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Abstract 

Copula function has become one of the most popular methods in constructing bivariate 

distributions. In this article a new bivariate generalized exponential distribution based on Ali-

MikailHaqs copula function is introduced. Estimation of the parameters of the Ali-MikailHaq 

bivariate generalized exponential distribution was obtained via Bayesian method of estimation. 

An application of the proposed methodology was illustrated by fitting the distribution to a 

survival data set and compares its performance with other competing distribution. Based on the 

deviance information criteria (DIC) values, it is shown that, the Bivariate generalized 

exponential Ali-Mikha’il-Haq distribution is more efficient. 

 

1. Introduction 

Exponential distribution is a one-parameter continuous distribution that is usually used in 

measuring the amount of time for some specific event(s) to occur. The distribution is well 

known due to the constant hazard rate, memory less property and a decreasing probability 

density function it possesses (Usman, & Aliyu, 2022) and (Aliyu, & Usman, 2023). Hence, 

choosing the exponential distribution in reliability studies may be inappropriate since its hazard 

rate does not show monotone and/ or non-monotone failure rate behaviours (Tahir et al., 2018). 

To solve this problem, researchers have generalized the exponential distribution in order to add 

flexibility to the distribution. For instance, (Gupta & Kundu, 1999) generalizes the exponential 

distribution to the generalized exponential distribution, (Nadarajah & Haghighi, 2011) to the 

Nadarajah-Haghighi distribution. Other distributions such as Weibull, Gamma, Burr X, Burr 

XII, double exponential distributions also generalized the exponential distribution. The 

generalized exponential distribution serves as an alternative to the Weibull and gamma 

distributions. The probability density function (pdf), cumulative distribution function (cdf), 

reliability and hazard functions of the generalized exponential distribution are respectively 

given as: 

𝑓(𝑡) = 𝜗𝛾𝑒𝑥𝑝(−𝛾𝑡)(1 − 𝑒𝑥𝑝(−𝛾𝑡))
𝜗

      (1) 

 𝐹(𝑡) = (1 − 𝑒𝑥𝑝(−𝛾𝑡))
𝜗

        (2) 

 𝑅(𝑡) = 1 − (1 − 𝑒𝑥𝑝(−𝛾𝑡))
𝜗

       (3) 

and 

ℎ(𝑡) =
𝜗𝛾𝑒𝑥𝑝(−𝛾𝑡)(1−𝑒𝑥𝑝(−𝛾𝑡))

𝜗

1−(1−𝑒𝑥𝑝(−𝛾𝑡))
𝜗        (4) 

where 𝜗 > 0 is the shape parameter, 𝛾 > 0 is the scale parameter. The distribution reduces to 

the exponential distribution when the shape parameter (𝜗) takes the value one (1). This 

distribution can only model univariate lifetime. 

However, the presence of bivariate data can be observed in different areas such as engineering, 

sciences and medicine. For example, the lifetimes of paired human organs, such as ears, eyes, 

kidneys, double recurrence of a certain disease and times to primary and secondary 

complications of a disease. Assume the lifetimes T1 and T2 be the times associated to the same 

device. Since in most bivariate lifetime, the time of one component may influence the time of 
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the other component. That is, the bivariate times may presents dependence between the two 

times T1 and T2. To study the structure of this dependence, bivariate distributions through the 

use of frailty and copula functions are employed to study these dependences. The present paper, 

introduced bivariate generalized exponential distribution that could effectively model bivariate 

survival data where two lifetimes are observed for the same individual.  

The rest of the paper is organized as follows: in section 2, we derive the survival function, the 

probability density function and cumulative distribution function of the Ali-Mikha’il-Haq 

bivariate generalized exponential distribution, some statistical properties of the distribution are 

derived in section 3, parameters of the distribution are estimated using the Bayesian estimation 

procedure in section 4. Application of the introduced methodology is given in section 5 and we 

finally conclude in section 6. 

 

2. Bivariate Generalized Exponential Distribution 

2.1 Ali-Mikhail-Haq Copula Function 

Copulas are used to combine the joint distribution function of two or more univariate variables. 

A copula is said to be bivariate when it connects the joint distribution function of only two 

variables. Let 𝐹1(𝑡1) and 𝐹2(𝑡2) be the univariate cdf for the random variable T1 and T2 

respectively, the joint cdf 𝐹(𝑢,  𝑣) is defined as: 

𝐹(𝑡1,  𝑡2) = 𝐶𝜆(𝐹1(𝑡1),  𝐹2(𝑡2))       (5) 

where 0 < 𝐹1(𝑡1),  𝐹2(𝑡2) < 1. Several types of copulas have been developed and studied. 

(Nelsen, 2006) and (Trivedi et al., 2007) provides very thorough coverage of the various types 

of copulas. However, this study will use the Ali-Mikha’il-Haq copula function. The advantage 

of using this copula function, is that, it model both positive and negative dependence. 

The Ali-Mikhail-Haq (AMH) copula function was first introduced by (Ali et al., 1978) and was 

later discussed by (Kumar, 2010). The AMH copula function is defined as: 

 ( ) ( )( )
( ) ( )
( ) ( )2211

2211
2211

1
,

tStS

tFtF
tFtFC




−
=        (6) 

where ( ) ( )1111 1 tFtS −= , ( ) ( )2222 1 tFtS −=  and   is the dependence parameter and it lies in 

the interval  )1,1− . Hence, the AMH copula function measure both positive and negative 

dependence. It reduces to the product copula when the dependence parameter takes the value 

zero. 

 

2.2 The Model 

The distribution function of the bivariate generalized exponential distribution based on AMH 

copula function is defined as: 

𝐹(𝑡1, 𝑡2) =
(1−𝑒𝑥𝑝(−𝛾1𝑡1))

𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))
𝜗2

1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]
    (7) 

where 𝛾1 > 0 and 𝛾2 > 0 are scale parameters, 𝜗1 > 0and 𝜗2 > 0 are shape parameters and 

𝜆 ∈ (−1,  1) is a dependent parameter. The joint reliability function for the Ali-Mikhai-Haq 

generalized exponential (AMHBGE ) distribution is given as: 

𝑅(𝑡1, 𝑡2) =
[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))

𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))
𝜗2]

1−𝜆(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2
     (8) 

The joint cdf in equation (7) reduces to the joint cdf of the Ali-Mikhail-Haq exponential 

distribution when the shape parameters 𝜗1and 𝜗2 takes the value one. That is, when 𝜗1 = 𝜗2 =
1.  
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3. Statistical properties of the AMHBGE  

In this section, we derive some of the statistical properties for the AMHBGE   distribution. 

 

3.1 Partial derivatives 

The first partial derivatives 
𝜕𝐹(𝑡1,𝑡2)

𝜕𝑡1
 and 

𝜕𝐹(𝑡1,𝑡2)

𝜕𝑡2
 for the AMHBGE  distribution are obtain as 

follows:  

𝜕𝐹(𝑡1,𝑡2)

𝜕𝑡1
=

𝜗1𝛾1𝑒𝑥𝑝(−𝛾1𝑡1)(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2{1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))
𝜗2]}

[1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]]

2   (9) 

and 

𝜕𝐹(𝑡1,𝑡2)

𝜕𝑡2
=

𝜗2𝛾2𝑒𝑥𝑝(−𝛾2𝑡2)(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2{1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1]}

[1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]]

2            (10) 

The second partial derivative 
𝜕2𝐹(𝑡1,𝑡2)

𝜕𝑡1𝜕𝑡2
 for the AMHBGE  distribution is given as: 

 
𝜕2𝐹(𝑡1,𝑡2)

𝜕𝑡1𝜕𝑡2
=

1−𝜆+2𝜆
(1−𝑒𝑥𝑝(−𝛾1𝑡1))

𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))
𝜗2

1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]

[1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]]

2               (11) 

Hence, the second partial derivative 
𝜕2𝐹(𝑡1,𝑡2)

𝜕𝑡1𝜕𝑡2
 is the joint pdf for the AMHBGE   distribution. 

That is: 

 𝑓(𝑡1, 𝑡2) =

1−𝜆+2𝜆
(1−𝑒𝑥𝑝(−𝛾1𝑡1))

𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))
𝜗2

1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]

[1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]]

2               (12) 

 

3.2 Join hazard rate function 

Basu (1971) defined the bivariate failure rate function as: 

 ℎ(𝑡1, 𝑡2) =
𝑓(𝑡1,𝑡2)

𝑅(𝑡1,𝑡2)
                 (13) 

Hence, the hazard rate function for the AMHBGE   distribution is given as: 

ℎ(𝑡1, 𝑡2) =

1−𝜆+2𝜆
(1−𝑒𝑥𝑝(−𝛾1𝑡1))

𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))
𝜗2

1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]

[1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]]

2

[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]

1−𝜆(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2

⁄
    (14) 

 

3.3 Marginal distribution function 

Let (𝑇1, 𝑇2)~𝐴𝑀𝐻𝐵𝐺𝐸(𝜗1, 𝜗2, 𝛾1, 𝛾2, 𝜆), 𝑇1~𝐺𝐸(𝜗1,, 𝛾1) and 𝑇2~𝐺𝐸(𝜗2,, 𝛾2). The 

marginal distribution function of  𝑇1  is obtained by evaluating: 
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𝑓(𝑡1) = ∫

1−𝜆+2𝜆
(1−𝑒𝑥𝑝(−𝛾1𝑡1))

𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))
𝜗2

1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]

[1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]]

2 𝑑𝑡2
∞

0
   (15) 

and the marginal distribution function of  𝑇2  is obtained by evaluating: 

 𝑓(𝑡2) = ∫

1−𝜆+2𝜆
(1−𝑒𝑥𝑝(−𝛾1𝑡1))

𝜗1(1−𝑒𝑥𝑝(−𝛾2𝑡2))
𝜗2

1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]

[1−𝜆[1−(1−𝑒𝑥𝑝(−𝛾1𝑡1))
𝜗1][1−(1−𝑒𝑥𝑝(−𝛾2𝑡2))

𝜗2]]

2 𝑑𝑡1
∞

0
   (16)  

 

4. Estimation procedure 

Bayesian estimation technique is a method that combines prior information with new 

information that is available to form the basis for statistical analysis. That is, Bayesian 

technique combines prior information with new information to come up with posterior 

distribution. To find the estimates of the model using Bayesian method, Let (T11, T21), (T12, 

T22), … (T1n, T2n) be bivariate random sample of size n from the AMHBGE  distribution. Let 

𝛹 = (𝜑1, 𝜑2,  𝛾1, 𝛾2,  𝜆)′ be the vector of parameters. Then, the likelihood function 𝐿(𝛹) when 

the lifetimes (T11, T21), (T12, T22), … (T1n, T2n) is assumed to be non-censored can be expressed 

as: 

 𝐿(𝛹) = ∏ 𝑓(𝑡1𝑖, 𝑡2𝑖)
𝑛
𝑖=1       (17) 

substituting equation (16) and taking natural logarithm give the log-likelihood function. 

If the lifetimes T1 or T2 or both T1 and T2 may be right censored and assume censoring are 

independent. Then, each ith observation, i =  1, 2,· · · , n fall in one of the following groups: 

i. G1 : both t1i and t2i are uncensored observations. 

ii. G2 : t1i is uncensored and t2i is censored observation. 

iii. G3 : t1i is censored and t2i is uncensored observation. 

iv. G4 : both t1i and t2i are censored observations. 

     and the likelihood based on this condition is expressed as: 

𝐿(𝛹) = ∏ (𝑓(𝑡1𝑖, 𝑡2𝑖))
𝛿1𝛿2

(−
𝜕𝑆(𝑡1,𝑡2)

𝜕𝑡1
)

𝛿1(1−𝛿2)

(−
𝜕𝑆(𝑡1,𝑡2)

𝜕𝑡2
)

(1−𝛿1)𝛿2

×𝑛
𝑖=1   

   (𝑆(𝑡1𝑖, 𝑡2𝑖))
(1−𝛿1)(1−𝛿2)

     (18) 

substituting equations (8), (9), (10) and (12) into equation (18) gives the likelihood function 

for the AMHBGE distribution under the assumption of right censoring. It is important to note 

that, the likelihood function in equation (18) reduces to the likelihood function in equation (17) 

when the lifetimes T1 and T2 are not censored. That is, when  𝛿1 = 𝛿2 = 1. 

However, under the Bayesian framework, the joint posterior distribution of the parameters in 

the model is obtained by combining the likelihood function and the joint prior distribution of 

the parameters. The likelihood function for the model parameters assuming right censoring is 

given in equation (18). We then assume the joint prior distribution for the model parameter to 

be Π(𝛹), where 𝛹 = (𝜑1, 𝜑2,  𝛾1, 𝛾2,    𝜆)′. We then assume gamma prior for 𝜑1, 𝜑2,  𝛾1 and 

𝛾2 while a uniform for 𝜆 is assumed since its parameter space is between ±1. That is, assume: 

 

Π(𝜑𝑘) ∝ 𝜑𝑘
𝑎𝑘−1

𝑒𝑏𝑘𝜑𝑘  𝜑𝑘 > 0     (19) 

 Π(𝛾𝑘) ∝ 𝛾𝑘
𝑐𝑘−1

𝑒𝑑𝑘𝛾𝑘    𝛾𝑘 > 0      (20) 

for 𝑘 = 1, 2 and 
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 Π(𝜆) =
1

𝑓−𝑒
         (21) 

where 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘, 𝑒 and 𝑓 are known hyper-parameters. Furthermore, we assumed 

independence between the prior distributions. Hence, the joint prior distribution Π(𝛹) is given 

as: 

Π(𝛹) ∝ 𝜑1
𝑎1−1

𝑒𝑏1𝜑1𝜑2
𝑎2−1

𝑒𝑏2𝜑2𝛾1
𝑐1−1

𝑒𝑑1𝛾1𝛾2
𝑐2−1

𝑒𝑑2𝛾2
1

𝑓−𝑒
    (22) 

Hence, the joint posterior density is proportional to the product of the likelihood function in 

equation (18) and joint prior distribution in (22). Therefore, posterior summaries of interest are 

obtained by using Markov Chain Monte Carlo (MCMC) technique. 

In our applications, 550,000 Gibbs samples for each model parameter is generated. In order to 

minimized the effect of initial values, the first 50,000 simulated samples were discarded as 

burn-in. Moreover, each 50th simulated sample was stored so as to avoid auto-correlation 

between successive samples. Hence, the Bayesian estimates for the parameters are based on 

10,000 random samples. The medians of the respective posterior distributions are taken as the 

Bayesian estimate since some simulated distributions were quite skewed. Credible intervals 

were also determined for each model parameter from the 2.5th and 97.5th centiles of the 

posterior distribution of each model parameter. A generalization of the Akaike Information 

Criteria for the Bayesian analysis known as the Deviance information criteria (DIC) is used for 

discrimination. 

 

5. Applications 

In this section, two data sets: infections in kidney patients’ data from (McGilchrist, & Aisbett, 

1991) and Tobacco-stained-fingers data set from (John, et al., 2015) are used in demonstrating 

the applicability of the AMHBGE distribution. The AMHBGE distribution is compared with its 

special cases: product bivariate generalized exponential (PBGE) and Ali-Mikha’il-Haq 

bivariate exponential distributions.  

The kidney data showed the recurrence times to infection at point of insertion of catheter using 

portable dialysis equipment. Two recurrence times were recorded for each patient together with 

censoring indicator (Infection occurs =1 and censored=0). Assume T1 and T2 refers to first and 

second recurrence time respectively. The posterior summaries of the aforementioned 

distributions are given in Table 1. 

Table 1: Posterior summaries for the Kidney data set 

Model Parameter median Sd 95% CrI DIC 

BGE 

AMH 

𝛾1 0.6932 0.1310 (0.4765, 0.9885) 259.6 

𝛾2 0.1121 0.0411 (0.0533, 0.2122)   

𝜆 0.7592 0.2604 (0.0466, 0.9908)   

𝜑1 0.4687 0.0727 (0.3407, 0.6244)   

𝜑2 0.6986 0.2454 (0.2942, 1.2600)   

BGE 

product 

𝛾1 0.5688 0.0741 (0.4397, 0.7300) 649.3 

𝛾2 0.6239 0.0966 (0.4610, 0.8402)   

𝜑1 0.0479 0.0131 (0.0260, 0.0777)   

𝜑2 0.0580 0.0227 (0.0240, 0.1119)   

BEX 

𝜆 0.9668 0.0579 (0.7899, 0.9990) 320.4 

𝜑1 0.4762 0.0570 (0.3772, 0.6040)   

𝜑2 2.4950 0.3116 (1.9420, 3.1600)   
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The posterior summary statistics for the AMHBGE distribution compared to PBGE and 

AMHBE distributions are given in Table 1. The results showed that, the AMHBGE distribution 

is more efficient than the PBGE and AMHBE distributions, since it has the least DIC value. In 

addition, the distributions based on AMH copula function are more efficient in fitting the data 

set than the bivariate distribution based on product copula function. 

The second data set used in demonstrating the applicability of the developed distribution is the 

tobacco-stained-fingers data set. This data is obtained from John et al., (2015) and the data 

consist of a sample of 143 smokers screened between March 2006 and January 2010 in a 180-

bed community hospital in La Chauxde-Fonds, Switzerland. Information on death and hospital 

admission of the patients are collected until June 2014. For more details on this data set see 

John et al., (2015). The posterior summaries for this data set are given in Table 2. 

 

Table 2: Posterior summaries for the Tobacco-stained-fingers data set 

Model parameter median sd 95% CrI DIC 

BGE 

𝛾1 0.2133 0.1579 (0.0829, 0.6803) 171.7 

𝛾2 0.1178 0.0882 (0.0290, 0.3619) 

𝜆 0.7750 0.4812 (-0.7836, 0.9929) 

𝜑1 0.0054 0.0026 (0.0017, 0.0115) 

𝜑2 0.01271 0.0080 (0.0023, 0.0330) 

BGE 

Product 

𝛾1 0.7476 0.1551 (0.1096, 1.0577) 689.1 

𝛾2 1.0510 0.2463 (0.0196, 1.5077) 

𝜑1 0.0063 0.0016 (0.0036, 0.0577) 

𝜑2 0.0080 0.0020 (0.0059, 0.0577) 

BEX 

𝜆 -0.1871 0.3277 (-0.8310, 0.4332) 197.2 

𝜑1 0.0094 0.0027 (0.0051, 0.0154) 

𝜑2 0.0350 0.0097 (0.0196, 0.0577) 

 

Table 2 gives the posterior summary statistics for the AMHBGE distribution compared to 

PBGE and AMHBE distributions. The results also showed that, the AMHBGE distribution is 

more efficient than the PBGE and AMHBE distributions, since it has the least DIC value. 

furthermore, the distributions based on AMH copula function (AMHBGE and AMHBE 

distributions) are more efficient in fitting the data set than the bivariate distribution based on 

product copula function. 

 

Conclusion 

In this work, a bivariate generalized exponential distribution based on Ali-Mikha’il-Haq copula 

function is introduced. Model parameters are estimated via Bayesian method of estimation. 

Kidney and Tobacco-stained-fingers data sets are used in demonstrating the applicability of the 

distribution. The performance of the distribution is compared with that of two Bivariate 

distributions: PBGE and AMHBE distributions. Based on the deviance information criteria 

(DIC) values, it is shown that, the Bivariate generalized exponential Ali-Mikha’il-Haq 

distribution is more efficient in fitting the data sets.  
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