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crossing a bridge took into account many 
important factors, such as the effects of the 
moving loads, the influence of damping and  
the spring suspension of the locomotive. 
 
For the case of a concentrated force moving 
with a constant velocity along a beam, ne-
glecting damping forces Timoshenko (1953) 
found a solution, and presented an expres-
sion for the critical velocity. Stanisic and 
Hardin (1968) determined the dynamic    
behaviour of a simply supported beam carry-
ing a moving mass which is interesting 
enough, but their method is not easily appli-
cable to different boundary conditions.  A 
comprehensive treatment of the subject of 
vibrations of structures to loads, which con-
tains a large number of related cases, is that 
of Fryba (1972). 
 
Akin and Mofid (1989) presented an analyti-

ABSTRACT 
A detailed analysis of vibration of beams under uniformly distributed moving loads using finite element 
method is carried out. The material properties, throughout the length of the structures under consid-
eration are assumed to be prismatic. The weak form of the equation describing the vibration of beams 
is obtained using Galerkin’s Weighted Residual Method (GWRM) while the elements stiffness, mass, 
and centripetal acceleration matrices as well as the load vectors were derived. Newmark’s integration 
method is used to obtain the dynamic response of beams under uniformly distributed moving loads. 
Numerical examples are presented to show the effects of :(i)  velocity of the moving load; (ii) load’s 
length on the dynamic response of beam under uniformly distributed moving loads. 

 INTRODUCTION 
As a result of ever increasing in global in-
creases in the demand for the transforma-
tions in transport sectors, most especially, in 
railway system, pavements, carriage ways 
and many more. The need for provocative 
research involving structural members, such 
as beams under the influences of the mov-
ing loads. 
 
Since the middle of the last century, when 
railway construction began, the problem of 
vibration of bridges under travelling loads 
has interested engineers, mathematicians 
and other scientists. Contributions to the 
solution of this problem were made by Sir 
George Stokes (1849), Robert Wills (1849) 
and many others. Stephen Timoshenko 
(1927) considered the case of pulsating load 
passing on the bridge. Sir Charles Inglis 
(1934), in his systematic analysis of train 
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cal numerical method that can be used to 
determine the dynamic behaviour of beams 
with different boundary conditions carrying 
a concentrated moving mass. The problem 
of dynamic behaviour of an elastic beam 
subjected to a moving concentrated mass 
was also studied by Sadiku and Leipholz 
(1989). Gbadeyan and Oni (1995) presented 
a more versatile technique which can be 
used to determine the dynamic behaviour of 
beams having arbitrary end supports. Es-
mailzadeh and Ghorashi (1995) investigated 
the problem of vibration analysis of beams 
due to partially distributed, uniformly mov-
ing masses.  
 
Michaltos, Sophianopoulos and Kounadis 
(1996), studied the effect of the mass of a 
moving load on the dynamic response of a 
simply supported beam. Some interesting 
results were obtained. A detailed analysis of 

the effect of centripetal and coriolis forces 
on the dynamic response of light (steel) 
bridges under moving loads was also carried 
out by Michaltos and Kounadis (2001).  
Gbadeyan et al. (2002) investigated the dy-
namic response of beams subjected to uni-
form partially distributed moving masses in 
which the inertia of the load was taken into 
consideration. It is remarked at this juncture, 
that, in all the works aforementioned so far, 
analytical methods were employed. 
 
In this paper, the finite element method was 
employed to obtain the dynamic response of 
beams under uniformly distributed moving 
loads. The finite element model of the prob-
lem was obtained by applying Galerkin’s 
Weighted Residual Method (GWRM), the 
responses were obtained using Newmark’s 
integration method (1959) with the aid of a 
computer code written in Visual Basic pro-

Problem Formulation 
For moving load problem, such as a train moving on a bridge, the Euler-Bernoulli equation 
for beam bending is (Esmailzadeh et al., 1995): 

                         (1) 
 

where  is the transverse displacement of the beam,  is the mass density per vol-

ume,  is the beam rigidity,  is the externally applied pressure loading,  and 

 indicate time and the spatial axis along the beam axis. 
 
The associated boundary conditions are: 

                                                                 (2) 
 

For moving load problem, 

     (3) 
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Using (3) in (1), we have: 

                    
 

In order to solve Equation (4) using finite element method, since the closed-form solution 
of the problem is either impossible or very difficult using analytical approach, we use 
Galerkin’s weighted Residual Method (GWRM) to obtain the weak formulation of the 
problem. 
 
The weak formulation of the Beam Equation 

The weak formulation of Equation (4) according to Kwon et al., (1996) and Reddy (1993) is 

        
                 
where, R is the Galerkin’s weight or test function.                        

Rearranging Equation (5), we obtain: 

                                                         
         
  
Integrating twice by parts the 1st term on the left-hand side of (6) , we have:      
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where: 

             
The approximation of the integral (Dada, 2003) 

                                
 

Finite Element Model of the Beam Equation 
The standard mathematical discretization (Kwon et al., 1996) of beam Equation (7) into a 
number of finite elements yields; 
 

 

                                                                                                                             
               (9) 

here: , the domain of the beam element.  
 
Finally, the finite element form of (9) is: 
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[C]=                                                                        
 

{F}=                                                               
 

By using Hermittian interpolation functions (Cheung et al.,1978; Reddy, 1993) 
 

, , ,                            
 to interpolate the transverse displacement in the above equations, therefore, from equation 
(11a), we have, for a single element, the system stiffness matrix: 
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where:    and                                                      
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Similarly, interpolating Equations (11b) to 
(11d) using the same shape function yields 

the consistent element mass matrix , 

the centripetal acceleration matrix  and 

the element force vector  respectively. 
In this paper, the consistent mass matrix [9]  
is used for the analysis carried out. 

The specification of  in Equation (11d) 
depends on the associated boundary condi-
tions for a particular problem. However, in 
this paper, the emphasis is on simply sup-
ported beams with a little comparison with 
cantilever beams. 
 
Numerical Examples 

In this paper, a  long two-node sim-
ply supported structural beam element was 
modeled (Fig.1a) to illustrate the above pro-
cedure. The beam element is discretized 

][M
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into uniform elements (Fig.1b) with ho-
mogeneous materials.  
 
In addition, the mass density per beam 

length , the flexural rigid-

ity , the beam 

cross sectional area , the lateral 

load , the velocity of the mov-

ing load , and the load’s length 

  In order to obtain the effect of 
the velocity and load’s length on the dynamic 
response of beam elements to moving loads, 
various values for both parameters were 
used:  
 
(a) Effects of velocity on the dynamic 

response of the beam: The effect of 
increasing in velocity on the dynamic 

6
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response of a simply supported beam 
under distributed moving load is shown 
in Figure 2. It shows that for the initial 

velocity     smaller than a certain 

value, denoted by   , the value of 
the deflections (y) increases with in-

creasing in velocity.  However, for 

> , the foregoing trend just reverses, 
the critical value of the initial velocity 

for this problem is   , 
while the reverse case is shown in figure 
3.  The implication is that after exceed-
ing the critical value of the velocity, the 
deflections decreases as the velocity in-
creases.    

0V

/
0V

0V

/
0V

smV /15/
0 

       
(b) Effects of load’s length: In order  to 
investigate the influence of the load’s length 
on the dynamic response of a simply sup-
ported beam having the same properties as 
those of the one in Figure 3, but with 

, ,  , respectively, 
were studied. This shows that the deflections 
(y) increases with increasing in load’s length 
as described in Figure4.  Finally, the findings 
in (a) shows similar pattern in the dynamic 
responses with the one obtained in (4, 7), 
while (b) is an extension of the results ob-
tained in (4, 7, 10, 11). 
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Figure (1a): A uniform beam under moving load 

Figure (1b): A discretized uniform beam  
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Figure 2: Effect of increasing velocity on the dynamic responses of beams under  
                moving loads 
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Figure 3: Effect of exceeding the critical value of the velocity on the dynamic  
                responses of beams under moving loads 
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CONCLUSION 
In this paper, a detailed analysis of vibration 
of beams under uniformly distributed mov-
ing loads has been studied. The dynamic 
response of beams subjected to uniformly 
distributed moving loads using finite ele-
ment method, incorporating the Newmark’s  

 numerical technique for the evaluation 
of the resulted equations in order to obtain 
the effects of velocity of the moving load 
and  load’s length on the response of 
beams.  It is concluded that the velocity of 
the moving loads and load’s length have 
significant effects on the dynamic response 
of beams under uniformly distributed mov-
ing loads.  The results obtained, for the ef-
fects of velocity of the moving loads, are in 
agreement with those in the existing litera-
tures,  while for the load’s length, the re-



sponse amplitude is directly proportional to 
the values of the load’s length. 
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