣𝑎𝑟(�̂�) + {𝑏𝑖𝑎𝑠(�̂�)}

2
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3. RESULT AND DISCUSSION 

3.1 Results of the Simulation Study on the Estimated Population Size on One-inflated  

Table 1 presents a comparison of RBias and RRMSE for the Zelterman-DLD and Zelterman-POIS 

estimators using one-inflated Poisson count data, simulated 1000 times. Figures 1 and 2 illustrate 

the estimated population size for a smaller population (N = 100) at λ = 1.15 and λ = 1.40, while 

Figures 3 and 4 depict the estimates for a larger population (N = 500) at λ = 1.05 and λ = 1.40. The 

results indicate that the Zelterman-DLD consistently provides more accurate and precise estimates 

compared to the Zelterman-POIS. 

Table 1: Comparing RBias with RRMSE of Zelterman-DLD and Zelterman-POIS for one-inflated 

Poisson Count data, simulated 1000 times. 

  Zelterman-DLD (N=100, n=50) Zelterman-POIS (N=100, n=50) 

% one inflation lambda �̂� RBias RRMSE �̂� RBias RRMSE 

10% 1.00 111.198 0.112 0.3030 92.925 -0.0708 0.3196 

 1.05 107.434 0.0743 0.2968 90.495 -0.0951 0.3202 

 1.10 103.362 0.0336 0.2696 87.838 -0.1216 0.3071 

 1.15 98.986 -0.0101 0.2662 85.021 -0.1498 0.3096 

20% 1.30 112.664 0.1266 0.3259 93.901 -0.0610 0.3387 

 1.35 109.449 0.0945 0.3022 91.796 -0.0820 0.3255 

 1.40 103.914 0.0391 0.2837 88.212 -0.1179 0.3187 

 1.45 104.711 0.0471 0.2916 88.738 -0.1126 0.3252 

  Zelterman-DLD (N=500, n=250) Zelterman-POIS (N=500, n=250) 

% one inflation lambda �̂� RBias RRMSE �̂� RBias RRMSE 

10% 1.00 526.191 0.0524 0.1294 444.658 -0.1107 0.1629 
 1.05 506.901 0.0138 0.1202 432.211 -0.1356 0.1766 
 1.10 490.409 -0.0192 0.1182 421.582 -0.1568 0.1893 
 1.15 474.258 -0.0515 0.1199 411.190 -0.1776 0.2018 

20% 1.30 520.989 0.0420 0.1295 441.317 -0.1174 0.1706 
 1.35 508.562 0.0171 0.1204 433.278 -0.1334 0.1754 
 1.40 497.850 -0.0043 0.1213 426.383 -0.1472 0.1846 
 1.45 484.590 -0.0308 0.1207 420.085 -0.1598 0.1918 
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The performance of the two estimators, Zelterman-DLD and Zelterman-POIS, was evaluated using 

one-inflated Poisson count data for population sizes 𝑁 = 100 and 𝑁 = 500. The assessment 

focused on relative bias (RBias) and relative root mean square error (RRMSE) to determine the 

estimators' accuracy and precision.  

Across all scenarios, the Zelterman-DLD consistently outperforms Zelterman-POIS by exhibiting 

lower RBias and RRMSE values. This indicates that Zelterman-DLD provides more accurate and 

precise population size estimates under one-inflated Poisson count data conditions. 

For a population size of 𝑁 = 100  with 𝑛 = 50  the Zelterman-DLD produced the most accurate 

estimates, particularly at 10% one-inflation, where at λ = 1.15 , the estimated population size was 

�̂� = 98.986 with 𝑅𝐵𝑖𝑎𝑠 = −0.0101and 𝑅𝑅𝑀𝑆𝐸 = 0.2662 . At 20% one-inflation, the best 

estimate was �̂� = 103.914 at λ = 1.40, with  𝑅𝐵𝑖𝑎𝑠 = −0.0391and 𝑅𝑅𝑀𝑆𝐸 = 0.2837. These 

values closely approximate the true population size (𝑁 = 100), reinforcing the estimator’s 

reliability and efficiency. 

For a larger population size of 𝑁 = 500  with 𝑛 = 250, Zelterman-DLD continued to demonstrate 

superior performance. At λ = 1.05, the estimated population size was �̂� = 506.901 with 

𝑅𝐵𝑖𝑎𝑠 = 0.0138and 𝑅𝑅𝑀𝑆𝐸 = 0.1202. Similarly, at λ = 1.40, the estimator yielded �̂� =

497.850 with 𝑅𝐵𝑖𝑎𝑠 = −0.0043and 𝑅𝑅𝑀𝑆𝐸 = 0.1213. These results highlight the robustness 

of the Zelterman-DLD, particularly in larger sample sizes, confirming its effectiveness in 

population size estimation under one-inflated Poisson models.  
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Figure 1: Histogram showing the estimates of Zelterman-DLD and Zelterman-POIS for 𝑁 = 100 

, 𝑛 = 50, λ = 1.15 at 10% one-inflated Poisson Count simulated 1000 times  

 

Figure 2: Histogram showing the estimates of Zelterman-DLD and Zelterman-POIS for 𝑁 = 100 

, 𝑛 = 50, λ = 1.40 at 20% one-inflated Poisson Count data simulated 1000 times.  
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Figure 3: Histogram showing the estimates of Zelterman-DLD and Zelterman-POIS for 𝑁 = 500 

, 𝑛 = 250, λ = 1.05 at 20% one-inflated Poisson Count simulated 1000 times  

 

 Figure 4: Histogram showing the estimates of Zelterman-DLD and Zelterman-POIS for 𝑁 = 500 

, 𝑛 = 250, λ = 1.40 at 20% one-inflated Poisson Count data simulated 1000 times.  
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3.2 Application with Real-life Datasets 

In this section, two well-known datasets are used with the Zelterman-DLD and Zelterman Poisson 

estimators to demonstrate how the proposed estimator works in real-life situations. 

 Data 1 (Golf tees data)  

In an experiment, 250 groups of golf tees were placed in a study area. Some were left visible above 

the grass, while others were hidden. Students from the 1999 statistics honors class at the University 

of St. Andrews (Scotland) recorded their observations (Borchers et al. 2004). They found 162 

groups, but some were missed, and their total number needs to be estimated. The recorded counts 

for different group sizes were (𝑓0, … , 𝑓8) = (88,46,28,21,13,23,14,6,11). This example is 

important for testing different estimation methods because the actual total number of groups is 

known. 

Table 2. Results for Golf tees data with standard errors and confidence interval  

Estimator 𝑓0 �̂� 𝑆�̂�(�̂�) 95% CI 

Zelterman-POIS 68.11 230.11 29.14 172-289 

Zelterman-DLD 88.42 250.42 22.90 207-294 

 

Anan (2016) applied the Zelterman-POIS for population size using the popular Golf tees data, 

estimating the population size 231 with a 95% CI of 171–289 and a standard error of 29.9. The 

revisiting the performance of Zelterman-POIS, the results shows that the estimated number of 

missed Golf tees by Zelterman-POIS is 68.11, leading to a total population estimate of 230.11. 

The standard error (SE) is 29.14, indicating moderate variability in the estimate. The 95% 

confidence interval ranges from 172 to 289, which suggests reasonable uncertainty in the 

population estimate. 

The estimated number of missed Golf tees by Zelterman-DLD is 88.42, leading to a total 

population estimate of 250.42, which is closest to the known true population size (250). The SE is 
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the lowest among the two estimators (22.90), indicating a more precise estimate. The 95% CI is 

relatively narrow (207–294), suggesting that this estimator provides a more stable and reliable 

estimate. Comparing these two estimators, the Zelterman-DLD appears to be the most accurate, as 

its population estimate 250.42 is closest to the true population size (250). Additionally, it has the 

lowest standard error and the narrowest confidence interval, making it the most precise and reliable 

estimator in this case.  while the Zelterman-POIS underestimates the total population. These results 

highlight the importance of selecting an appropriate estimator for population size estimation in 

capture-recapture studies. 

Data 2 (Netherland illegal Immigrants Data) 

In 1967, the Dutch police recorded data on illegal immigrants in the Netherlands. A total of 1,880 

individuals were expelled, but some were caught more than once. The number of times they were 

apprehended was recorded as (𝑓1, … , 𝑓6) = (1645,183,37,13,1,1). This paper revisits the data 

originally analyzed by Van der Heijden et al. (2003) and recently analyzed by Wongprachan 

(2020) to demonstrate the effectiveness of the proposed Zelterman-DLD method and variance 

estimation in estimating population size. 

Table 3. Results for illegal immigrants with standard errors and confidence interval  

Estimator 𝑓0 �̂� 𝑆�̂�(�̂�) 95% CI 

Zelterman-POIS 7544.56 9424.56 683.97 8084-10765 

Zelterman-DLD 11,282.69 13162.69 282.17 12610-137156 

 

Previous studies have estimated the population size of illegal immigrants in the 

Netherlands using different statistical methods. Van der Heijden et al. (2003) applied a zero-

truncated Poisson distribution, estimating the population size at 7,080 with a 95% CI of 6,363–

7,797 and a standard error of 366. Similarly, Wongprachan (2020) used the Zero-Truncated 
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Poisson-Lindley (ZTPL) model, estimating the population size at 13,334 with a 95% CI of 12,073–

14,595 and a standard error of 643.15. 

In this study, the Zelterman-POIS estimated the number of unknown illegal immigrants at 

7,544.56, leading to a total population estimate of 9,424.56. The standard error (SE) was 683.97, 

and the 95% CI ranged from 8,084 to 10,765. On the other hand, the Zelterman-DLD produced a 

higher estimate for the number of unknown individuals (11,282.69), resulting in a total population 

estimate of 13,162.69. This method had the lowest standard error (282.17), indicating a more 

precise estimate. Additionally, the 95% confidence interval was narrower (12,610–13,7156), 

suggesting that this estimator provides a more stable and reliable population estimate. 

By comparison between the two estimators, the result indicates that Zelterman-DLD 

outperforms Zelterman-POIS in terms of precision, as evidenced by its lower standard error and 

narrower confidence interval. While the Zelterman-POIS estimate is closer to the findings of Van 

der Heijden et al. (2003), the Zelterman-DLD estimate aligns more closely with Wongprachan 

(2020). Given its stability and improved precision, the Zelterman-DLD appears to be the most 

reliable approach for estimating the hidden population of illegal immigrants in this dataset. 

4. Conclusion  

The findings demonstrates that the Zelterman-DLD is a superior choice for estimating 

population size from one-inflated Poisson count data, outperforming Zelterman-POIS in terms of 

bias and accuracy. The paper provides insight into how different values of λ and population sizes 

impact estimation accuracy. It establishes conditions under which Zelterman-DLD performs 

optimally, which can guide future research in similar count data settings. Additionally, real-world 

application was demonstrated and it proves that the Zelterman-DLD can serve as an alternative 

approach for population size estimation in CR settings. 
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