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ABSTRACT 

In the analysis of lifetime data, it is usually assumed that each and every subject in the study 

population will experience the event of interest if followed for a long period of time. However, 

due to improvement in the field of medicine, some subjects stay longer than expected. These 

subjects are termed long-term survivors. Hence, this study introduces a long-term survivor model 

based on Burr X distribution. The parameters of the model were estimated the Bayesian estimation 

procedure. To illustrate the applicability of the introduced methodology, a medical dataset was 

used fitted and the result compared with that of the model without the proportion of long-term 

survivors.  

 

Keywords: Survival model, Long-term survivor model, non-mixture long-term survivor model, 

Burr X distribution. 

 

1.  Introduction 

In the analysis of survival time data, accelerated failure time (AFT) models and proportional 

hazard (PH) models are frequently used. These models usually assumed that, the subjects in the 

study population would eventually encounter the event of interest if followed for a long time. 

However, studies have shown that, some patients would not actually experience the event of 

interest even if followed for a long period of time (Maller and Zhou, 1996). Therefore, to model 

this kind of data, the long-term survivor models are used. The long-term survivor models are 

frequently used when analyzing data from a population that consists of both long-term survivors 

and those who are at risk for the event of interest (Usman, et al., 2022). That is, the long-term 

survivor models are used for analyzing survival time data in the literature when the study 

population consists of two types of individuals: individuals who are long-term survivors and those 

who experienced the event of interest. Basically, there are two types of long-term survivor models: 

mixture and non-mixture long-term survivor models.  

The mixture long-term survivor model was initially introduced by Boag (1949) and further 

developed by Berkson and Gage (1952) and later extensively studied by other authors such as: 

exponentiated mixture cure rate model by Kannan (2010), frechet mixture model by Ramos (2017), 

Nadarah-Haghighi mixture cure rate model by Usman et al., (2021), Weibull exponentiated 

exponential mixture cure rate model by Usman et al., (2022) and many more. The second model 

is the non-mixture long-term survival model introduced by Yakovlev et al., (1993) and was further 

discussed by Chen et al. (1999). According to Chen et al., (1999), the non-mixture long-term 

survival model is motivated by the underlying biological mechanism and is developed based on 

the assumption that the number of cancer cells that remain active after cancer treatment follows 

poison distribution. The model is shown to have some advantages over the mixture long-term 
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survival model. For example, it is easy to compute due to its simple structure for the survival 

function which provides certain technical advantage when developing maximum likelihood 

estimation procedures, it has proportional hazard model structure and it presents a much more 

biologically meaningful interpretation of the results of the data analysis (see Chen et al. (1999); 

Uddin et al. (2006) for more details). It is important to note that, the non-mixture model has a 

mathematical relationship with the standard long-term survival model. That is, the non-mixture 

model can be written as the standard long-term survival model Uddin et al., (2006).  

The rest of the paper is organized as follows: in section 2, we introduced the model, some statistical 

properties of the model are discussed in section 3 while estimation of the model parameters are 

given in section 4. Section 5 discusses on the applicability of the introduced methodology and we 

finally conclude in section 6. 

 

2. Model 

2.1. Burr X distribution 

Burr (1949) presented twelve different distributions that are used in analyzing lifetime data in 

different fields including biology, agriculture, and health. These distributions were developed 

using the differential equation method. Burr X distribution is among these distributions. The 

probability density function (pdf), cumulative distribution function (cdf), Survival and hazard 

functions of the Burr X distribution are respectively given as: 

 ( ) ( ) ( )
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where,   is shape parameter. The distribution have been studied by many researchers, for 

instance, it has been extended to the generalized Rayleigh distribution by Surles and Padgett 

(2001), beta Burr X by Merovci et al., (2016), Weibull Burr X by Ibrahim et al., (2017) and 

exponentiated Burr X by Khaleel et al., (2018). The parameter of the distribution was estimated 

using both the classical and Bayesian methods of estimation. For example, (Kundu and Raqab, 

2005) estimated the parameter using some classical method of estimations, (Aliyu and Yahaya, 

2016, 2017) and (Yahaya and Aliyu, 2017) estimated the parameters of the distribution using both 

the classical and non-classical method of estimations, Esemen, and Gürler, (2018) estimated the 

parameter of the distribution based on rank set sample. The distribution is used quite effectively 

in modeling strength data and also in modeling general lifetime data. 

 

2.2. Non-mixture long-term survivor model 

As mentioned earlier, the non-mixture long-term survival model was first introduced by Yakovlev 

et al., (1993) and was further discussed by Chen et al. (1999). The survival function of the entire 

population for the non-mixture long-term survivor model is given as: 
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( ) ( )0
tF

S t =               (5) 

where,  is the proportion of long-term survivors and it lies between 0 < <1 and ( ) ( )0 01F t S t= −

is the distribution function for the susceptible individuals. The pdf, cfd and the hazard function for 

the non-mixture long-term survivor model are respectively given as: 

( ) 0 ( )

0( ) ln ( )
F t

f t f t = −            (6) 

( ) 0 ( )
1

F t
F t = −           (7) 

and,                                                                                      

( ) ( ) ( )0lnh t f t= −                 (8) 

Hence, the survival function of the entire population for the Burr X non-mixture long-term survivor 

model is given as: 
21 exp( )

(t/ , )
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S
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 − −
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where t >0 is the survival time,   is the proportion of long-term survivors and   is the shape 

parameter. The cdf, pdf and hazard function for the Burr X non-mixture long-term survivor model 

are respectively given as: 
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3. Statistical Properties of the Models 

In this section, some statistical properties such as quantile function and moments of the BXNMLTS 

model were discussed. 

 

3.1. Quantile Function of the BXNMLTS model 

To obtain random realizations from a given model, the quantile function is employed. The quantile 

function for the BXNMLTS model is given by: 
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where u is a random number generated from uniform distribution with parameters zero and one. 

That is (0, 1)u U . The quantile function can be used in obtaining the first, second and third 

quantiles of the BXNMLTS model. This is done by letting 1 1,
4 2

u =  and 3
4

 respectively for 

the first, second and third quantiles. For instance, the second quantile (median) is obtained as: 
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3.2. Moments of the BXNMLTS Model 

To obtain the rth moment of the Burr X Non-mixture long-term survivor model, we use the pdf of 

the Burr X Non-mixture Long-term survivor Model: 
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expanding the pdf using binomial series expansion gives:
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The rth moment is obtained as follows: 
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4. Estimation Procedure 

In this section, Bayesian method of estimation is used in estimating the parameters of the 

BXNMLTS model. MCMC technique is used to get the approximate posterior summaries of the 

parameters of the BXNMLTS model. 

Consider a random sample ( ),i it   i = 1, . . . , n , where 
it  is the time to the occurrence of the event 

of interest and i  
 is a censoring indicator defined as: 

 
1

0
i

i for uncencored lifetime

i for censored lifetime


=
= 

=
 

then the likelihood function is defined as: 
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Substituting the survival and hazard functions in equations (5) and (8) into equation (16) gives: 
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Hence, the likelihood of the BXNMLTS model is obtained by substituting the survival and hazard 

functions of the BXNMLTS model in equations (9) and (12) into equation (17). This gives:  
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Let   be the vector of unknown parameters. For Bayesian method of estimation, let the prior 

density for the parameters:   and   respectively be denoted by ( )  and ( ) . A gamma 

prior for the shape parameter of the proposed model is assumed. That is:  

 ( )
( )

1

1

1 a b
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e
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 
−

−

−
 =


        (19) 

On the other hand, the proportion of long-term survivors ( ) is assumed to follow the beta prior. 

That is:  

 ( )
( )

( )
111

1
,

dc

B c d
  

−− = −        (20) 

where , ,a b c  and d  are hyper-parameters, ( ),B c d  is referred to as beta function which is 

defined by ( )
( ) ( )

( )
,

c d
B c d

c d

 
=

 +
. We further assumed the hyper-parameters to be specified and 

non-negative. Prior independence among the parameters is also assumed. Hence, the joint prior 

distribution is given by: 
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To be specific, (1, 1)gamma  since 0   and (1, 1)Beta , since  0 < < 1 . The joint 

posterior distribution is obtained by combining the joint prior distribution of the parameters in 

equation (26) and the likelihood function in equation (23). This gives: 
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A great computational simplification in simulating samples from this posterior density can be 

achieved using the OpenBUGS software, where only the distribution of the data and the prior 

distributions of the parameters are required. 

 

5. Applications 

In this section, two real life data sets were used in demonstrating the applicability of the proposed 

non-mixture long-term survivor methodology: the Allogeneic bone marrow transplant data and 

cervical carcinoma datasets.  

The allogeneic bone marrow transplant data consist of 90 observations that was previously 

analyzed by Shao and Zhou (2004), Kutal and Qian (2018), Usman et al. (2021), Usman et al., 

(2022) and Aliyu and Usman (2025). The first data was used to fit the non-mixture long-term 

survivor model studied in previous section and compared its performance with that of Burr X 

distribution. The data recorded the times to recurrence of leukaemia for patients after one of 

allogeneic transplant or autologous transplant. Forty-six (46) patients were treated by allogeneic 

transplant while the remaining forty-four (44) were treated by autologous transplant. However, 

thirty-three (33) and thirty-five patients treated by allogeneic transplant and autologous transplant 

respectively suffered a recurrence of leukaemia at different ranges of time. It is also observed that 

thirteen (13) and nine (9) patients from these respective groups have no record of recurrence. That 

is they are censored. Bayesian method of estimation discussed in section 4 was used to analyze 

this data. 

In analyzing this data, gamma prior is assumed for 𝜃 while beta prior is assumed for the long-term 

survivor parameter. To be specific, 𝜃~𝐺𝑎𝑚𝑚𝑎(1,   1) and 𝜋~𝐵𝑒𝑡𝑎(1,   1). We further assumed 

prior independence among the parameters included in the model. MCMC technique was applied 

in obtaining posterior summaries from the joint posterior distribution. We generated 1,050,000 

samples for each parameter of interest from the posterior distribution. However, the first 50,000 

samples were discarded as burn-in-samples in order to reduce the effect of initial values while to 

reduce the effect of autocorrelation, samples are taken at every 100th sample. Therefore, all 

posterior summaries of interest were based on 10,000 samples. The results are given in Table 1. 

Table 1 Posterior summaries for models with and without long-term survivor – Allogeneic 

Bone Marrow Transplant data 

Models Parameter Median S.D 95% CrI DIC 

OBX   0.599 0.08729 (0.45,0.79) 153.4 

OBXNM       0.3045 3.472E-7 (0.19,0.44) 110.9 
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  0.5566 0.08769                   (0.41,0.74) 

 

Table 1 gives the posterior summaries for the fitted Burr X models with and without long-term 

survivor parameter. Standard deviation (S.D) and 95% credible interval (CrI) of the estimates were 

also given. The Deviance information criteria for the fitted models were also provided. We note 

that, the Bayesian estimates for the parameter    for both the Burr X distribution and BXNMLS 

model are relatively close. However, based on the DIC value for these fitted models, it can easily 

be seen that, the BXNMLS model is more efficient than the Burr X distribution in fitting the data.  

The second data set used in this article is the overall survival time extracted from the cervical 

carcinoma data given in (Brenna et al. 2004). The data consists of a total of 148 women who were 

diagnosed and treated for invasive cervical carcinoma between 1992 and 2002. A sub-sample of 

118 women who received the standard treatment recommended by International Federation of 

Gynecology and Obstetrics (FIGO) were used. The time from the date of surgery to the first event 

of disease recurrence is defined as the disease-free survival (DFS). While the time from the date 

of surgery to death is defined as the overall survival. Similar procedures as in allogeneic bone 

marrow transplant is followed in analyzing this dataset. However, in this application, the 

performance of the proposed methodology is compared with that of Rayleigh non-mixture long-

term survivor model. The result of this analysis is given in Table 2. 

 

Table 2 Bayesian Estimates for Non-Mixture models – OST data 

Models Parameter Median S.D 95% CrI DIC 

BXNMLSM      

  

0.371  

0.6859  

0.05255 

0.07899 

(0.27,0.48)  

(0.54,0.86) 

162.2  

RNMLSM  

  

0.3555  

0.5856  

0.0530 

0.0544 

(0.25-0.46) 

(0.50,0.71) 

170.9 

 

Table 2 shows the posterior estimates of each parameter as well as the estimates of their standard 

errors, 95% credible interval and DIC. The table shows that, the BXNMLS model is more efficient 

in fitting the data compared to the RNMLS since it has the lowest value of DIC. 

6. Conclusion 

The presence of long-term survivor is usually included in lifetime data analysis, particularly in 

applications related to medicine. In this research, a non-mixture long-term survival model for right-

censored data is introduced by employing Burr X distribution in the presence of right-censoring. 

Bayesian estimation procedure is used to estimate the model parameters. Two datasets are used in 

demonstrating the applicability of the proposed methodology. It was found that, the model with 

long-term survivor parameter is more efficient in fitting the data than the model without long-term 

survivor parameter. In addition, the proposed model is found to be more efficient in fitting the 

overall survival time (OS) of cervical carcinoma dataset than the Rayleigh long-term non-mixture 

models. 

 

 

 

 




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