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Abstract: 

Research has proven that due to the development of new drugs, some patients in a cohort of cancer 

patients are cured permanently, and some are not cured. The patients who are cured permanently 

are called cured or long-term survivors while patients who experience the recurrence of the disease 

are termed as susceptible or uncured. Cure fraction models are usually used to model lifetime time 

data with long-term survivors. This paper presents a maximum likelihood estimation and analysis 

of a three-parameter Lomax-exponential distribution (LED) involving a cure fraction parameter 

with application to censored dataset. In order to capture the proportion of cured patients, a mixture 

and a non-mixture cure models formulation methods are employed. To assess the usefulness of 

these models in real life applications, the paper used a real-life dataset on acute lymphoblastic 

leukaemia (ALL) data. The results revealed that the estimates of the cured proportion based on LED 

are higher for treatment group I than group II which implies a higher probability survival for 

patients receiving treatment I than those receiving treatment II. It is also revealed that the estimates 

of the cured proportion are higher for the mixture cure model than the non-mixture cure model. 

Furthermore, the study revealed that the mixture cure model based on LED has lower values of 

AIC and BIC than the non-mixture cure model and LED, meaning that the mixture cure model fits 

the data better than the non-mixture cure model.  

Keywords: Cure fraction, Cure model, mixture, non-mixture, LED, Estimation and application. 

1. Introduction 

Acute lymphoblastic leukaemia (ALL) is a biologically heterogenous malignant disease of early lymphoid 

precursors characterized by arrest of maturation, proliferation of blasts in the marrow leading to 

replacement of normal haemopoietic cells and eventual spillage into peripheral blood. ALL is the most 

common childhood leukaemia diagnosed in children aged 2 to 5 years as well as in young adults (Fleming 

et al., 1993; Akang, 1996; Molyneux et al., 2017), with an estimated 5-year survival of about 72% in the 
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United States (Sasaki et al., 2021). While ALL represents 80% of children leukemia, it is uncommon in 

grown-ups (20% of cases). In the United States, the incidence of ALL is estimated at 1.64 per 100,000 

persons (National Cancer Institute, 2020). According to the American Cancer Society database (2019), an 

estimated 5930 new cases were diagnosed, with 1,500 deaths due to ALL in 2019. The formulation of 

treatment for grown-ups ALL has been adjusted from pediatric conventions. Shockingly, while cure tends 

to be 90% for standard-hazard pediatric ALL, the long-term survival rate is humbler in grown-ups 

(Terwilliger and Abdul-Hay, 2017). ALL treatment outcome has improved significantly in developed 

countries with remission rate reaching up to 80% (Björkholm et al., 2019) unlike in resource constraint 

nations like Nigeria where rates are mostly less than 50%. The improved outcome witnessed results from 

better understanding of the disease pathogenesis arising from advances in molecular methodology, 

development of targeted therapy with less toxicity protocols, as well as availability of other supportive 

interventions.  

The main treatment of ALL is chemotherapy, which comprises of induction, intensification, and long-term 

maintenance, with the central nervous system (CNS) prophylaxis provided at different times during the 

therapy. Induction therapy aims to accomplish total remission and to re-establish ordinary hematopoiesis. 

Following the induction treatment, patients underwent three cycles of consolidation treatment of 

methotrexate with leucovorin rescue and L-asparaginase. Registered individuals as high-risk disease and a 

corresponded donor, then received allogeneic stem cell transplantation (allo-SCT). The rest were randomly 

assigned to standard intensification/ maintenance or autologous bone marrow transplants. The prognostic 

factors affecting clinical outcome in ALL patients include age, leukocytes count, tumour genetic factors 

and response to chemotherapy. Cytogenetic characteristic of patients in Nigeria is still not available due to 

dearth of infrastructure. Several studies have been done and documented the dismal survival rate of ALL 

patients, but a few have looked at the clinical and laboratory predictors of outcome in these patients in 

Nigeria (Okpala et al., 1990; Abdelmabood et al., 2020). 
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Also, survival analysis generally utilizes product-limit estimates or log-rank test (Bradburn et al., 

2003a), semi-parametrical models (for instance, Cox proportional hazards model), or regular 

parametrical models considering several well-known distributions in the existence of covariates 

(Cox, 1972). The Weibull distribution and other distributions with flexible risk functions have 

been widely used in cancer research (Bradburn et al., 2003b). However, data sets of medical 

studies often necessitate more advanced parametric models. As a consequence, to resolve this 

problem, several authors in the literature have proposed new classes of parametric distributions 

such as the exponentiated Weibull distribution (Mudholkar and Srivastava, 1993), the generalized 

modified Weibull distribution (Carrasco et al., 2008), the log-beta Weibull (Ortega et al., 2013), 

the generalized alpha power inverse Weibull distribution (Basheer, 2019), the generalized 

Gompertz distribution by Swain et al. (2016) and the Burr XII distribution by Coelho-Barros et al. 

(2017). Others include Leão et al. (2018), Varshney et al. (2018), Barriga et al. (2018), Borges 

(2020) as well as Omer et al. (2021). Another common scenario in survival data analysis, 

particularly in cancer research, is when a fraction of a population is not exposed to the event of 

interest. For this situation, patients were divided into two groups: those who were exposed to the 

event under study, and those who were not exposed to it and, therefore, were not at risk. These 

patients are viewed as cured or immunized. 

The existence of cured subjects in a sample data is commonly proposed by a Kaplan-Meier curve, 

which displays a tall and a steady level with dense censoring at the right extreme (Corbière et al., 

2009). To model the proportion of cured subjects, many authors have proposed several statistical 

methods. Interested readers can check (Boag, 1949; Berkson and Gage, 1952; Haybittle, 1965; 

Farewell, 1982; Goldman, 1984; Farewell, 1986; Gamel et al., 1990; Maller and Zhou, 1992; Kuk 

and Chen, 1992; Taylor, 1995; Peng and Dear, 2000; Peng and Carriere, 2003; Tajuddin et al., 
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2006; Lambert et al., 2007; Abubakar et al., 2008; Lu, 2010; López-Cheda et al., 2017; Martinez 

and Achcar, 2014; Martinez and Achcar, 2018; Naseri et al., 2018). Moreover, the maximum 

likelihood estimation technique has been suggested by some authors such as (Farewell, 1982; 

Yamaguchi, 1992; Ghitany and Maller, 1992; Peng et al., 1998; Sy and Taylor, 2000) amongst 

others. 

The aim of this paper is to derive and study a mixture and a non-mixture cure fraction models 

considering the Lomax-exponential distribution (LED) with estimation of parameters and 

application to acute lymphocytic leukemia (ALL) data. 

The remaining parts of this paper will come in the following form: Section 2 covers the 

methodology under which subsection 2.1 presents LED, 2.2 presents mixture cure models based 

on LED, and 2.3 gives non-mixture cure models based on LED. Section 4 presents the estimation 

of the mixture and non-mixture cure models based on the LED. The application of the LED cure 

fraction models is illustrated in section 5 using acute lymphocytic leukemia (ALL) data while the 

summary and conclusion of the research is given in section 6. 

2. Methodology 

2.1 Lomax-Exponential Distribution (LED) 

According to Ieren and Kuhe (2018), the proper cumulative distribution function (cdf) and proper 

probability density function (pdf) of the Lomax-exponential distribution (LED) are defined 

respectively as given in equation (1) and (2) below: 

                   
( ) ( )1F t t



   
−

== − +
                                                            (1) 

And 
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( )   ( )1

f x t

   
− +

= +
                                                     (2) 

where ,   and  , are the parameters of the LED. Relatedly, the corresponding survival function 

(SF) and hazard function (HF) of LED are given respectively as: 

                       ( ) ( )S t t
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= +                                                                 (3) 

And  
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2.2   Mixture cure model 

The first mixture cure model was initially proposed by Boag (1949) and later by Berkson and Gage 

(1952). According to Boag (1949), a mixture cure model assumes that the survival function for the 

entire population can be expressed as a mixture of the cured and the uncured patients (the overall 

population) and is given by, 

                           ( ) ( ) ( )1S t p p S t= + −                                                     (5) 

where p  is the proportion of subjects that are cured (long-term survivors), and 1 p−  is the 

proportion of subjects that are not cured (susceptible), and ( )S t  denotes a proper survival 

function for the uncured patients assumed to follow a probability distribution. The corresponding 

density function of T is expressed as; 

                        ( ) ( ) ( )1f t p f t= −                                                                    (6) 

where ( )f t  is the probability density function of uncured patients assumed to follow a probability 



Royal Statistical Society Nigeria Local Group  2025 Conference Proceedings 

 

450  

distribution. Also, the cumulative distribution function of the overall population is given as; 

                         ( ) ( ) ( )1F t p F t= −                                                                    (7) 

where ( )F t  denotes a proper cumulative distribution function for the uncured patients assumed 

to follow a probability distribution.  

Substituting for the proper ( )F t , ( )S t  and ( )f t  from the proposed LED, the CDF, PDF, SF 

and HF of the cured patients under mixture form are obtained respectively as; 

                               ( ) ( ) ( )( )1 1F t p t
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2.3   Non-mixture cure model 

According to Yakovlev et al., (1993), this model was developed based on the assumption that the 

number of cancer cells that remain active after cancer treatment and may grow slowly and produce 

a detectable cancer, whose growth is assumed to follow a Poisson distribution. The survival 

function of a non-mixture cured model is given by, 

                                 ( )
( )F t

S t p =                                                                          (12)  
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where p  is the proportion of subjects that are cured (long-term survivors) and ( )F t  denotes a 

proper cumulative distribution function for the uncured patients assumed to follow a probability 

distribution. The corresponding density function, cumulative distribution function and hazard 

function are given respectively as; 

                    
( ) ( ) ( )

ln
F t

f t pf t p 

= −
                                                                         (13)  

                     
( ) ( )

1
F t

F t p = −
                                                                                    (14) 

And 

                     
( ) ( ) ( )lnh t p f t= −

                                                                             (15) 

Where ( )f t  is the density function of uncured subjects or patients assumed to follow a probability 

distribution. 

Using the proper ( )F t , ( )S t  and ( )f t  from the LED, the CDF, PDF, SF and HF of the cured 

patients under non-mixture form are obtained respectively as; 

                           ( )
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1
t

F t p
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2.4 Estimation of Parameters of the Mixture and Non-mixture Models  

Suppose that, for each individual, 1,2,...,i n= , we have a pair of random variables, ( ),i it  . 
it  can 

either represent the failure time, 
iX , or (non-informative right-) censoring time, 

iC , such that, 

( )min ,i i it X C= , and ( )i i iI X C =   is the censoring indicator, where 1i = , if the individual’s 

failure time is observed, or 0i =  if the individual is right-censored or alive. Therefore, the 

likelihood function is expressed as, 

                  ( ) ( )( ) ( )( )
1

1 1

,
i i

n n

i i i i i

i i

L f t f t S t
 


−

= =

 = =
                                              (20) 

Intuitively, for example, at the end of a cancer study, if the patient is alive/censored at time 
it   

( )0i = , then the thi  contribution to the total likelihood is the survival probability, ( )iS t . 

Conversely, if the patient dies during the study, then the thi  contribution to the total likelihood is 

the probability that the patient dies at the observed time, it . 

Substitution of the mixture density in equation (10) and the mixture survival function in equation 

(9) in the standard likelihood function in Equation (20) yields the likelihood for the long-term 

survivor mixture model: 

                     ( ) ( )
( )

( ) ( )
1

1
1 1

i i

i iLi p t p p t
         

−
− + −   = − + + − +

  
     (21)  

Thus, the log-likelihood considering all observations is given by: 

( ) ( )
( )

( ) ( ) ( )
1

1 1 1

1 log 1 log 1
n n n

i i i i i

i i i
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(23)  
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where 
1

n

i

i

r 
=

=  is the number of uncensored observations. 

Given the observed lifetime data, ( ),i it  , 1,...,i n= , and defining ( )log | ,l L t = , the maximum 

likelihood estimates for ( ), , , p   =  denoted by ( )ˆ ˆ ˆˆ ˆ, , , p   =  are obtained by 

differentiating l  partially with respect to    ,  , and p  respectively:  

  ( ) ( )
( )( ) ( )( )
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(27) 

Equating (24), (25), (26) and (27) to zero (0) and solving for the solution of the non-linear system 

of equations produce the maximum likelihood estimates of parameters    ,  , and p . Note that 

it is difficult to solve the above equations analytically and therefore the Newton-Raphson’s 

iteration method is applied using computer applications such as Python, R, Matlab or any other 

suitable software.  

Also, substitution of the non-mixture density in equation (18) and the non-mixture survival 

function in equation (17) in the standard likelihood function in Equation (20) produces the 

likelihood for the long-term survivor non-mixture model as follows: 
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              ( ) ( )
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Hence, the log-likelihood considering all observations for the non-mixture approach is given by: 
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(30)  

where 
1

n

i

i

r 
=

=  is the number of uncensored observations. 

Differentiating the log-likelihood function in equation (30) above partially with respect to    , 

 , and p  respectively and setting the results equal to zero produces the maximum likelihood 

estimates ̂  ̂ , ̂ , and p̂  as follows:  

   ( ) ( ) ( ) ( )( )
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(34) 

Again, equating (31), (32), (33) and (34) to zero (0) and solving for the solution of the non-linear 

system of equations produces the maximum likelihood estimates of parameters    ,  , and p . 
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Solving Equation (34) algebraically, the maximum likelihood estimator of the cure proportion p̂  

is obtained as: 

                   

( )1

exp
1

n
i

i
i

p
t





  



−
=

  
  = − 

  − +    

                                          

 

(35) 

Equation (35) is useful for calculating p̂  with available data and other necessary parameters and 

also useful for finding the estimates of  ̂  ̂  and ̂  by substituting for p̂  into the Equations (31), 

(32) and (33) respectively and solving with numerical methods. 

3 Results and discussion 

Dataset: This paper considered a leukemia dataset on the bone marrow transplant study for the 

refractory acute lymphoblastic leukemia (ALL) patients, which was first analyzed by Kersey et al. 

(1987) and is available in smcure package in R software (Cai et al., 2012). It has also been used by 

Cai (2013) and Omer et al. (2021). This dataset consists of 91 patients with high-risk ALL and is 

divided into two subsets; the first subset (Group 1) contains 46 patients who were exposed to 

allogeneic bone marrow transplants and the second subset (Group 2) includes 45 patients who 

received autologous bone marrow transplants. The event of interest is time to death. 

The Kaplan–Meier estimate of the survival/hazard functions for the acute lymphoblastic leukemia 

(ALL) data is given in Figure 1 below:  
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Figure 1: Kaplan-Meier estimates of overall survival/hazard & for each type of Treatment 

The Kaplan–Meier estimate of the survival/hazard function for the ALL data is presented in Figure 

1, the flat cure or a plateau in the survival curve suggests the presence of a cured fraction for both 

treatment methods (allogeneic and autologous). It shows that models without cured proportion, p 

of long-term survivors cannot appropriately model this data. The right side of the graph in Figure 

1 shows the survival functions for each treatment and the survival probability is higher for 

allogeneic method compared to the autologous method, this implies that patients who received 

allogeneic method have higher chances of survival than those who received autologous and vice 

versa. 
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Table 1: MLEs of the Parameter with Standard errors, Z-values, P-values, AIC and BIC 

for Treatment Group I 

Parameter Estimates Standard 

Error 

Z-value P-value AIC BIC 

LED 

  

    

̂ =2.8419089   2.5168104   1.1292  0.2588     678.778 684.264 

̂ =5.5031450   0.5268799  10.4448  <2e-16 *** 

̂ =0.0049797   0.0053680   0.9277  0.3536     

LEDMCM 

    

̂ =3.2124509   4.3841379    0.7327   0.463715     489.1 496.4146 

̂ =5.4542130   0.0380806  143.2280  <2.2e-16 *** 

̂ =0.0080407   0.0122455    0.6566   0.511419     

p̂ =0.2525328   0.0784740    3.2180   0.001291 **  

LEDNMCM 

    

̂ =1.9155017   3.2098506   0.5968  0.55067     489.4366 496.7512  

̂ =4.6584552   0.1902664  24.4839  < 2e-16 *** 

̂ =0.0063866   0.0099547   0.6416  0.52116     

p̂ =0.2268542   0.1073761   2.1127  0.03463 *   

* means significant at 5% level of significance 

Table 1 shows the maximum likelihood estimates (MLEs) with standard errors, Z-values, P-values, 

AIC and BIC of the Lomax-Exponential distribution (LED), LED Mixture cure model 

(LEDMCM) and LED Non-mixture cure model (LEDNMCM) fitted to the treatment group I of 

the ALL data. The results from the Table reveal that two of the parameters (   and p ) are 

significant in all the models while two (  and  ) are not  significant at the 5% level of 

significance. The result also reveals that the LEDMCM has slightly lower values of AIC and BIC 
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than the LEDNMCM and then the LED, so the LEDMCM and LEDNMCM are better than LED 

due to the presence of cure parameter in the models based on treatment group I dataset.   

Table 2: MLEs of the Parameter with Standard errors, Z-values, P-values, AIC and BIC 

for Treatment Group II 

Parameter Estimates Standard 

Error 

Z-value P-value AIC BIC 

LED 

  

    

̂ = 2.0729861   0.9116786    2.2738  0.02298 *   595.4878 600.8403 

̂ = 4.6222790   0.0062622  738.1181  < 2e-16 *** 

̂ = 0.0121023   0.0073864    1.6384  0.10133 

LEDMCM 

    

̂ = 1.5942e+01  4.1455e-06  3.8457e+06  < 2.2e-16 *** 474.0955 481.2322 

̂ = 1.1273e+01  6.6137e-07  1.7045e+07  < 2.2e-16 *** 

̂ = 5.5542e-03  9.9861e-04  5.5620e+00  2.668e-08 *** 

p̂ = 1.7994e-01  5.8287e-02  3.0872e+00    0.00202 **  

LEDNMCM 

    

̂ = 7.9701e+00  7.9113e-05  1.0074e+05  < 2.2e-16 *** 478.1091 485.2458 

̂ = 9.0849e+00  9.6678e-06  9.3971e+05  < 2.2e-16 *** 

̂ = 4.5015e-03  1.2288e-03  3.6634e+00  0.0002489 *** 

p̂ = 1.7132e-01  6.3377e-02  2.7033e+00  0.0068661 ** 

* means significant at 5% level of significance 

Table 2 also shows the MLEs with standard errors, Z-values, P-values, AIC and BIC of the Lomax-

Exponential distribution (LED), LED Mixture cure model (LEDMCM) and LED Non-mixture 

cure model (LEDNMCM) fitted to the treatment group II of the ALL data. The results from Table 

2 reveals that all the parameters are significant in the LEDMCM and LEDNMCM and also two of 
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the parameters (  and  ) are significant in LED except one parameter ( ) at the 5% level of 

significance. It also shows that the LEDMCM has lower values of AIC and BIC than the 

LEDNMCM and then the LED, so the LEDMCM followed by LEDNMCM are better than LED 

due to the presence of cure parameter in the models based on treatment group II data. 

The results in Tables 1 and 2 also revealed that the estimates of the cured proportion or cured 

fraction parameter are higher for treatment group I than group II which implies a higher probability 

survival for patients receiving treatment I than those receiving treatment II, and this result is in 

line with the Kaplan-Meier estimate of survival plots in Figure 1. It is also revealed that the 

estimates of the cured proportion are higher for the LEDMCM than the LEDNMCM meaning that 

the LEDMCM is more appropriate for modelling cure. The result above is in line previous studies 

(Kutal and Qinan, 2018; Lázaro et al., 2020; Omer et al., 2021). 

Table 3: MLEs of the Parameter with Standard errors, Z-value, P-value, AIC and BIC for 

the entire ALL Dataset  

Parameter Estimates Standard 

Error 

Z-value P-value AIC BIC 

LED 

  

    

̂ = 2.0568834   0.7559961    2.7208   0.006513 **  1273.809 1281.308  

̂ = 2.8233459   0.0054181  521.0964  < 2.2e-16 *** 

̂ = 0.0052816   0.0027525    1.9189   0.055002  

LEDMCM 

    

̂ = 6.4304915   6.4489316   0.9971     0.3187     961.9114 971.9107 

̂ = 9.0680156   0.1516066  59.8128  < 2.2e-16 *** 

̂ = 0.0084536   0.0091540   0.9235     0.3558     

p̂ = 0.2238806   0.0457764   4.8907  1.005e-06 *** 

LEDNMCM ̂ = 6.9080e+00  5.0393e-05  1.3708e+05  < 2.2e-16 *** 963.3571 973.3564  
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    ̂ = 1.0637e+01  6.6155e-06  1.6079e+06  < 2.2e-16 *** 

̂ = 5.1824e-03  1.0147e-03  5.1076e+00  3.263e-07 *** 

p̂ = 2.1710e-01  4.7671e-02   4.5542e+00  5.258e-06 *** 

* means significant at 5% level of significance 

The result in Table 3 presents the MLEs, standard errors, Z-values, P-values, AIC and BIC of the 

LED), LEDMCM and LEDNMCM fitted to the entire ALL data. Based on Table 3, all the 

parameters are significant in the LEDNMCM,  two of the parameters (   and p ) are significant 

in LEDMCM, and all the parameters are significant in LED except one parameter ( ), at the 5% 

level of significance. It also shows that the LEDMCM has lower values of AIC and BIC than the 

LEDNMCM and LED, so the LEDMCM followed by LEDNMCM are better than LED due to the 

inclusion of cure parameter in the models from the entire ALL data. The results in Tables 3 also 

revealed that the estimates of the cured proportion are higher for the LEDMCM than the 

LEDNMCM meaning that the LEDMCM is more appropriate for modelling cure. 

4 Conclusion 

This paper derived and studied mixture and non-mixture cure fraction models based on the Lomax- 

exponential distribution (LED) with the maximum likelihood estimation of parameters and 

applications to acute lymphoblastic leukemia (ALL) data. The results revealed that the estimates 

of the cured proportion based on LED are higher for treatment group I than group II which implies 

a higher probability survival for patients receiving treatment I than those receiving treatment II. It 

is also revealed that the estimates of the cured proportion are higher for the LEDMCM than the 

LEDNMCM meaning that the LEDMCM is more appropriate for modelling cure. It also shows 

that the LEDMCM has lower values of AIC and BIC than the LEDNMCM and LED, meaning that 
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the LEDMCM followed by LEDNMCM are better than LED due to the inclusion of cure parameter 

in the models. 
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